2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics

AIM 2005

24—28 July 2005 Monterey, California U. S. A.

PROGRAM

http://www.aim2005.org

Co-sponsored by IEEE Industrial Electronics Society IEEE Robotics and Automation Society ASME Dynamic Systems and Control Division

WELCOME

On behalf of the organizing committee of AIM2005, I would like to welcome you to the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM2005). This is the fifth AIM conference following the previous ones held in Tokyo, Japan (1997), Atlanta, USA (1999), Como, Italy (2001) and Kobe, Japan (2003). The purpose of this biennial conference is to promote activities in various areas of mechatronics by providing a forum in exchange of ideas, presentations of technical achievement, and discussions of future directions.

The word *mechatronics* represents the synergistic integration of precision mechanical engineering with advanced electronics and computer technologies in the design and manufacture of intelligent products and processes. Since the basic concept of mechatronics is quite general, it has found a wide variety of applications and systems ranging from automation, biomedical, automotive, data-storage devices, energy, home appliances, intelligent highways, manufacturing, robotics, and aerospace. Past successes have taken the AIM to a new height; the theme of this conference is "Intelligent Mechatronics in Micro/Nano Technologies". Micro and nano technologies will allow us to build devices enormously smaller than before and will bring fundamental changes to disciplines within engineering, chemistry, medicine, biology, and physics. The research on intelligent mechatronics is tremendously important to the development of micro and nano technologies, because most physical magnitudes characterizing micro and nano scale systems significantly differ from those familiar in macro and meso systems. It requires us to look the problem from different perspectives and provide new solutions. I hope the AIM2005 will provide an important platform and forum to further enable the development of intelligent mechatronics for micro and nano technologies.

The city of Monterey has been known as the perfect combination of land, sea and sky and is recognized as an ideal vacation and business destination. This beautiful seaside community combines all the charm of small town America with an endless variety of recreational and cultural activities. Monterey's rich history, the saga of California's Mission Trail, historic Fisherman's Wharf and Cannery Row, 17 world-class golf courses, one of the world's best aquarium, a unique variety of shops and galleries and a spectacular assortment of parks and natural areas combine to provide a truly unrivaled place. I hope you and your family will enjoy your stay in Monterey.

Finally, I would like to express my sincere thanks to the members of the organizing committee! Whatever you will enjoy in the conference is the result of their tireless effort.

Once again, I hope you and your family will have a wonderful time and enjoy both the technical and social programs of the AIM2005!

Ning Xi General Chair

ABOUT THE PROGRAM

On behalf of the Institute of Electrical and Electronics Engineers (IEEE) and the American Society of Mechanical Engineers (ASME), I am glad to welcome you to the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2005). The purpose of this biennial conference, following the footsteps of the previous four editions in Tokyo, Japan (1997), Atlanta, USA (1999), Como, Italy (2001) and Port Island, Japan (2003), is to promote activities in various areas of mechatronics by providing a forum for exchange of ideas, presentation of technical achievements, and discussion of future directions. The conference returns to the USA for the second time. Past successes have taken the AIM to a new height; the theme of this conference is—Intelligent Mechatronics in Micro/Nano Technologies.

This year, a record number of 350 papers have been submitted from 32 different countries with an overall breakdown for the three greater geographical areas of about: 36% for America, 46% for Asia and Oceania, and 18% for Europe. These submissions include 34 invited session papers and 20 industrial oriented papers. For the first time, AIM2005 integrates paper submission/review, program production, and author registration in a single system, along with providing the authors a link to the free PDF conversion service tool offered by IEEE to convert the final manuscript into compatible PDF file to meet the new IEEE PDF compliance. Additionally, we require at least one author for each paper to register before uploading the paper; every attempt has been made to eliminate no-show at the conference. The review process has been conducted by the Program Chair, the four Program Co-Chairs and the Invited Session Chair. The process has been aided by the requirement that all papers be submitted in electronic form through PaperPlaze, thereby allowing each contribution to receive 3 independent reviews! Besides thanking all the Chairs for their prompt and efficient handling of the submission and review process, I take this opportunity to acknowledge the tremendous effort invested by the committee members for their reviewers of the papers. To promote submission of high quality papers and reviews, AIM2005 will present the best student paper awards to five finalists and review appreciation awards to three outstanding reviewers.

The technical program includes the presentation of 273 papers organized into 60 sessions in 5 parallel tracks. The Proceedings are provided in CD-ROM version, thanks to the work of the Publication Chair. In addition, the Final Program contains the 100-word abstracts of the papers which have been made available on the web http://www.aim2005.org prior to the Conference as well, thanks to the timely update of the web pages by the Publicity Chair. The Technical Program begins on Sunday (July 24) with 1 full-day and 4 half-day Tutorials promoted by the devoted Tutorial Chair. We are grateful to have three distinguished speakers: Christoph Gerber, Steven J. Madore and Hiroshi Shimizu offering plenary lectures on nano/micro-mechatronics and beautiful examples of mechatronics on biomedical, energy and environment. Paper Sessions are held in five parallel tracks from Monday to Wednesday covering a broad spectrum of topics and emerging areas addressing classical subjects such as modeling, sensor, design and control, up to fascinating mechatronic applications in micro/nano devices and manipulation, novel actuators, opto-mechatronics and color machine vision, data storage, bio-medical, automotive technology, and walking machines. The collection of papers includes original work on abstractions, algorithms, theories, methodologies, and case studies in the area of mechatronics. The highlights of the Social Program include a welcome reception on Sunday, a Monterey Bay Aquarium tour on Monday, and the conference banquet on Tuesday. A panel discussion, led by a group of distinguished advisory members, will be held following the conclusion of the technical sessions on Wednesday. Finally, Thursday (July 28) is dedicated to visit local industries, thanks to the dedication of the Industrial Tour Chairs.

A special word of appreciation goes to the General Co-Chair for his local arrangement effort and his tireless support to the organization of the event. We also thank the National Science Foundation for offering partial travel supports to student authors from the U.S.A. - thanks to the effort of the Invited Chair. Of course, we must remember and express our greatest recognition to all the Authors. Without their valuable contributions, there would be no conference at all.

On behalf of the AIM2005 team, we welcome you to participate in the AIM2005 Program. It is my great pleasure to meet you in Monterey!

Kok-Meng Lee

Kok-Meng Lee Program Chair

ORGANIZATION

Sponsors and Advisory Committees

Co-sponsored by

IEEE Industrial Electronics Society (IES) IEEE Robotics and Automation Society (RAS) ASME Dynamic Systems and Control Division (DSCD)

In cooperation with

Institute of Electrical Engineers of Japan (IEEJ) Institute of Systems, Control, and Information Engineers (ISCIE) International Federation of Automatic Control (IFAC) Japan Society of Mechanical Engineers (JSME) Japan Society of Precision Engineers (JSPE) Robotics Society of Japan (RSJ) Society of Instrument and Control Engineers (SICE)

Honorary Advisory Committee:

Fumio Harashima, University of Tokyo T.J. Tarn, Washington University Toshio Fukuda, Nagoya University Ren C. Lou, National Chung Cheng Univ. Masayoshi Tomizuka, University of California, Berkeley Okyay Kaynak, Bogazici University

Advisory Committee:

Hideki Hashimoto, University of Tokyo Kok-Meng Lee, Georgia Institute of Tech. Bruno Siciliano, University of Naples Shigeki Sugano, Waseda University Ning Xi, Michigan State University Roland Siegwart, Swiss Federal Institute of Technology

Chairs

GENERAL CHAIR

Ning Xi Michigan State University <u>xin@egr.msu.edu</u>

GENERAL CO-CHAIRS

Xiaoping Yun Naval Postgraduate School yun@ieee.org

Roland Siegwart Swiss Federal Institute of Technology roland.siegwart@epfl.ch

PROGRAM CHAIR

Kok-Meng Lee Georgia Institute of Technology kokmeng.lee@me.gatech.edu

PROGRAM CO-CHAIRS

Stefano Chiaverini University of Cassino chiaverini@unicas.it

Wen J. Li Chinese Univ. of Hong Kong wen@acae.cuhk.edu.hk

Ranjan Mukherjee Michigan State University mukherji@egr.msu.edu

Koichi Osuka Kobe University osuka@mech.kobe-u.ac.jp

INVITED SESSION CHAIR Bin Yao Purdue University byao@ecn.purdue.edu

INVITED SESSION CO-CHAIRS

Jadran Lenarcic Jozef Stefan Institute jadran.lenarcic@ijs.si

Taizoh Sakaki Ricoh Co.Ltd. taizoh.sakaki@nts.ricoh.co.jp

Dong-Soo Kwon KAIST kwonds@kaist.ac.kr

Metin Sitti Carnegie Mellon University sitti@cmu.edu

TUTORIAL CHAIR

George T. C. Chiu Purdue University gchiu@purdue.edu

TUTORIAL CO-CHAIRS

Claudio Melchiorri University of Bologna cmelchiorri@deis.unibo.it

Tetsuo Kotoku Adv. Ind. Sci. and Tech., Japan <u>t.kotoku@aist.go.jp</u>

Gursel Alici University of Wollongong Gursel.alici@eng.monash.edu.au

PUBLICATION CHAIR I-Ming Chen Nanyang Tech. Univ. <u>michen@ntu.edu.sg</u>

PUBLICATION CO-CHAIR

Philip Chen University of Taxes <u>pchen@utsa.edu</u>

REGISTRATION CHAIR

Imad Elhajj Oakland University elhajj@oakland.edu

PUBLICITY CHAIR

Jindong Tan Michigan Tech.Univ. jitan@mtu.edu

PUBLICITY CO-CHAIRS

Stefano Stramigioli University of Twente S.Stramigioli@el.utwente.nl

Hiroki Murakami IHI Co.Ltd hiroki_murakami@ihi.co.jp

Ju-Jang Lee Korea Advanced Institute of Science and Technology jjlee@ee.kaist.ac.kr

FINANCE CHAIR

Weihua Sheng Kettering University wsheng@kettering.edu

EXHIBITION CHAIR

Yoshio Yamamoto Tokai Univ. YoshioYam@aol.com

EXHIBITION CO-CHAIR

Jizhong Xiao City University of New York jxiao@ccny.cuny.edu

LOCAL ARRANGEMENT CHAIR

Wei Kang Naval Postgraduate School wkang@nps.navy.mil

LOCAL ARRANGEMENT CO-CHAIR

Christopher Kitts Santa Clara University <u>ckitts@me.scu.edu</u>

INDUSTRIAL TOUR CHAIR

Winncy Du San Jose State University wdu@email.sjsu.edu

INDUSTRIAL TOUR CO-CHAIR

Mingjun Zhang Agilent Technologies michael zhang@agilent.com

BEST STUDENT PAPER AWARD COMMITTEE Bruno Siciliano, Chair Wayne Book Lilong Cai

Program Committee

Invited Session Organizers

Bailey-Van Kuren, Michael Chen, I-Ming Huynh, Tom Maslen, Eric Peng, Fang Z. Quin, Roger D. Romano, Marcello Vaidynathan, Ravi

Reviewers

Amerongen, Job van Ang, Wei Tech Antonelli, Gianluca Arai, Fumihito Bailey-Van Kuren, Michael Barth, Eric J. Book, Wayne Bowling, Alan Bruyninckx, Herman Buss, Martin Caccavale, Fabrizio Caldwell, Darwin G. Chen, I-Ming Chen, Philip Chen, Heping Chew, Chee Meng Cho, Dongil "Dan" Chow. Mo-Yuen Chuang, Cheng-Hsin Croft, Elizabeth Daley, Wayne De Gennaro, Maria Carmela de Queiroz, Marcio S. de Silva, Clarence Del Vecchio. Carmen Dixon, Warren Dong, Lixin Du, Winncy Dubey, Rajiv Elhajj, Imad Falcone, Paolo Fantuzzi, Cesare Feddema, John T.

Ferreira, Antoine Frasca, Roberto Frezza, Ruggero Fu, Li-Chen Fujimoto, Hiroshi Fung, Wai-keung Gao, Robert X. Garimella, Phanindra V. Ge. Shuzhi Sam Glielmo, Luigi Gokcek, Cevat Gong, Jiangin Guglielmelli, Eugenio Guo, Lin Guo, Shuxiang Hamel, William R. Hasegawa, Tsutomu Hashimoto, Hideki Hashimoto, Hiroshi He, Fugiang Hong, Yun Hori, Yoichi Hsiao. Teshena Ikeda, Hidehiro Ishihara, Hidenori Itoh. Tomotaka Johansson, Rolf Kawaji, Shigeyasu Kecskeméthy, Andrés Kim, Beomjoon Kitts, Christopher Kurfess, Thomas Kushihashi. Yasuhiro Kwon, Dong-Soo Kyriakopoulos, Kostas J. Lan. Chao-Chieh Langari, Reza Lee, Ju-Jang Lee, Gwo-Bin Lee. Yikuen Lee. Joo-Ho Lenarcic, Jadran Li, Yangmin Li, Qiang

Lim, Ser Yong Lin, Wei Liu. Yunhui Liu, Song Love, Lonnie J. Low. Kin Huat Luo, Ren Ma, Shugen Maslen, Eric McClamroch, Harris McMurray, Gary Meldrum, Deirdre Melkote, Shreyes Meyer, Rick Ming, Aiguo Minor, Mark Miura, Jun Motaghedi, Pejmun Natale, Ciro Nelson, Bradley J. Oh, Paul Y. Ohnishi, Kohei Ota. Jeff Parker, Johne Peng, Huei Peng, Fang Z. Phee, Louis Pierrot, Francois Pires, J. Norberto Rizzo, Gianfranco Rocco, Paolo Rohrer, Brandon R. Romano, Marcello Sadegh, Nader Sandipan, Mishra Santaniello, Sabatino Sato, Kazuya Scattolini, Riccardo Shen, Yantao Shi, Quan Shi, Mingyu Shibata, Takanori Siciliano, Bruno Siegwart, Roland

Singhose, William Sitti, Metin Song, Gangbing Su, Yi Su, Chanmin Summer, Matthew D. Sun. Yu Sun, Zheng Tai, Kang Takahashi, Satoru Tan, Jindong Tan, Xiaobo Toshiro, Noritsugu Tummala, Lal Tung, Steve Vacca, Vladimiro Vaidynathan, Ravi Wang, Chun-Chih Wang, Jiabin Wang, Shao Wang, Zhi Dong Wejinya, Uchechukwu C. Winkleman. Jim Xiao, Jizhong Xie, Ming Xie. Bo Xu, Yangsheng Xu, Jian-Xin Xu. Li Yamakita, Masaki Yamamoto, Yoshio Yang, Guilin Yokoi, Kazuhito Yuichi, Tsumaki Zhang, Mingjun Zhang, Hong Zhang, Hui Zhao, Mingyang Zhao, Yapu Zhong, Jinghua Zhong, Zhaowei Zhou, Changjiu Zhou, Zhi

Hyatt Regency Monterey: 1 Old Golf Course Road, Monterey, CA 93940-4908 USA

TRAVEL

Hyatt Regency Monterey is about three miles from the Monterey Airport. San Jose International Airport is 75 miles north of Monterey. San Francisco International Airport is 110 miles north of Monterey.

From Monterey Airport (MRY): It is only three miles from Monterey Airport to Hyatt Regency Monterey. The easiest way to get to Hyatt Regency is to take a taxi (about \$6). If you choose to rent a car and drive to the Hyatt Regency, make a right turn to Garden Road as you exit the airport. Make a left turn at Fairground Road/Mark Thomas Drive. Then Turn left onto Old Golf Course Road.

From San Francisco International Airport (SFO):

You may take a shuttle to Monterey, or rent a car and drive to Monterey. Airport shuttle service from San Francisco Airport and San Jose Airport is provided by *Monterey Salinas Airbus*.

Drive instructions from SFO to Monterey: Take South US-101 (90 miles). Then take West HWY- 156 (7 miles). West HWY-156 merges to South HWY- 1 (15 miles). After entering the Monterey City Limit, take the Del Monte/Pacific Grove exit. The exit ramp merges to Del Monte towards Pacific Grove. Turn left on Sloat AVE. Old Golf Course Road is at the end of Sloat AVE.

From San Jose International Airport (SJC): See SFO above for airport shuttle information.

Drive instructions from SJC to Monterey: Take South US-101 (50 miles). Then take West HWY-156 (7 miles). West HWY-156 merges to South HWY-1 (15 miles). After entering the Monterey City Limit, take the Del Monte/Pacific Grove exit. The exit ramp merges to Del Monte towards Pacific Grove. Turn left on Sloat AVE. Old Golf Course Road is at the end of Sloat AVE.

MONTEREY SALINAS AIRBUS SCHEDULE --- Reservation: (831) 373-7777 (http://www.montereyairbus.com/)

Depart Monterey	Depart Salinas/ Prunedale	Arrive SJC*	Arrive SFO	Depart SFO	Depart SJC	Arrive Salinas/ Prunedale	Arrive Monterey
4:00am	4:30am	5:30am	6:15am	6:45am	7:30am	8:30am	9:00am
5:30am	6:00am	7:00am	7:45am	8:15am	9:00am	10:00am	10:30am
7:00am	7:30am	8:30am	9:15am	9:45am	10:30am	11:30am	12:00pm
8:30am	9:00am	10:00am	10:45am	11:15am	12:00pm	1:00pm	1:30pm
10:00am	10:30am	11:30am	12:15pm	12:45pm	1:30pm	2:30pm	3:00pm
11:30am	12:00pm	1:00pm	1:45pm	2:15pm	3:00pm	4:00pm	4:30pm
1:00pm	1:30pm	2:30pm	3:15pm	3:45pm	4:30pm	5:30pm	6:00pm
2:30pm	3:00pm	4:00pm	4:45pm	5:15pm	6:00pm	7:00pm	7:30pm
4:00pm	4:30pm	5:30pm	6:15pm	6:45pm	7:30pm	8:30pm	9:00pm
5:30pm	6:00pm	7:00pm	7:45pm	8:15pm	9:00pm	10:00pm	10:30pm
7:00pm	7:30pm	8:30pm	9:15pm	10:00pm	10:45pm	11:45pm	12:15am

REGISTRATION

The registration desk will be located in the first floor lobby of the Hyatt conference center, right next to the meeting room Big Sur I.

Registration hours: 9:00am-5:00pm on Sunday, July 24, 2005

7:30am-5:00pm on Monday, July 25, 2005

8:00am-5:00pm on Tuesday, July 26, 2005 8:00am-12:00noon on Wednesday, July 27, 2005

PROGRAM LAYOUT

Sunday, July 2	24, 2005							
09:00—12:00	T1: Modeling and Control of	T2: Micro- and Nanoscale F	Robotics	T4: Design of Remotely Operated \	sign of Remotely Operated Vehicle & Manipulator			
14:00—17:00	Automotive Fuel Cell Systeme	- T3: Network-Based Control	Systems: A Tutorial	Systems: A Tutorial T5: Slip Sensors and "Intelligent" Robot				
18:00—20:00		Welco	me Reception (Spyglass Prom	Spyglass Promenade)				
Monday, July	25. 2005				,			
08:00_08:10			Opening (Regency 4-6)					
08:10-09:15		Plenary 1 "Nanomechatronic	cs: A Toolbox for the Small " Ch	ristoph Gerber (Regency 4-6)				
	Track 1 (Big Sur 1)	Track 2 (Big Sur 2)	Track 3 (Big Sur 3)	Track 4 (Windjammer 1)	Track 5 (Windjammer 2-3)			
MA	Data Storage Systems	Biomechatronics	Polymer Actuators	Opto-Mechatronic Sensors	Nanoscale Manipulation,			
09:30—10:42					Assembly and Synthesis			
10:42—11:00			Coffee Break	T				
MB	Automotive Systems	Human-Machine Interfaces I	Precision Piezoelectric	Advanced Machine Vision	Micro and Nano Systems			
11:00—12:30			Lunch Brook		Design and Modeling			
MC	Vehicle Control	Human-Machine Interfaces II	Precision Electromagnetic	Advanced Machine Vision	Micro Manipulation and			
14:00—15:30			Actuators	Applications II	Assembly			
15:30—15:45	I		Coffee Break					
MD	Locomotion	Human-Centered Robotics	Actuators in Mechatronic	Localization and Planning	Micro Robotics, Assembly			
15:45—17:15		Systems	Systems		and Synthesis			
19:00—22:00			Monterey Bay Aquarium Tour					
Tuesday, July	26, 2005							
08:00—09:15	P	lenary 2 " DNA Microarrays in Di	rug Discovery and Developmen	t," Steven J. Madore (Regency 4-6)			
	Track 1 (Big Sur 1)	Track 2 (Big Sur 2)	Track 3 (Big Sur 3)	Track 4 (Windjammer 1)	Track 5 (Windjammer 2-3)			
ТА	Mechatronics in Medical	Modeling and Design of	Design of Parallel	Sensor System Integration	Neural Control in Mechatronics			
09:30—10:42	Applications	Mechatronic Systems	Mechanisms I					
10:42—11:00			Coffee Break					
TB 11:00—12:30	Aerial and Underwater Robots	Dynamic Modeling of Robotic Manipulators	Design of Parallel Mechanisms II	Identification and Estimation in Mechatronics	Fuzzy Control Applications			
	I I		Lunch Break					
TC	Space Applications I	Fixture and Grasping	Design Optimization in	Sensors and Sensing Systems	Learning Control in			
14:00—15:30			Mechatronics		Mechatronics			
15:30—15:45			Coffee Break					
TD 15:45—17:15	Space Applications II	Flexible Manipulators and Structures	Computational Models and Methods	Magnetic Bearings	Mechatronics in Manufacturing Processes			
19:00—22:00			Banquet (Beach-Grove Room)				
Wednesday, J	ulv 27. 2005							
08:00_09:15	Pl(enary 3 " Development of a High	Performance Electric Vehicle: I	Eliica Hiroshi Shimizu (Regency 4-	6)			
00.00 07.10	Track 1 (Big Sur 1)	Track 2 (Big Sur 2)	Track 3 (Bia Sur 3)	Track 4 (Windiammer 1)	Track 5 (Windiammer 2-3)			
WA	Multi-Robot System	Rehabilitation Robots	Artificial Intelligence in	Neuro-Fuzzy Control in	Motion Control			
09:30—10:42			Mechatronics	Mechatronics				
10:42—11:00			Coffee Break	-				
WB	Mobile Robot Systems	Tele-Operation	Software for Mechatronic	Control Applications in	Intelligent Process Automation			
11:00—12:30			Systems	Mechatronics I				
WC	Notwork Pased Machatronics	Vieual Sonyoing	Lunch Break	Control Applications in	Pohot Control			
14·00_15·12	Network-Dased Mechalionics	visual Servoing	Multiple Modes of Mobility I	Mechatronics II				
15:12-15:30	<u> </u>		Coffee Break	1				
WD	Navigation of Mobile Robots	Industrial Vision	Sensor Platforms Enabling	Vibration and Noise Control	Adaptive Control			
15:30—16:42	-		Multiple Modes of Mobility II					
17:00—18:30		Panel	Discussion and Closing (Big Su	ır 1-2-3)				
18:30—20:00		F	Farewell Reception (Regency 1	-3)				
Thursday, July	y 28, 2005							
06:30—19:30	KI A Tencor (Milniter	CA) Annlied Materials (Santa (Industry Tours	t Field (Δ) and Research Labs at	Stanford University			

SOCIAL PROGRAM

Sunday, July 24, 2005

18:00 – 20:00 Welcome Reception @ Spyglass Promenade

All participants and guests are welcomed.

Monday, July 25, 2005

19:00 – 22:00 Monterey Bay Aquarium Tour

The ticket is required for the tour. Dinner and coffee/tea will be provided at the aquarium. Wine, beer and other drunks can be purchased. We will meet and take the chartered buses outside the South Entrance (second floor entrance) of the Hyatt Conference Center at 5:30pm. After arrival, you may first take a brief walk at the historic Cannery Row in the vicinity of the aquarium. The AIM2005 group admission to the aquarium starts at 7:00pm through the member/group entrance located at an alley called Hovden Way, which is about 50 meters to the right of the aquarium main entrance. The buses will be waiting outside the aquarium to take the group back to Hyatt hotel from 10:00pm. The last bus will leave at 10:30pm.

Tuesday, July 26, 2005

19:00 – 22:00 Conference Banquet @ Hyatt Regency Beach-Grove Room

For people with banquet tickets.

Wednesday, July 27, 2005

18:30 – 20:00 Farewell Reception @ Regency 1-3

All participants and guests are welcomed.

TECHNICAL PROGRAM

Sunday, July 24, 2005

09:00 - 12: 00 & 14:00 - 17: 00

Tutorials @ Big Sur 1

Monday, July 25, 2005

08:00 – 09:15 Plenary Lecture 1 (PL1) @ Regency 4-6

09:30 – 12:30 & 14:00 – 17:15 Paper Sessions (MA to MD in 5 parallel tracks)

Tuesday, July 26, 2005

08:00 - 09:15 Plenary Lecture 2 (PL2) @ Regency 4-6

09:30 – 12:30 & 14:00 – 17:15 Paper Sessions (TA to TD in 5 parallel tracks)

Wednesday, July 27, 2005

08:00 - 09:15 Plenary Lecture 3 (PL3) @ Regency 4-6

09:30 – 12:30 & 14:00 – 16:42 Paper Sessions (WA to WD in 5 parallel tracks)

17:00 – 18:30 Panel Discussion and Closing @ Big Sur 1-2-3

Thursday, July 28, 2005

06:30 – 19:30 Industry Tours

TUTORIALS

Sunday, July 24, 2005

Tutorial 1

T1

09:00 12:00, 13:00 16:30 (Cancelled)

ORGANIZER: Huei Peng, USA

Modeling and Control of Automotive Fuel Cell Systems

Huei Peng, Ph.D. hpeng@umich.edu Department of Mechanical Engineering University of Michigan Ann Arbor, MI 48109, USA

Starting from the 1990's, the continuous pursuit of high-efficiency power train for ground vehicles has resulted in significant interest in two new classes of vehicles: vehicles with hybrid power train and vehicles that use fuel cell as the prime mover. Currently, most major car companies have active programs for both hybrid electric vehicles and fuel cell vehicles, some with very aggressive production plans using the former technique. Most researchers, however, agree that hybrid vehicles are a short- to mid-term solution. In the long run, techniques for sustainable mobility have to be developed, which rely on renewable energy sources to power ground transportation devices.

The fuel cells are widely perceived as the enabling technology toward the future conversion toward renewable power trains. Currently, there are still many important bottlenecks that need to be addressed, including membrane, manufacturing, reliability and overall cost reduction. The focus of our research at the University of Michigan has been on the modeling and control side, with special focus on the control of breathing, membrane humidity and their effect on power generation. The fuel cell system model we developed has been distributed and used widely, and we would like to cover the basic ideas behind fuel cell system and fuel cell vehicle modeling and control, with a couple of recent examples developed at the University of Michigan. Our experience on the design of a military truck with fuel cell Auxiliary Power Unit (APU) will also be briefly reported. The workshop will conclude with a demonstration of the fuel cell vehicle simulation program (FC-VESIM) written in SIMULINK.

Outline:

9.00–9:50:	1:00–1:50
Overview of tutorial	Modeling of the Balance of the plant
Background and introduction	Fuel Cell Vehicle models
Energy and needs of alternative power sources	2:00-2:50
10:00–10:50	Control of fuel cell vehicles and hybrid vehicles
Automotive Industry Perspective and Needs Academic PerspectiveResearch needs	3:00–3:50 Examples of SIMULINK modelsFC-VESIM
11:00–12:00 Fuel Cell Stack Systemfundamental and modeling	4:00–4:30 Q and A and wrap-up

	Si	unday, Ju	ly 24, 200	5		
T2	Tutorial 2 Big Sur 1 (09:00 – 12:00)			Tutorial 3 Big Sur 1 (14:00 – 17:00)	Τ3	
	Metin Sitti, USA	ORGA	NIZER	Mo-Yuen Chow, USA		
Micro- and Nanoscale Robotics Metin Sitti, Ph.D, <u>sitti@cmu.edu</u> NanoRobotics Laboratory Department of Mechanical Engineering and Robotics Institute Carnegie Mellon University, Pittsburgh, PA 15213, USA For the miniaturization of devices and machines down to atomic and molecular			Network-Based Control Systems: A Tutorial <i>Mo-Yuen Chow</i> , Ph.D, <u>chow@ncsu.edu</u> Department of Electrical and Computer Engineering North Carolina State University Raleigh, NC 27695-7911, USA For many years now, data networking technologies have been widely applied in			
sizes, microniai manufacturing, Micro/Nanorobo physics, fabrica scaling effects i and fabrication micrometer ran and coordinatio assembly of mi art micro/nanor world and at the	and interaction at the micro- and nanoscales is indispen otics as an emerging field is based on the micro/nanosca tion, sensing, actuation, system integration, and control into consideration. Micro/Nanorobotics encompasses: (i of micro/nanorobots with overall dimensions at the millin ges and made of micro/nanoscopic components; (ii) prog on of large numbers of micro/nanorobots; and (iii) progran cro/nanoscale components. This tutorial will focus on sta obotics research topics, challenges, and activities aroun e NanoRobotics Laboratory.	asable. taking the) design neter and gramming mmable ate-of-the- d the	manufa compo via a ne ecol netwo the netwo general network A cha	control of industrial and military applications. These ap sturing plants, automobiles, and aircrafts. Connecting the nents in these applications, such as sensors, controller twork can effectively reduce the complexity of the syste iomical investments. Furthermore, the applications con rk can be remotely controlled from a long-distance soul networks used in the aforementioned applications are iks, such as CAN (Controller Area Networks) and PROI data networks such as Ethernet/Internet are rapidly ad s of choices for many applications due to their flexibility illenging problem in control of networked-based system	pications include ne control system rs, and actuators, ems with nominal inected through a rce. Traditionally, specific industrial FIBUS. However, vancing to be the v and lower costs. In is network delay	
world and at the NanoRobotics Laboratory. As the first focus area, precision nanomanipulation systems using Atomic Force Microscope (AFM) probes will be introduced. Here, AFM probes are utilized as a pushing, pulling, cutting, and indenting type of nanomanipulator, and also as a three-dimensional (3-D) topography and force sensor. As the first application, using an AFM probe and a teleoperated human-machine interface, fine gold particles down to 14nm radius are positioned in two-dimension by mechanical pushing for developing micro/nanoassembly technology, and teleoperated touch feedback from the surfaces at the nanoscale is realized. Next, liquid polymers are pulled and solidified precisely by an AFM probe to manufacture customized 3-D polymer micro/nanofibers. Next, design methodology, analysis, and fabrication of biomimetic fibrillar adhesives inspired by geckos are explained. Geckos have unique dry adhesive fibers in their feet to climb any surface with a very high maneuverability. Discovering the principles of gecko adhesion recently, synthetic polymer micro/nanofibers are fabricated using micro/nanomolding techniques. The results of current prototype adhesive fibers and miniature climbing robots inspired by geckos are reported. Finally, miniaturization issues of micro/nanorobots are discussed. As current miniature robotics activities, biomedical swimming and endoscopic capsule microrobots, water strider robots walking on water, and Integrated Nano-Tool Carrier walking robots are explained briefly, and challenging issues are addressed. These miniature robots could revolutionize health-care, environmental monitoring, manufacturing, and space exploration applications in the future.		A challenging problem in control of networked-based system is <i>network de</i> <i>effects</i> . The time to read a sensor measurement and send a control signal to actuator through the network depends on network characteristics such as th topologies, routing schemes, etc. Therefore, the overall performance of network-based control system can be significantly affected by network dela The severity of the delay problem is aggravated when data loss occurs durin transmission. Moreover, the delays do not only degrade the performance network-based control system, but also can destabilize the system. This tutorial presents fundamental details of network-based control and reconstruct network-based control techniques for handling the network delays. techniques are based on various concepts such as state augmentation, que and probability theory, nonlinear control and perturbation theory, and schedul				
		behaviors are also described in this tutorial. In addition, advantages disadvantages of these techniques are discussed. A new approach on u gain-scheduling middleware (GSM) to complete network-delay effect will als introduced. A network-based control path-tracking problem will be use illustrate the GSM techno				
		walking ese ing,	Out 1. Overview of network-based control system (or networked control system Different types of networks for network-based co Advantages of using a network as shared media in a control sy			
Outline: 1. Introduction Background Scaling Effe Sensors, Ac Micro/Nanor Background The ASM	on Micro/Nanorobots cts and Micro/Nanophysics tuators, Manipulators, Control obot examples around the world nanipulation with an Atomic Force Microscope (AFM)			Constraints and challenge in network-bas 2. Main concerns – network in the lo Behaviors of Inter Effect 3. Several network-based co Augmented deterministic discrete-	Data transfers sed control systems op induced delay met network delays Modeling s of network delays ontrol approaches time model method Queuing method	

The AFM as a Robot

Manipulation Examples and Applications

3. Miniature Microrobots Climbing robots inspired by geckos Biomedical swimming and endoscopic capsule microrobots Water strider robots walking on water Integrated Nano-Tool Carrier precision walking robots Challenges and Applications

4. Summary and Outlook

Fuzzy logic modulation method Gain scheduling middleware 4. Illustration:

Optimal stochastic control method

Sampling time scheduling method

Fuzzy logic method End-user control adaptation method

Perturbation method

Robust control method Smith predictor method

Mobile robot teleoperation for path tracking using gain scheduling middleware 5. Tutorial summarization and remarks

	Su	nday, Ju	ly 24, 200	5	
	Tutorial 4			Tutorial 5	
T4	09:00 12:00 (Cancelled)			14:00 17:00 (Cancelled)	T5
	Debanik Roy, India	ORGA	NIZER	Debanik Roy, India	
T4 Design Of Rer Issues & Reali Debanik Roy, F Scientist Division of Remo Bhabha Atomic F Mumbai 400085, This tutorial is ain building up a cor sized tethered Ry maneuverability i Underwater vehic to difficulties in o hydrodynamic re moments can all directions as very vehicle direction environment are water tends to be off as added mass related to the line mass and propul model. Coupled guidance and co problem. Althoug or of negligible in very difficult and the vehicle gene tether attached. Underwater vehic compared with o essentially conta spaces directly c mass. Thy free- center of mass a to tether is more be neglected as active manipulate applications due manipulatory joint control system an d.o.f. design is o connected to a c suction pad) so t <i>Outline:</i> Introduction to U Design aspects of	Tutorial 4 09:00 12:00 (Cancelled) Debanik Roy, India notely Operated Vehicle & Manipulator: Criticalization Ph.D, debanik@rediffmail.com the Handling and Robotics Research Centre INDIA med towards analyzing the design criticalities vis-à-vis nprehensive application oriented design model for a sma OV system, having sufficient dexterity as well as in potentially hostile underwater environments. cle dynamics may be as complex to model principally dubserving and measuring actual underwater vehicle sponse, as it is not constrained. The effects of forces ar be cross-coupled between vertical, lateral and horizontary y large angles of attack between vehicle orientation and of motion are possible. The effects of the surrounding relatively large and significant, so much so that adjacener aa colerated along with the vehicle and may be modele sss. There are over 100 pertinent coefficients / variables aar and non-linear coupled effects, e.g. lift, drag, added sion effects, which do play a major role in a representat with these challenges the facets like physical response, ntol of a ROV become an extremely difficult dynamics gh a number of these coefficients are of second-ordere	ORGA I all- ue and al ive fect fect fect fas ed	NIZER NI	S Tutorial 5 14:00 17:00 (Cancelled) Debanik Roy, India Slip Sensors and "Integended to the sensor section of the sensor section of the sectin the section of the section of the sectin the section o	T5 elligent" Robot <u>k@rediffmail.com</u> Scientist ling and Robotics Research Centre ai 400085, INDIA design creativities gripper supported echnical features. ipulation remains ngential force and of robotic gripper urement of grasp however a much manipulation by a <i>ized slip sensors</i> , arched out by the e categorized as, <i>sory tactile array</i> : 19) and truss-type elty of the design commonly found int tactile sensory (<i>taxels</i>), namely: nylidene Fluoride) or the detection of he responses due per surface. Here, ations, namely, [I] cro-level slip. The distance slipped. <i>Inted architecture:</i> <i>tched</i> set of <i>Thin</i> - restricted through ng members is in sors are activated <i>ing pins</i> (two pins for each sensor). termixed with the al analysis will be <i>gnetic gripper</i> (for ator), <i>miniaturized</i> botic system) etc. telligent grippers. d compliant wrist, ch are particularly g (a) compression spring-elements.
be neglected as noise. The multi degrees of freedom hyper-redundant active manipulator is the most widely used attribute for most of the URV applications due to flexibility and dexterity in the operation. Generally the manipulator joints are of revolute type since it culminates in smoother drive control system and easy construction, while the end effectors may be custom made. For passive manipulators, a Revolute-Revolute-Prismatic (RRP) type 3 d.o.f. design is one of the optimal choices. This 2 d.o.f R-joint is to be connected to a compact telescopic prismatic joint (fitted with vacuum suction pad) so that it can dock at any required length and orientation. <i>Outline:</i> Introduction to Underwater Robotics (10 min.) Design aspects of ROV: Overview (20 min.) Detailed design issues for ROV manipulators. (1 hour) Detailed design issues for Underwater Vehicle Body (1 hour) Design systems, Tether management, controller etc. (30 min.)		e ive	The grip & indus <u>Com</u> Th haviu usefu spri	research domain of <u>intelligent robot grippers</u> is finely in & slip sensory systems. Detailed design & developmental made on <i>three-finger gripper</i> (for tele-operation), <i>mag</i> trial use), <i>parallel-jaw mini-gripper</i> (for flexible manipula <i>vacuum gripper</i> (for mobile rol <u>pliant wrist</u> is another important element is designing in the author has developed various designs of miniaturized ng requisite compliance in axial & radial directions, whice I for small-sized flexible manipulators. These are: using ing-elements (b) passive spring-elements (c) pneumatic and (d) sensor-based Introduction to Force Nomenclature in Robotic Gr Design aspects of Slip Force Detailed design issues for Intelligent esign issues on:Micro-actuation, MEMS, Micro-gripper a	for each senso for each senso termixed with t al analysis will gnetic gripper (ator), miniaturiz botic system) e telligent grippe d compliant wri ch are particula g (a) compressi c spring-elemen spring-elemen <i>Outlin</i> ripping (10 mi sensing (20 mi e Sensor (1 ho t Gripper (1 ho & Flexible gript

	Plenary Lecture 1		Plenary Lecture 2		
PL1	Monday, July 25, 2005	08:00-09:15	Tuesday, July 26, 2005		
	Regency 46	ROOM	Regency 46	FLZ	
	Kok-Meng Lee, Georgia Inst. of Tech HO		Stefano Chiaverini, University of Cassino		
	8 , 8		, ,		

Nanomechatronics: A Toolbox for the Small

Christoph Gerber, National Center of Competence for Nanoscience, and IBM Research Lab., Switzerland

The newest developments in dynamic force microscopy reveal unprecedented molecular resolution on insulating surfaces. Trapping molecules in nanometersized containers on a KBr(001) insulating surface shows for the first time that phthalocyanine-related polar molecules can be confined and studied on a individual bases . This offers fascinating perspective for novel electronic devices on the nanometerscale. A transition from stick -slip to continuous sliding is observed for atomically modulated friction by means of friction force microscopy resulting in a new regime of ultra low friction in a newly postulated concept "superlubricity". Micro-fabricated silicon cantilevers arrays offer a novel label-free approach where ligand-receptor binding interactions occurring on the sensor generate nanomechanical signals like bending or a change in mass that is optically detected in-situ. We report the detection of multiple unlabelled biomolecules simultaneously down to picomolar concentrations within minutes. Differential measurements including reference cantilevers on an array of eight sensors enables sequence-specifically detection of unlabelled DNA and is suitable to detect specific gene fragments within a complete genome (gene fishing). Expression of detection of inducible genes as well as the ultimate challenge: the detection of total RNA fragments in an unspecific back ground will be shown. Ligand-receptor binding interactions, such as antigen recognition will be presented. Antibody activated cantilevers with sFv (single chain fragments) which bind to the indicator proteins show a significant improved sensitivity which is comparable with SPR (Surface Plasmon Resonance). In addition this technology offers a brought variety of receptor molecules application such as e.g. membrane protein recognition, micro-organism detection, enantiomeric separation. New coating procedures, enlargement of the active surface area by dendritic molecules as well as improvement of the receptor-cantilever chemical bond will be presented. This new findings may lead to a novel individual diagnostic assay in a combined label-free GENOMICs and PROTEOMIC biomarker sensor (COMBIOSENS).

Christoph Gerber is the Director for scientific communication of the National Center of Competence for Nanoscale Science (NCCR) at the Institute of Physics, University of Basel, Switzerland and is a Research Staff Member emeritus in Nanoscale Science at the IBM Research Laboratory in Rüschlikon, Switzerland . During the past 25 years, his research was focused on Nanoscale Science. He is a pioneer in Scanning Probe Microscopy, and made major

contributions to the invention of the Scanning Tunneling Microscope (STM) and the Atomic Force Microscope (AFM). He is also a co-inventor of Biochemical sensors based on AFM Technology. Prof. Dr. Gerber is the author and co-author of more than one hundred scientific papers that appeared in peer-reviewed journals with more than 12000 citations in cross disciplinary fields. He belongs to the worldwide one hundred most cited researchers in Physical Sciences. He gave numerous plenary and invited talks at international conferences. His work has been recognized with multiple honorary degrees. He is a fellow of the American Physical Society and a fellow of the IOP Institute of physics of UK .His IP portfolio contains 37 patents and patent publications. His current interests include Biochemical sensors based on AFM Technology, chemical surface identification on the nanometer scale with AFM, nanomechanics, nanorobotics, and molecular devices at the ultimate limits of measurement and fabrication. Atomic Force microscopy research on insulators, single spin magnetic resonance force microscopy (MRFM), combined scanning SQUID and AFM, selforganization and self-assembly at the nanometer scale.

DNA Microarrays in Drug Discovery and Development Steven J. Madore, Pfizer, Inc., USA

Messenger RNA (mRNA), a single stranded nucleic acid, serves as the critical intermediary in the transfer of genetic information encoded in the DNA blueprint into a form that can be recognized by the protein synthesis apparatus of the cell. In general, mRNA levels are indicative of the type and amount of proteins made in a cell, and therefore serve as a surrogate indicator of cellular protein levels. Understanding which proteins have altered levels of expression in disease conditions can lead to the identification of novel drug targets. Current technology prohibits measuring the levels of all the proteins made in a cell; however, a high throughput hybridization methodology using DNA microarrays facilitates the quantification of mRNA levels in an overnight reaction. Microarrays consist of thousands of molecular probes arrayed onto a glass surface or nylon membrane support. Fluorescently tagged "target" prepared from cellular mRNA is applied to the surface of the array, and each target molecule, representing a unique mRNA in the total population, binds to its cognate DNA probe on the surface of the array. In general the intensity of the fluorescent signal from each probe is indicative of the levels of that specific mRNA in the original sample. Applications for microarrays in the drug discovery process include target identification, compound MOA analysis and toxicity evaluation, identification of genetic polymorphisms, and biomarker identification.

Steven J. Madore was born and raised about 40 miles west of Boston in Auburn, Massachusetts - the site of Dr. Robert Goddard's famous rocket launch. He received a B.S. in Microbiology from the University of Massachusetts, Amherst in 1984 and a PhD in 1991 in Cellular and Developmental Biology from the State University of New York at Stony Brook. Dr. Madore was a postdoctoral fellow in Dr. Bryan Cullen's laboratory at the Howard Hughes

Medical Institute, Duke University Medical Center from 1991 to 1995 where he worked on the regulation of gene expression in HIV-1. He joined the faculty of the Dermatology Research Unit at the University of Michigan in Ann Arbor in 1995 where he studied the molecular mechanisms of skin photo damage. In 1998 he accepted a position in the Molecular Biology Department at Parke-Davis as leader of the Expression Profiling Group, a position he currently holds in the Pfizer Global Research and Development organization. He is a member of the American Society of Biochemistry and Molecular Biology and on the editorial review board of the Journal of Biological Chemistry. His scientific interests include genomics, eukaryotic transcriptional regulation and RNA processing. Steve is married to Jamie and has 12-year old triplets named Cameron, Mackenzie, and Madison. He enjoys golf, is a youth soccer and hockey coach, and is a USA Hockey registered ice hockey referee.

	Plenary Lecture 3				
DI 2	08:00-09:15	Wednesday, .	July 27, 2005	17:00-18:30	DD
ГLJ	Regency 46	ROO	MC	Big Sur 1-2-3	Fυ
	Masayoshi Tomizuka, UC - Berkeley	HO	ST	Toshio Fukuda, Masayoshi Tomizuka	
Development o Hiroshi Shimizu,	of a High Performance Electric Vehicle: E Keio University, Japan	liica		Grand Challenges of Advanced Intelligent	t Mechatronics
When the world's gasoline gauge tips towards "empty" in the coming decades, we are going to have to use a lot of imagination and creativity to compensate. This, together with the needs to tackle current traffic issues such as air pollution, energy consumption, traffic accidents, and traffic jams, led us to find ways to improve today's automobiles. This includes the switch to electric vehicles, utilization of automatic drive systems, and the downsizing of these electric.			F	Toshio Fukuda (Host), Nagoya Wayne Book, Georgia Institute of Roland Siegwart, Swiss Federal Institute of Techno Research Funding Oppo Masayoshi Tomizuka(Host), University of C	University, Japan Technology, U.S. ology, Switzerland ortunities in U. S. alifornia, Berkeley
Improve today's automobiles. This includes the switch to electric vehicles, utilization of automatic drive systems, and the downsizing of these electric vehicles with automatic drives. At Keio University in Japan, a high performance electric vehicle named "Eliica" (Electric Lithium Ion Car), a five passenger sedan, was developed from the ground up; lithium-ion batteries, permanent-magnet motors and IGBT inverters are used as driving components. In-wheel motors are put in each eight wheels and all batteries and inverters are set in the frame structure under the floor. Eliica has a maximum velocity of 370km/h and can accelerate from 0 to 160 km/h in 7.0 seconds. "Among concept cars, hybrid electric are still going strong, and more of them are being built with lithium-ion batteries rather than The wildest lithium-ion vehicle so far has to be the luxury-sedan concept <i>Eliica</i> from Keio University in Japan" See "Top Tech Cars" in IEEE Spectrum, March 2005. page 22-30.			Masayosin Tomizuka(1103), University of C Mario Rotea, National So Yifan Chen, Ford	Motor Company	
	Hiroshi Shimizu, born in 1947, g from the Graduate school of Tohe in 1975 in Applied Physics. He ju Ministry of Environment of the Na for Environmental Studies, Japar Researcher in 1976. Since 1997 Professor of Media and Governa Faculty of Environmental Informa University.	raduated oku University bined the ational Institute a, as a , he is a nce in the tion, Keio			
		INDUSTRI	AL TOUR		
Thursday, July	/ 28, 2005				
6:30: Leave Mont	erey bay conference site.				

- 8:40-10:00: <u>KLA-Tencor</u>. KLA-Tencor is the world's leading supplier of process control and yield management solutions for the semiconductor and related microelectronics industries. Plan to visit the company's fabrication lines involved in-line wafer defect monitoring, CD SEM metrology, wafer overlay, film and surface measurement.
- 10:30-12:00: <u>Applied Materials, Inc</u>. Applied Materials is the world's largest supplier of products and services to the global semiconductor industry. Plan to visit the company's Maydan Process Module Technology Center, which has the latest semiconductor fabrication facility that includes wafer inspection, transport, and many other advanced automated systems and test equipment.

12:00 -13:30: Lunch.

13:30-15:00: <u>NASA Ames Research Center</u>. Will visit the Mars Center, which features interactive displays and exhibits focused on Mars, the Mars Exploration Rover mission and Ames' scientific and engineering roles in Mars missions - both past and present. Visit shows of software tools used by planetary scientists to determine the best and safest sites for the Mars Exploration Rover landings.

15:30-17:30: <u>Stanford University</u>. Visit the New Mechanical Engineering Research Lab, Micro-Transducers, Micro-Machining, Biomedical Engineering Lab, Microscale Mechanical Engineering Lab, Neuro-muscular Biomechanics Lab.

19:30 PM: Return to the conference site.

	Data Storage Systems				Biomechatronics	
MA1	Big Sur 1 (09:30-10:42)			E	Big Sur 2 (09:30-10:42)	MA2
	Lilong Cai, Hong Kong	ig CHA		Mingjun Zhang, USA		
Adautius and Or	Isu-Chin Isao, USA	<u>CO-C</u>	CHA	IR Metin Sitti, USA	memice for DNA Die Chin E	hulastian and
Adaptive and Op Disk Drives YH. Kim, Samsu	ng Electronics, CI. Kang, Cheju National U., Korea,	lard		M. Zhang, Agilent, P. A. Pianetta,	Namics for DNA Bio-Chip Fa Hybridizatio Stanford U., T. J. Tarn, Wash	n Automation and ington U., USA
This paper presents error signal (PES) of filter is designed that on the PES, the filte dominant spectral p minimally affects the curve. The performa simulation and expe	s an efficient control strategy to reduce the non-repeatable posi components caused by mechanical vibration in hard disk drives at plugs into a servo loop in parallel with the existing controller. or's center frequency is adaptively searched for in order to iden eak. An analytical procedure is proposed to design the filter that a stability of control systems and the distortion in the error reject ance and practicality of the proposed strategy are demonstrate priment.	ition A peak Based tify a at ction d by	09:30-09:48	Integrating molecular dynamics for DNA is promising. The challenge is on obtair controls. This paper concerns dynar substrate surfaces. A nonlinear contro for DNA bio-chip fabrication and hybrid consist of a nonlinear control model fo surfaces, and integration of the dynar	A bio-chip fabrication and hybridiz ning dynamic models for micro-/na mics of single-stranded DNA mole I model based on the dynamics n Jization automation. The contribut or single-stranded DNA molecules mics model for wafer-scale bio-ch hybridiz	zation automatior ano-scale system ecules tethered to nodel is proposed ions of this paper tethered to silica ip fabrication and ation automation.
Short-Span Seel Controllable Car	king of HDD by Vibration Suppression PTC Based on nonical Realization	n		Analysis of Utterance in Long	g-Term Robot Assisted Activ	vity for Elderly People
H. Fujimoto, K. Fi	<i>ukushima,</i> Yokohama Nat. U., S. <i>Nakagawa,</i> Hitachi, Ja	pan		K. Wada, T. Shibata, K. Sakamoto,	, T. Saito, K. Tanie, National I Science and Tech	nst. of Advance . (AIST), Japan
In a short distance s crucial obstruction t vibration suppressic modified controllabl plant is modeled as feedforward controll position, velocity, ac experiments are can vibration mode in sh	seeking-mode for hard disk drives, the resonance modes are g o meet the demand on high-speed date access. In this paper, a on perfect tracking control (PTC) method is proposed based on e canonical realization. In the proposed method, it is assumed the rigid and primary resonance modes. By using this model, a ler is designed with multirate PTC to control the transient respo cceleration, and jerk of the proposed virtual plant. Simulations a rried out to show that the proposed system can suppress the pr nort-span seeking control.	etting a novel a that a onse of and rimary	09:48-10:06	A long-term experiment of robot assiste a health service facility for the aged sind were introduced there. This paper de Face scales that consist of illustrations moods. In addition, utterances of elde the results, numbers of the utterance of	d activity for elderly people has b ce Aug. 2003. Three therapeutics escribes the results of the experin s of person's faces were used to a erly to seal robots were analyzed of elderly people were increased, were improved by interaction wit	een conducted ai seal robots, Paro nent for one year evaluate person's quantitatively. As and their feelings h the seal robots
Robust Adaptive Track Following K. Kalyanam, T0	e-Q with Two Period Repetitive Control for Disk Drive	e		Modeling and Testing of a Bi	iomimetic Flagellar Propulsi Microscale Biomedical Swii ehkam, M. Sitti, Carnegie Me	ion Method for mming Robots Illon Univ., USA
This paper presents control for rejecting drive read-write hear repetitive control for remaining aperodic stable under plant in the control impleme performance improvi LQG control or the state	the design and implementation of a robust adaptive and repet repeatable and nonrepeatable runout disturbance in the comp d tracking following. An LQG controller is augmented by a plug rejective periodic disturbances and an adaptive-Q control to re and random disturbances. The control system is shown to be r nodel uncertainty using small gain arguments. Experimental re- ntation on a 7200 rpm disk drive show substantial track followin vement of the two-layered augmented controller over the base single layer repetitive or adaptive-Q control augmentation.	titive uter disk g-in eject the robust sults of ng line	10:06-10:24	Medical applications are among the mo and energy efficient propul microrobotics technology but they p type of propulsion inspired by the motil performance of this propulsive mechan motion. Analyzing key parameters design of propulsion mechanism for mi the theoretical result for flagella propulsi fabricated and characterized in silicon	st impactful areas of microrobotic lsion systems hold the key to mat ose significant challenges. Autho ity mechanism of prokaryotic micr nism is estimated by modeling the such as linear velocity and efficie niature robots is demonstrated. Ir ion, a scaled up prototype of the s is e oil using the Buckingham PI the	s. Miniature, safe uring the medica rs propose a new roorganisms. The e dynamics of the ncy, the optimum o order to validate wimming robot is seerem for scaling
Design, Fabricat Film Recoding N Y. Lu. C. K. Pang	ion and Control of a Micro X-Y Stage with Large Ultr Iedia Platform , J. Chen. H. Zhu, J. P. Yang, J. Q. Mou, G. X. Guo, Da	r a-Thin ta		Motion Control of Euglena Gr (A. Itoh. W. Ta	oup by Weak Laser Scannir Object Manipulation Using F amura. T. Mishima. Tokvo Der	n g System and E uglena Group hki Univ., Japan
Storage Inst., <i>B. I</i> We report a design which is actuated by 40 nm thickness PN prototype of the mic (finite element anal) modes at 440 Hz. T driving voltage of 55 closed-loop system	M. Chen, T. H. Lee, National U. of Singapore, Singapore of the micro X-Y stage with 6 mm x 6 mm recording media plat y comb-drives. The fabrication process including the integration IMA (polymethyl methacrylate) recording media is presented. T rro X-Y stage is fabricated by micromachining techniques. The yiss) results show that the first two modes of the X-Y stage are he displacement of the media platform can achieve 20 um with 5 V. A control scheme is designed and simulated. It shows that has strong error and vibration rejection capabilities.	tform, n of the The FEA in plane n the the	10:24-10:42	This study investigates how to us Motion control of protozoa is made b laser scanning system is made for mo through two galvano-scanners to make t convex lens, and irradiated into the exp filter, and recorded by CCD background illumination. Experimental of Euglena group by gathering alo motion of Euglena group, and we c	e protozoa as huge group of living y using the orientation phototaxis ption control. Construction is that I the two dimensional positioning, c perimental pool. Blue light is atten camera with macro lens. Red LE results show that this system can ong the scanned laser beam. It ca can move objects by using this Eu micro mar	g micromachines. of Euglena. Blue olue laser passed concentrated by a uated by high cut D light is used for make any shape n also control the iglena group as a aipulation system.

	Polymer Actuators			Opto-Mechatronic Sensors	
MA3	Big Sur 3 (09:30-10:42)			Windjammer 1 (09:30-10:42)	ΜΔ4
MAU	Wen J. Li, Hong Kong	CH	AIR	Wei Wei Wang, Canada	
	Masaki Yamakita, Japan	CO-C	HA	IR Li-Chen Fu, Taiwan	
M. Yamakita, N. F K. Asaka, Nationa	Walking Robot with IPMC Linear Actuator Kamamichi, T. Kozuki, Tokyo Inst. of Tech., al Inst. of Advanced Industrial Science & Tech. (AIST),			Bidirectional Motion Detection Using Protein-Based P W. W. Wang, G. Knopf, A. S. Bassi, U. of Western C A bidirectional, speed selective motion detector that exploits bioelectron	notoreceptors Intario, Canada
ZW. LUO, INSt. o We developed an a (IPMC) which is an In this paper, we co throughout the simu simple input synchro investigate a re-dop chemically. Furtherr	r Physical & Chemical Res. (RIKEN), Japan rtificial muscle linear actuator using ionic polymer-metal compo electro-active polymer (EAP) that bends in response to electric nsider control of a small-sized biped walking robot. It is shown lations the biped robot with IPMC linear actuators can walk by ponization to motion of the robot and a feedback control. We als ing effect that is change of the characteristics by ionic re-dopir more, a preliminary walking experiment is conducted.	osite stimuli. a so ng	09:30-09:48	is described. Each photoreceptor is a multi-layered structure co bacteriorhodopsin (bR) film sandwiched between two Indium Tin Oxide As a light sensitive protein, bR exhibits a differential response to tempor light intensity. The measured peak photovoltage is linear over a ligh 0.1mW to 0.1W. The photoreceptor responsivity is measured over frequ to 400 Hz. Binary pulse correlation is used to identify the direction of m pulse widths are used to compute the speed. The measured range directions, is 20 m	imposed of a thin (ITO) electrodes. al changes in the nt power range of encies from 4 Hz iovement and the e of speed, in two nm/s to 80 mm/s.
Towards Micro a Laminated Polyp	nd Nano Manipulation Systems: Behaviour of a byrrole (PPy) Actuator Driving a Rigid Link ici. U. of Wollongong, Australia			Novel Displacement Measurement Technique of the Het Interferometer for Nar H-S. Choi, J-P. La, K-H. Park, Gwangiu Inst. of Science	erodyne Laser no Positioning & Tech., Korea
Conducting polymer of a manipulation sy avoiding effects suc actuators were varie rigid link. This behar outputs of the actua displayed unexpect actuators was also lengths than the ner	r actuators, such as Polypyrrole (PPy), incorporated into the st rstem may be able to achieve micro and nanoscale precision, the stem may be able to achieve micro and nanoscale precision, the state and their behavior investigated while constantly load vior has been evaluated in terms of the bending angle and force tor. It was found that the bending angles varied with length, but ed trends due to the loading effects on the PPy. Force output co measured, with unloaded PPy producing greater force across a ar constant output of loaded PPy, attributable to the polymer ar	ructure by d PPy ed by a e by t of the all nd load	09:48-10:06	This paper describes a novel displacement measurement techniqu measurement speed compared with the conventional arc-tang heterodyne laser interferometer. The proposed method can reduce the because the PWM signal has linear relation between the phase difference linear function such as arc-tangent is required to demodulate the sinu signal. The brief analysis and measurement scheme of the system, and result using a Zeeman stabilized He-Ne laser are presented. They den proposed displacement measurement technique is proved to be faster than the conventional arc	ie to increase the ent method in the e calculation load as, while the non- isoidal interferent the experimental nonstrate that the and more robust c-tangent method.
Quasi-Static Pos Actuators Z. Chen. X. Tan.	itioning of Ionic Polymer-Metal Composite (IPMC) Michigan State U., <i>M. Shahinpoor</i> , U. of New Mexico, U	SA		A Comparative Study of Image Comparison Methods Embed Surveill M. V. Le, P. D. Le, B. Srinivasan, Monash	dded by Smart lance Systems Univ., Australia
2. Chen, X. Tan, Michigan State O., M. Shaninpoor, O. of New Mexico, OSA lonic polymer-metal composites (IPMCs) generate large bending motions under a low driving voltage (about 1 V). In this paper quasi-static actuation of IPMC is investigated with the goal of precise positioning. It is found that IPMC exhibits hysteresis between its bending curvature and the applied quasi-static voltage. The Preisach operator is proposed to model the hysteresis, and its density function identified experimentally. An open-loop positioning strategy is presented based on efficient inversion of the Preisach operator and its efficacy is demonstrated by experimental results. Finally a cascaded model structure is proposed to capture both the hysteresis and the dynamics of IPMC actuators.		10:06-10:24	A more reliable image comparison method means it is more tolerant to noise (i.e. random and structured noise) and transformations in indica and difference between two images. In this paper, we carry out a c between two image comparison methods: IQM-CIM and IQME-CIM in each method tolerates structured noise, variation of image contrast and by affine transformations. Our experiments show that the IQM-CIM tolerant to affine transformations than the IQME-CIM method. Meanwhil method is more robust than IQM-CIM method in cases of images dis range of the image contrast, and a higher intensity level of	different types of ting the similarity omparative study terms of how well distortion caused <i>A</i> method is more le, the IQME-CIM storted by a wider structured noise.	
Towards Automa Pump Arrays R. Lam, K. F. Lei, S. K. Kong, The C	ating Micro Cellular Detection Process Using Micro L. Miao, Z. Dong, W. C. Law, Y. K. Suen, W. J. Li, A. H Chinese Univ. of Hong Kong, Hong Kong	Vortex lo,	1	Design and Experiment of Range-Extended Fib Interferometer Utilizing the Second Harmonic Displaceme SK., Hung, ET. Hwu, National Taiwan U., MY. Chen, China LC. Fu, National Taiw	er Fabry-Perot Int Modulation a Inst. of Tech wan U., Taiwan
This paper reports a micropumps and a s binding of biomolec surface. Two experi monitoring the activ medium, were cond detection. Based on computer-controllab	a polymer based microfluidic analysis system integrated with th surface plasmon resonance (SPR) biosensor for detecting the ules and qualitatively monitoring of cell adhesion on the sensor ments, 1) monitoring the reaction between BSA-BSA antibody ities of living cells in the presence or absence of trypsin in RPN ucted to show the feasibility of real-time cellular and molecular these successful experimental results we have also develope ale vortex micropump system that will eventually automate	ree specific r , and 2) /II-1640 d a):24—10:42	This paper proposes a new modulation scheme using high order harmon solve the so-called ambiguity problem of interferometry. To start with Fabry-Perot Interferometer to serve as a displacement sensor syste microm measurement range with 30nm RMS resolution. The experime that the proposed scheme has the ability to extend the measurement r limit of the wavelength while keeping the naturally high resolution	nic information to , we build a Fiber m, which has 70- intal result shows range beyond the of interferometry.

	Nanoscale Manipulation, Assembly and Synth	nesis				
MA5	Windjammer 2-3 (09:30-10:42)					
IVIAJ	Bradley J. Nelson, Switzerland	CHAIR	2			
	Lonnie J. Love, USA CC	D-CHA	IR			
Kinematic Design of a Novel 3-DOF Compliant Parallel Manipulator for Nanomanipulation Y. M. Li, , Q. Xu, U. of Macau, Macao SAR, China A new 3-DOF compliant parallel manipulator (CPM) has been proposed for 3-D nanomanipulation. The system is constructed by a proper selection of components, and analyzed via the established pseudo-rigid-body model, based upon which the kinematic models are performed, and the CPM workspace is determined in view of the physical constraints. One of the advantages of the presented CPM is that it provides a regular like workspace with a maximum cuboid defined as usable workspace inscribed and one isotropic configuration involved. Moreover, the architecture design of the CPM to achieve a maximum usable workspace is carried out, and the dexterity performance is evaluated. Simulation results show that the compact CPM can perform a dexterous manipulation						
Fractal Comprese Microscopy HM. Cheng, G. In typical scanning image. With the total image size and ress area depends main imaging speed is ful piezo suspension. I impact to the resolu- adaptive sampling st that the number of si guality.	<i>TC. Chiu</i> , Purdue Univ., USA probe microscopy, the properties of interest are presented as a al number of samples remains constant, there is a trade-off betwo olution. Given the scanning mechanism, the time needed to ima ily on the number of samples and the size of the image. The slo urther complicated by the drifts associated with the sample and t it is therefore desirable to improve the imaging speed with limite scheme with fractal compression technique, we have demonstra samples can be significantly reduced with minimal impact to the	3-D veen ige an w the d g an ated image	09:48-10:06			
Selective Eradication of Individual Carbon Nanotubes from Vertically Aligned Arrays A. Subramanian, L. Dong, B. J. Nelson, Swiss Federal Inst. of Tech. (ETH), Zurich, Switzerland Selective eradication is presented as a postprocessing technique for as-grown vertically aligned carbon nanotubes (CNTs) for removing unwanted individual nanotubes in order to generate desired patterns. A scanning anode is applied to select a nanotube in a CNT emitter array. Using a saturated emission current, a nanotube emitter can be removed in a controlled way. Vertically aligned single multiwalled carbon nanotubes (MWNTs) are realized using a combination of e-beam lithography and plasma-enhanced chemical vapour deposition (PECVD) growth. The scanning anode is actuated with a 3-DOF nanorobotic manipulator with nanometer resolution inside a scanning electron microscope						
Characterization L. J. Love, L. Yea National Lab., US This paper describe magnetite-based m cost enabling produ precipitation technic magnetite with a wi properties of the pa 10 nm to 100 nm. F a significantly higher materials.	n of Bio-Synthesized Mangetic Nanoparticles ary, J. W. Moon, T. J. Phelps, A. J. Rondinone, Oak Ridg SA es a novel methodology for bacterial synthesis of a wide range of lagnetic nanoparticles. First, this approach is highly scalable and juction of large volumes of nanoparticles. Second, like the chemi que, biologically synthesized materials have the ability to dope de range of elements enabling fine control over magnetic and the ritcles. Third, bacterial synthesis enables control of particle size Finally, we show that some forms of the bio-synthesized materia er saturation magnetization than typical chemically synthesized	e of d low cal co- nermal es from ls have	10:24-10:42			

MEMO

	Automotive Systems			Human -Machine Interfaces I	
MR1	Big Sur 1 (11:00-12:30)			Big Sur 2 (11:00-12:30)	MR2
	Torsten Bertram, Germany	CH	AIR	Hideki Hashimoto, Japan	
	Nader Sadegh, USA	CO-C	CHA	IR Max Meng, Hong Kong	
Precision Stoppi System	ng Control of Automated Bus with Pneumatic Brake	9		Fuzzy Control of a New Tendon-Driven Exoskeletal P	ower Assistive Device
F. Bu, HS. Tan,	U. of California, Berkeley, USA			K. C. Kong, D. Y. Jeon, Soga	ing Univ., Korea
Precision stopping is an important automated vehicle control function that is critical in applications such as precision bus docking and automated truck or bus fuelling. Such applications require specific attention to brake control since the characteristics of a typical pneumatic brake system of a heavy vehicle is inherently nonlinear with large uncertainties. This paper describes the precision stopping problem, details the Indirect Adaptive Robust Control (IARC) design for a bus with pneumatic brake system, and reports the successful implementation of a bus precision docking demonstration.		11:00-11:18	This paper proposes a tendon-driven exoskeletal power assistive devic problems of the existing exoskeletal power assistive equipment. In a suggests a caster walker carrying heavy peripheral devices and i balance of the user at the same time. A muscle fiber expansion signal this device in order to compensate for the delay time of motors and assistance by sensing the user's action in advance. The muscle fiber has the characteristics that the signal is ahead of action and in proportior fuzzy control method is applied to control the proposed exoskeletal ass paper also describes a number of action tests such as sitting, stand	e to reduce some ddition, this paper maintaining stable is used to control d perform an easy • expansion signal 1 to joint torque. A istive device. This ding, and walking.	
Driver-Input Sen Wire Application N. Y. Lii, S. Sturm	sor Selection and Topologies for Fault-Tolerant Driv s , BMW AG, <i>T. A. Coombs,</i> Cambridge Univ., UK	ve-By-		Emotional Evaluation of Frisky Robot Based on SD and Bio H. Hashimoto, D. Takeda, Y. Ohyama, Tokyo U. of Tech., C. Ishii, Kogakuin U., M. Niitsuma, H. Hashimoto, U.	signal Method <i>M. Saito,</i> Sony, of Tokyo, Japan
Drive-by-wire applic becoming increasin sensors for driver-in sensors to achieve pedal test bed is co Two sensor integrat proposed to demon- limitations of both sy are presented.	ations, such as brake-by-wire, steer-by-wire and throttle-by-wir gly popular in the automotive industry. This work examines diff put systems for Drive-by-wire, as well as the integration of the he fault-tolerance necessary for such safety-critical application instructed for studying the integration of similar and dissimilar s ion topologies involving multiple sensors, similar and dissimila strate different possibilities of fault-tolerant systems. The merit rstems when coping with sensor and mechanical faults and fai	re, are rerent se ns. A eensors. r, are s and lures	11:18-11:36	This paper describes the emotional evaluation of a frisky robot that y human owner; the evaluation is based on the SD (Semantic Differentia RRV(R-R wave variance) method using electrocardiograms (ECC source. The SD method is effective to measure emotion, and the RRV i for investigating the physiological state from the heartbeat. The SD in that humans show a significant response only when the robot weaves, shadows the human. Furthermore, it is confirmed that these methods a the RRV method is effective in rea	weaves around its I) method and the 3) as the biosignal method is suitable nethod represents not when it simply are correlated and al time evaluation.
Optimization of the B. Khan, Schlumb	he Fuel Consumption of a Parallel Hybrid Electric V berger, N. Sadegh, J. Meisel, Georgia Inst. of Tech., US	A A		Development of a Medical Telediagnostic System with N. Methil-Sudhakaran, Y. Shen, R. Mukherjee, N. Xi, Michiga	Tactile Haptic Interfaces n State U., USA
In this paper we present a novel control strategy for optimal power management of parallel Hybrid Electric Vehicles based on fuel efficiency. In particular, the proposed strategy optimally distributes the required drive torque between the available power sources, which in the present study consist of an electric motor and an IC engine. This is achieved by first estimating the power demand at the wheels and then determining a set of solution points that meet the constraints from which the optimal solution is subsequently chosen. The strategy was implemented in a simulation software package and compared to the thermostat strategy the optimization strategy reduced the fuel consumption by 55.7 % on a highway cycle and by 42.4 % on a city cycle.		11:36-11:54	This paper aims at developing a tele-breast cancer diagnostic system w and haptic feedback. An anthropomorphic, robotic hand that mim performing a clinical breast exam was developed to perform the same optical tactile sensor was developed to obtain information regarding the relative surface variations on an object. This information can be fed bar physician via a newly developed electro-tactile haptic device. Experim obtained by testing these devices on an artificial breast mode	rith tactile sensing ics a human hand . A high resolution he texture and the ck desirably to the ental results were I to detect tumors.	
Modeling and Co J. Liu, H. Peng, Z	ntrol Analysis of Toyota Hybrid System Filipi, U. of Michigan, Ann Arbor, USA			Support System for Skill Acquisition of Machine Operat Redu	ion by Gradual
Toyota Hybrid Syste vehicle on the mark both a parallel and a of this paper is to de which will be used t improvement. A Sim Simulations confirm	em is the innovative powertrain used in the current best-selling et—the Prius. It uses a split-type hybrid configuration which co a serial power path to achieve the benefits of both. The main p evelop a dynamic model to investigate the unique design of TH o analyze the control strategy, and explore the potential of furth julink model is developed and a control algorithm is derived. our model captures the fundamental behavior of THS reasona	hybrid intains urpose IS, her ably well.	11:54-12:12	<i>R. Hayashi, S. Tsujio, Y. Yu</i> , Kagoshi The aim of this research is to investigate the new approach to the d system which supports inexperienced operators who are trying to acq skill. In this approach, we consider the support system which has the for Firstly, it works to lighten the burdens to the inexperienced oper controllable assist. Secondly, it works to reduce gradually the effect of the to the operator's skill. In this paper, we deal with an operation problem of a pendulum and try to construct such	avelopment of the uire the operation ollowing functions; arators, by using a e assist according f a rotary arm with a support system.
Load-Following Inverter (I) J. Wen, K. M. Sm	mprovement of Fuel Cells with Fast Transient OCC edley, U. of California, Irvine, M. A. Pai, U. of Illinois, US	SA		3D "Sound Spot" Forming by Multi Axis Speaker Array for K. Sakaya, H. Mizoguchi, T. Toba, Tokyo U. of Sci., S. Kaga	Environmental Robot mi, AIST, Japan
Fuel cells typically h cause a voltage dist alleviated via prope improve the fuel cel OCC inverter model load step. A closed- response, and a con indicate that with a improve the load-fol	ave much longer response time than the electrical grid, which urbance when the load has a sudden change. The situation ca power control. This paper utilizes the fast nature of inverter to load-following capability. A linear SOFC model and a large sig are used to analyze the response of the fuel cell/inverter syste loop power control is proposed to achieve a fast system dynar mparison is made with the conventional power control. The response acallel capacitor of appropriate value, the proposed control is lowing capability of the fuel cell to a load transient in a limited of the system of the system	may an be gnal em to a nic sults able to range.	12:12-12:30	This paper describes 3D sound field generation by multiple lines speaker realize a novel hands-free sound interface for human-machine system studying multiple lines speaker array. A technique to transmit sound to direction by speaker array of one straight line is known as beam forn propose an idea that two and three orthogonal lines speaker array can for area of higher sound pressure level. We conduct simulation of two and th array. Based upon the results, the authors construct 32 by 2 lines array array. And we actually measure 3D distribution of sound pressure level b arrays. Results of the measurement also support the feat	array. In order to s, the authors are wards a specified ming. The authors rm spot-like small tree lines speaker and 32 by 3 lines by the constructed sibility of our idea.

	Precision Piezoelectric Actuators			Advanced Machine Vision Applications I	
MR3	Big Sur 3 (11:00-12:30)			Windjammer 1 (11:00-12:30)	MR4
	Metin Sitti, USA	CHAI	IR	Michael Bailey-Van Kuren, USA	
	Shih-Ming Yang, Taiwan C	<u>0-CH</u>	IAI	R Johne Parker, USA	
A Piezoelectric L Walking Robot K. J. Son, V. Karti	Inimorph Actuator Based Precision Positioning Miniati ik, J. Wickert, M. Sitti, Carnegie Mellon Univ., USA	ire		A Projector–Vision System for Combined Manual a Dema <i>M. Bailey-Van Kuren</i> , M	Ind Automated Inufacturing (I) iami Univ., USA
This paper proposes unimorph actuators, beam are derived. T the forced transvers third and fourth bench mechanism for a mil for the proposed wa prototype are carried cm/sec velocity and	s a precision positioning miniature walking robot using piezoelectri The theoretical working equations of a uniform piezoelectric unim he modal superposition method is used to determine the response e vibration of the beam. Two standing waves corresponding to the ding vibration modes are utilized to achieve the bi-directional walkin niature positioning robot. Design strategies and the fabrication me lking robot are introduced. Preliminary performance tests of the ro d successfully, and the robot can move forward with the speed of the backward with 3.37 cm/sec.	c orph e of ng thod bot 5.86	11.00-11.18	The electronics recycling industry utilizes manual methods for disma demanufacturing projector-vision system is proposed to improve the w with automated processing methods. The projection-vision system is products and identifies the product surface for robotic processing. A proi cell was implemented. The system facilitates processing of used goods product or material demand. The projector-vision based system was existing modeling framework for robotic processing. The application technology improves the accuracy of recovered material databases automated processing of used	ntling products. A ork cell efficiency dentifies the used otype of the work to meet dynamic integrated into an of projector-vision and improves the material streams.
A Traveling-Wav	e Linear Piezoelectric Actuator with Enclosed			Integration of an External Vision System into a 2D Spacecr	aft Testbed for
J. R. Friend, Mona	ash U., Australia,		I	M. Gonzales, Lockheed Martin Space Systems, W. Du, San Jose	e State U., USA
K. Nakamura, S. I A 1.8 cc silent bidire capable of generatir generation of a radia ring, is shown to exi motion along the ou slider displacements DC input, displacem sub-nanometer posi	Ueha, Tokyo Inst. of Tech., Japan actional traveling-wave self-moving linear microactuator is shown to be a sliding velocity of 0.22 m/s and sliding force of 1.1 N. The al traveling wave about the circumference of the actuator, akin to a st despite the unusual shape, and the presence of traveling wave tput face is also shown to exist. By using short-time sinusoidal sign is as small as 82~nm were obtained from the actuator, and by using ents of up to +/-107 nm were obtained, suggesting a way to obtain tioning accuracy over arbitrary sliding distances.	nals,	32.11-81.18	This paper discusses the integration of an external vision system (EV3 two-dimensional spacecraft (2D) testbed to provide full ran measurements for the 2D spacecraft experiment. The work involved fi the EVS and its capabilities, selection of targets, processing measurements, vision data transmission, and assessment of the signal of These procedures are important steps toward implementation of real- pointing and slewing of the spacecraft testbed. Finally, full 360 degi demonstrated culminating successful integration of the EVS into	3) into an existing ge inertial attitude amiliarization with g of vision system uality of the EVS. -time, closed-loop ree coverage was the 2D spacecraft testbed.
Adaptive Robust	Precision Control of Piezoelectric Positioning Stages			Artificial Color Contrast for Machine Vision and Its Effe	cts on Feature
Desitioning stages u bandwidth and resol	rurque Oniv., USA Ising piezoelectric stack actuator (PEA) have very high theoretical lution. However, as the total length of travel increases, nonlinear		4	KM., Lee, Georgia Inst. of Tech., W. Daley, Georgia Q. Li, Georgia Inst	Tech. Res. Inst. t. of Tech., USA
dynamics due to inherent hysteresis starts to dominate. In this paper, we separate the fast and slow dynamics of the total displacement and propose a simple first-order model. By approximating the hysteresis mapping with simple functions, it is linearly parameterized for subsequent adaptive robust controller design. Experimental results from tracking control of sinusoidal and point-to-point trajectories show tracking error on the magnitude of the sensor noise level and demonstrate the effectiveness of the approach.		fast By d for ol e	-26_11-5/ 0 0	Color information is useful in vision-based feature detection, particular involving natural objects. One of the factors influencing the success rate detecting a target is its ability to characterize the color. When unrelated close to the target in the color space, which may not pose a problem to operator, they appear as noise and often results in false detection. Motive of the human to perceive fine gradation of a variety of color especially for we develop a method to create artificial color contrast between features highlighting the target while suppressing surro	ly for applications e of color vision in features are very o an experienced ated by the ability natural products, in color space for bunding noise
A New Type of P Y. Ting, LC. Che	iezoelectric Linear Motor: The Stator Design en, CC. Li, JL. Huang, Chung Yuan Christian U., Taiwan			Effects of Color Characterization on Computational Efficie Detection with Live-Object Handling A	ncy of Feature
A new type of piezo stator fundamentally meander-line structu actuators in a line di traveling wave. The thus forms a linear r ANSYS for several of	electric linear motor driven by bimorph actuator is developed. The v consists of a meander-line structure and a gear teeth mounted or ure is focused in this article. The meander-line structure with bimor riven by two sets of AC power with phase difference can generate traveling wave is transferred to the carriage by the gear teeth, and notor. Modeling of the meander-line structure is derived. Simulatio different key parameters is presented.	n the ph i n by N by	11.57 13.13	This paper presents a machine vision algorithm that utilizes the pri analysis technique to characterize target features in color space from a s so that the color classification can be done accurately and efficie referred to here as statistically based fast bounded box (SFBB), has sign agriculture and food processing applications where color variat grayscale-based algorithms difficult to work. We examine the e characterization on computational efficiency by comparing against tw algorithms; RCE neural network and support vector machine. Compari methods demonstrates that SFBB is relatively easy to train and effective. training data it requires no additional of	ncipal component et of training data ntly. The method, ificant potential in ility often renders iffects of the color o commonly used ison among these , as with sufficient ptimization steps.
Double-Microcar	ntilever Design for Surface Stress Measurement in		Ī	Efficient 3-D Characterization of Surface Defects in Sm	ooth Specular
TI. Yin, S. M. Ya	ng, National Cheng Kung Univ., Taiwan			J. Parker, U. of Kentucky, P. Gnanapraka	sam, SMC, Inc.
Microcantilever bioc measure the surface performance is adve surface stress loadin surface stress loadin composed of the top is also proposed suu force loading. The e microcantilever with	hemical sensor with embedded piezoresistor has been proposed to estress change from biochemical reaction. However, the sensor ersely influenced by the self-heating of piezoresistor and biaxial ng. A mechanics model of piezoresistive microcantilever subject to ng is developed in this paper. A double-microcantilever design i immobilized microcantilever and the bottom sensing microcantile ch that the surface stress loading can be converted to a concentra ffect of biaxial surface stress can thus be limited to the immobilize the uniaxial strain in the sensing microcantilever.	o 12:12–12:30 ver ted d	42.42 42.20	S. Ganapathiraman, Z. Hou, U. of Many smooth, specular coatings are subjected to considerable performan manufacturers spend significant sums to monitor and repair surface qu changing product specifications and environmental regulations con processing parameters that influence surface appearance and quality. T to develop robust methods to monitor surface quality on-line and cont the processes that affect surface appearance in real time. This pape effective machine vision system design that utilizes surface reflect rational basis. Experimental & numerical investigations confirm that diffu	Kentucky, USA nce demands and ality. Additionally, tinue to affect the herefore, it is vital inuously examine r presents a cost- ance models as a se images yield

	Micro and Nano Systems Design and Mode	nd Nano Systems Design and Modeling		
MR5	Windjammer 2-3 (11:00-12:30)			MEMO
MDJ	Wen J. Li, Hong Kong	g CHAIF		
	Yi Su, Singapore	CO-CHA	IR	
Design of a Delta Vibrational Gyro	a–Sigma Bandpass Demodulator for a Z-Axis MEN scope	NS		
E. Nunzi, U. di Pe P. Carbone, E. La	orugia, R. Antonello, U. of Padova, R. Oboe, U. of Tre asalandra, G. Spinola, L. Prandi, ST Microelectronics,	ento, , Italy	1.	
This paper describe MEMS vibrational g rotational speed, is needed for keeping applied to the sensi the output bit stream of the Coriolis force regarding the signal	s the design of a Delta-Sigma bandpass demodulator for a yroscope. The sensing of the Coriolis force and, in turn, of th performed in closed loop fashion, by measuring the restoring the sensing mass at the equilibrium position. The restoring f ng mass through a quantized actuation signal, which is obta n of a band– pass Delta–Sigma converter, containing the inf . The design of the sensing control loop and simulation resul –to–noise ratio achievable with the proposed design is repo	Z-axis he Z-axis g force force is nined from formation lts orted	1:00-11:18	
Automatic Mixed Y. Su,C. S. Chong	I-Dimensional MEMS Modeling g, Inst. of High Performance Computing, Singapore			
The pre-processing analysis poses vario automatic process t transformation, know decomposed into a based algorithm res the computational re mesh. As the mesh analysis.	stage of creating and preparing the finite element mesh for bus challenges towards full automation. This paper presents o generate the mesh of a MEMS model by using a geometri wn as the block Cartesian abstraction, which can be further mixed-dimensional equivalent. This is then meshed using a ulting in a mixed quadrilateral and hexahedral mesh, which equirement during analysis as compared to using a full hexa is structured, it can also be used as a platform for coupled-co	MEMS an ic new grid- reduces ahedral domain	11:18-11:36	
Self-Built Multila Simulation	yer Aligner for Imprint with Finite Element Method	d		
National Sun Yat- In this paper, a new to improve the gene imprint and in order too. A simple theore alignment accuracy three kind of materi Organic Siloxane Pe applications of these	Sen U., Taiwan method combining imprint lithography and multiimprint was pric TFT process and develop an alignment machine for mult to decrease the times of the experiment, a new simulator is em is employed to complete a low cost alignment machine w to 1 µm. Besides, in order to develop new TFT imprint phot als, AZ-series, photoresist (a positive photoresist), HOSP (H olymer) and SE-812, are tested for imprint and evaluate the e materials in the future	discussed tilayer ; offered, ⁄ith toresist, łygrido	11:36—11:54	
Modeling and Si R. Song, W. Li, C	mulate Analysis for Micro-Thermoelectric Generat . Yang, Y. Liu, Zhejiang Univ., China	tor		
The model for calcu generator was built resistivity, thermal c Thomson effect. Th model and actual si for output power of	lating the output power and efficiency for micro- thermoelec up based on the consideration of such factors as heat source onduct overlay piece and current conduct layers and the infi e constructed simulate model and the comparison between mulate model show that these factors above have notable in micro-thermoelectric generator, which was confirmed by exp	tric ce fluence of perfect nfluences periments.	11:54-12:12	
On Recent Deve G. Schitter, G. E. U. of California, S	lopments for High-Speed Atomic Force Microscop Fantner, J. H. Kindt, P. J. Thurner, P. K. Hansma, anta Barbara. USA	ру		
The atomic force mi dynamic behavior o components have to force sensor, the sc all these improvement two orders of magni	croscope (AFM) is limited in imaging speed by the bandwidt f the actuators and mechanical parts. For high-speed imagin b be optimized in performance. Here, we present improveme anner, the controller, and the data acquisition system. By co ents, the next generation AFMs will enable imaging speeds r tude faster than current commercial AFM systems.	th and ng all AFM ents of the ombining more than	12:12-12:30	

	Vehicle Control				Huma	an -Machine Interfaces II	
MC1	Big Sur 1 (14:00-15:30)					Big Sur 2 (14:00-15:30)	MC ₂
	Ranjan Mukherjee, USA	CH.	AIR	R	Wayne Book, USA		
Ossandas il Ossilia i	Vincenzo Delli Colli, Italy	<u> CO-C</u>	HA	AIR	Hideki Hashimoto, Japan	The base of a Table of a state	Hand's Fauldt
Automatic Steer	on Avoidance for Autonomous Robotic Venicles by ing Control Using an Explicit Force Control Algorithm Im National Univ., Korea	n	_		E M. Kont.	z, Georgia Inst. of Tech., J. Be W. Book, Georgia In:	eckwith, Simbex st. of Tech.USA
In this paper, an explicit PID force control approach is presented for automatic steering control of an autonomous robotic heavy duty vehicle to avoid collision with guardrails. The desired distance is provided by an explicit PID controller based on a virtual force error. Simulation studies are performed for controlling a steering angle of the bicycle model of the robotic vehicle to maintain the virtual desired force and thus the desired offset from the guardrail.		14:00-14:18	A act ser	haptic teleoperation scheme has tuated lifter which is laboratory ver novel features. It produces virtua nsor located on its end effector. So between position and rate mode activeness of these features, a ser test subjects participated in t indicates that both of the aforemen ability to conc	been designed and implemented rsion of a forklift truck. This contro al fixtures based on measurements econdly, the control system has the es during normal operation. In ord ries of human factors tests were of hese experiments. Statistical anal ntioned novel features could enha duct pick and place maneuvers us	on a hydraulically I scheme has two s from a proximity te ability to switch er to evaluate the onducted. Twenty ysis of the results ince an operator's ing a forklift truck.	
Wheel Slip Preve Vehicles (Experi H. Yamazaki, Y. H M. Nagai, T. Kam	ention Control by Sliding Mode Control for Railway ments Using Real Size Test) Karino, Railway Tech. Res. Inst. ada, Tokyo U. of Agriculture & Tech., Japan				A Human-Robot Shared	Control in Single-Master M Micromanip Ing, P. T. Szemes, U. of Tokyc H. Hashimoto, U.	ulti-Slave Tele- ulation System o, <i>N. Ando</i> , AIST of Tokyo,Japan
In the design of bral because there exist of adhesion forces t This paper will press control by the sliding prevention control w experimental results the conventional on	ke control systems, it is quite important to consider the robustne is the model's uncertainties which result from nonlinear character between wheel and rail, and friction coefficients of brake materia ent the experimental results about the new wheel slip preventior ig mode control theory. The experiments for the proposed wheel here performed to compare with the conventional control laws. T is proved the effectiveness of the proposed control as compared es, and showed high brake performances.	ess eristics als. n slip The with	14:18-14:36	maste A sin coi m fra	Our approach toward the advant er multi-slave tele-micromanipulat igle-master (PHANToM haptic dev infiguration introduces a mapping nanipulations. The position/force v naster dual-slave environment to m mework while grasping task. A pion internal force re	ced tele-micromanipulation is deve tion system based-on the shared of vice) and multi-slaves (6 D.O.F pa problem which can be serious for irtual mapping method is impleme ealize the human-robot shared int ck-and-place experiment proves the gulation by the proposed shared of	eloping the single- control framework. rallel manipulator) some cooperative inted in the single- ernal force control ne improvement of control framework.
Sliding Mode Co	ntrol with Disturbance Observer for Antilock Braking	3		Har	nd Force Feedback System	to Recognize Surrounding C	bjects for Safe
J. K. Hwang, Woo C. K. Song, Gyeo	suk Univ., <i>K. H. Oh</i> , Defense Quality Assurance Agency ngsang National Univ., Korea	/	1	H.	Hashimoto, M. Saito, A. Sasa M. N	aki, Tokyo U. of Tech., C. Ishii, Viitsuma, H. Hashimoto, Univ.	Walking Kogakuin Univ. of Tokyo, Japan
A sliding mode controller (SMC) with a disturbance observer (DOB) is developed for control of the anti-lock brake system (ABS) for passenger vehicles. Hydraulic brake dynamics as well as vehicle model parameter variation are considered in the developed control method. A SMC is designed to attain a desired wheel slip ratio without consideration of the hydraulic brake dynamics. A DOB is inserted into the SMC to reduce effects of un-modeled dynamics of the hydraulic brake system and the model parameter variation. The proposed ABS control shows good results of simulations on ABS brake dynamics, model parameter variation, and external disturbances.		4:36-14:54	infor direc	paper presents a user-friendly ha bstacles around the elderly to mal joystick mounted on a walker. T rmation from the repulsive force gr ased on the generation of a virtua tion to the obstacle is employed. The practice time of the user to lear	Ind force feedback system to reco king walking safer. The system is "he user is able to recognize the s enerated as feedback on the joyst I potential field that corresponds to Through the experimental results, rn basic operation of the system is	gnize surrounding implemented on a urrounding spatial ick. The system is o the distance and it is found that the s sufficiently short.	
A Multipurpose I Subsystem	Platform for HIL Testing of Safe Relevant Railway				Study on a Porta K. Ioi, Kinki Univ., Y. Sato, To	able Pointer for Positional Date Notes and the second seco	ata Acquisition Kinki Univ.Japar
Trenitalia SPA, in co considerable amour MI-6 for HIL testing and or ATP/ATC syst that have been succ the italian ATP syste testing of complete pneumatic devices. optimization of both	In <i>Induvezzi</i> , only, on horenee, or cocci, or hink, hary oblaboration with the University of Florence has invested a to f resources and know-how to develope a modular platform ca of WSP and other safe relevant on board subsystem like odome stems. In this paper the authors describe the main features of th cessfully used for the real time simulation of the odometry algori em, named SCMT (Sistema Controllo Marcia Treno) and for the WSP systems including Electronic Control units, sensors and el Particular attention was devoted in the design phase of the rig t real time software and actuators.	alled etry he rig, thm of HIL lectro- to the	14:54-15:12	Thi any lig exp prov coorc	is paper presents a new portable human-friendly welfare syste developed a device to aid physic ywhere and anytime because it is ght and noise. First, we describe th lain its basic principle of coordina cedure that indicates a desired ob dinates from points pointed at. The device and confirm that it can ac Finally, we	pointing device for positional data ms are seriously desired around ti cally handicapped persons. Our de rarely affected by such environme he mechanism of our proposed po te acquisition. Next, we propose a oject and a calibration method to o en, we show the experimental resi curately acquire the coordinates o conclude with the usefulness of th	acquisition. Since he world, we have evice can be used antal conditions as binting device, and concrete pointing btain the accurate ults of the pointing f a desired object. he pointing device.
Fuzzy Longitudii V. Delli Colli, G. 7	n al Traction Control iomassi, M. Scarano, Univ. of Cassino, Italy				Control and Interface be	etween an Exoskeleton Mast Human Like Slave Robot	er Robot and a with Two Arms
The traction control slippage in accelera presented approach simple implementati of the vehicle, and ii of the adherence de without a priori know evidenced that the o curve of the road.	increases stability, safety, efficiency and range of EVs preventin tion and permitting to use high-efficiency low drag tires. The offers the performance of the well-recognized techniques and a on. This paper considers the longitudinal control of each driven bases the control on an adherence observer and a fuzzy contre- rivative. The controller performs well in a very wide operating ra- vledge of road conditions. Moreover, the experimental tests control has a good response to sudden changes in the adherence	ng wheel oller ange ce	15:12-15:30	de Ex	his paper presents hardware imple motion capturing master robot a captures human motions operate evice. The slave robot is controller hardware is implemented perimental results show that motion	ementation of interfacing two robol and a motion following slave robot. ed by a human operator who wear d to follow the motion after the ma on an FPGA chip to access multi- ons following tasks are successful time. Problems in implementati	ts: an exoskeleton The master robot rs the exoskeleton ster robot. Control joints of the robot. Iy achieved in real on are addressed.

	Precision Electromagnetic Actuators			Advanced Machine Vision Applications II	
MC3	Big Sur 3 (14:00-15:30)			Windjammer 1 (14:00-15:30)	MC4
	I-Ming Chen, Singapore	CHA	AIR	Johne Parker, USA	
	Guilin Yang, Singapore	<u>CO-C</u>	HA	IR Winncy Du, USA	
for AFM Actuato WS. Youm, GIS	and Control of a Voice Coil Motor Driven Flexure Hin r iT, SQ. Lee, ETRI, KH. Park, GIST, Korea	ige		Accelerations of a 3D Tracking Method for Non- J. Masaki, N. Okada, E. Kondo, Kyush M. Hebert, Carnegie Mel	Rigid Objects iu Univ., Japan llon Univ., USA
A systemic design p (Atomic Force Micro parameters are sele design process is p verify the performar contact type AFM in	procedure of general VCM (Voice Coil Motor) to _ne z-axis AFM pscopy) actuator is introduced for fast and precision actuation. I ected based on the dynamic model of VCM and _exure hinge, a proceeded in point of fast and precision actuation performances. Ince of the designed actuator, frequency response of the actuato mage of a standard grid sample are performed.	1 Design and . To or and	14:00-14:18	This study aims to track a non-rigidly deformable object in real-time trange images. Our approach assumes that the object is globally rigid a rigid during a short interval between 3D snapshots. The tracking proc steps; estimating the rigid transformation by ICP algorithm, extracting deformed areas, and estimating their deformation vectors by Thin Pla Point Matching (TPS-RPM) algorithm. In our past research, it to estimating the deformation vectors. Then, in this paper, techniques for tracking proces	using successive and partially non- ess consists of 3 g the non-rigidly te Spline Robust ok mach time for accelerating the ss are described.
A New EMV Syst HJ. Ahn, SY.	tem Using a PM/EM Hybrid Actuator (I) <i>Kwak, JU. Chang, DC. Han</i> , Seoul National U., Kore	ea		Real-Time Automated Visual Inspection of Fabric Inl Z. Hou, J. Li, J. Parker, Univ. of	1omogeneities Kentucky, USA
In this paper, we de (permanent magnet achieve the soft lan Against the existing advantages like the model of the propos performed to verify built and the dynam landing and the fast	velop a new EMV (electro mechanical valve) system using PM/ / electro magnet) hybrid EMA (electro magnetic actuator) and ding and the fast transition of the system using a simple PID co EMA using only the EM, the proposed actuator has several PM biased AMB (active magnetic bearing) system. First, theore ed EMV system is derived and FE (finite element) analysis is the theoretical model. Then, a test rig and a valve control system ic characteristic of the proposed EMA is identified. Finally, the s transition of the system are achieved experimentally.	/EM ontrol. etical m are soft	14:18-14:36	Defects in fabrics usually appear as inhomogeneities of fabric texture p and efficient detection of these inhomogeneities is crucial for fabric man sophisticated visual inspection methods have been introduced based or algorithms. Unfortunately, only few of these are suitable for real-time t due to the high computational cost. An efficient and robust fabric defect is proposed in this paper. It is based on the fact that the presence of texture's homogeneity and changes the distribution of microedges in th the original texture image undergoes edge detection. The pro- implemented on a smart camera using its on-board processing ability	atterns. Accurate iufacturers. Many 1 texture analysis fabric inspections detection method efects breaks the le edge map afte posed method is ity to achieve fas inspection
Torque Model fo KM. Lee, H. So This paper presents freedom (3-DOF) sp or a spherical whee three-DOF in a sing be tilted arbitrarily. designing the switcl The closed-form tor simplifies the design open-loop controlled transmission.	r Design and Control of a Spherical Wheel Motor n, Georgia Inst. of Tech., USA a method of deriving the torque model for a three degrees of herical motor such as a variable-reluctance spherical motor (VI motor (SWM). The SWM (much like the VRSM capable of offer le joint) has the ability to spin continuously while the rotor shaft We derive a closed-form torque model and demonstrate its use hing controller based the principle of push-pull operation for the que model given here greatly reduces the torque computation, n of the switching controller. Illustrating through an example, the d SWM is essentially a 3-DOF in-wheel motor with an electronic	RSM) ering can for SWM. and e c gear	14:36-14:54	Binocular Fixation on Wide-Angle Foveated Vision Syst Based Feature Generation from Space-Variant Ima S. Shimizu, H. Jiang, S. Shimojo, J. Burdick, California Inst This paper introduces a novel interactive vision system, which is suitab works between the human and computer. This system acquires hum wide-angle foveated (WAF) information from a stereo camera head v angle optical lens and provides processed video signals both to the com user's sight simultaneously. The user can observe this unique informa The developed vision system is quite applicable for the human brain an like psychophysics. This paper proposes to carry out binocular fixation b extracted from contour images, and examines about scale, rotation and invariant features generated from WAF space-variant in	tem - Contour age Using DFT . of Tech., USA le for cooperative nan-like binocula with special wide uputers and to the tion on 3D HMD d vision research based on features translation (SRT nages using DFT
Design & Analys Actuator (I) C. K. Lim, L. Yan, W. Lin, Sippre Jas	is of a New Variable Stator Pole for a DC Spherical IM. Chen, Nanyang Tech. Univ., Singapore, G. Yang, t of Mrg. Tech. K. M. Leo. Georgia last of Tech. USA	,		Automated Tiny Surface Defect Detection Usi Enhancement Approach for Statis HD. Lin, DC. Ho, Chaoyang U. o	ng DCT Based stical Textures f Tech., Taiwar
A DC spherical actu a spherical joint. Th stator poles. With th linearity and hystere to system linearity th whole. Inevitably, th and torque. This pa material compositio	ator was developed recently in a bid to achieve 3 DOF motion of e actuator consists of permanent magnet rotor poles and air-co e utilization of these poles, dramatic temperature dependence, sis nature of ferromagnetic material can be avoided. This trans nat simplifies and enhances the control aspect of the system as e drawback on the other hand will be in the reduction of output per presents a new conceptual pole design that allows tweaking n within the coil.	within pre non- slates s a force g of	14:54-15:12	This research proposes a novel approach that applies DCT based enh detection of pinhole defects on SBL chips. A two-stage decompos proposed to extract an odd-odd frequency matrix after a digita transformed to DCT domain. The cumulative sum algorithm is then propo- transition points of the gentle curves plotted from the odd-odd Experimental results show the proposed pinhole defect detection meth pinhole defect detection rate by 90% and decrease the deviation of the	ancement for the ition procedure is I image has beer sed to detect the frequency matrix iod can reach the e defect areas by 90%
Experimental Inv Spherical Actual L. Yan, C. K. Lim,	restigation on the Magnetic Field of a Permanent Ma for (I) IM. Chen, Nanyang Tech. Univ., Singapore, G. Yang, t of Ma Toch K. M. Loo Coordinated of Toch - 1904	gnet ,		Study on Contrast Evaluation Function of CMOS I G. Chen, M. Zhu, L. Guan, K. Zhang, Hangzh G. Xu, Xidian Univ., H. Shi, Hangzhou Diar	Digital Camera ou Dianzi Univ nzi Univ., China
This paper introduc magnet (PM) spher three-dimensional (poles. The captured referred by similar r Furthermore, the m facilitates the analys	at or Wig. Tech., KW. Lee, Georgia Inst. of Tech., USA es the experimental study on the magnetic field of a permanent cal actuator. A new type of testbed is developed to measure th 3D) magnetic flux density distribution of the rotor consisting of F data are nondimensionlized and normalized so that they could otor designs without regard to the specific dimensions of the po easured data are presented visually in Cartesian coordinates, w sis of the magnetic field generated by the rotor.	e PM I be oles. vhich	15:12-15:30	The definition evaluation function not only determines the auto-focusing v system, but its algorithm determines the real time characteristic of the This paper analyses the imaging principle, and brings forward characteristic curves should meet symmetry, single peak, high defor enough signal-to-noise ratio and little calculation quantity. The dei functions based on gray variety, gray entropy and differential grad respectively. Brenner function and absolute variance function have the capability. For higher precision and real time performance, a combined Brenner function and absolute variance function is brought for	alidity of a whole whole hardware that the focusing cusing sensitivity finition evaluatior s are constructed optimal integrated method based or ward for focusing

	Micro Manipulation and Assembly				
MC5	Windjammer 2-3 (14:00-15:30)			MEMO	
MOJ	Georg Schitter, USA	CHAIF	२		
	Yoshio Yamamoto, Japan	CO-CHA	١R		
Handling Proces S. C. Bou, A. Alm N. Balabanava, Z Handling is a very ir	ses in Microsystems Technology ansa, ARC Seibersdorf Res. GmbH, Austria . Rymuza, Warsaw U. of Tech., Poland nportant matter in microsystems technology, very especial	ly	14		
concerning assemble ntegrated into the fid different aspects when types of microgripped and positioning with explains and clarifie results of work done working surfaces of	y of hybrid MEMS, where micro components need to be his nal device. Microhandling is a complex field, which consist inch need to be taken into account. Relevant aspects include ar actuation and working principles to different strategies for micrometer accuracy, as well as the adhesion problems. The s all these aspects. Apart from that, this paper also present e on material adhesion and tribological issues, dealing with handling tools.	andled and ts of many de from or handling This paper nts some the	:00—14:18		
An Overview of t D. S. Haliyo, G. V	the Micro-Manipulation System [mü]MAD l'enture, S. Régnier, JC. Guinot, Univ. Paris 6, Fran	nce			
i ne micro-manipula Jescribed in this pa orces and inertial e Voreover, enhance eedback remote ha characterizations ar	tion system developed in Laboratoire de Robotique de Par oper. This system developed in Laboratoire de Robotique de Par ffects for handling of objects which range from 1 to 100µm d user interaction is provided through a 6 dof haptic interfa ndling. Some advanced features of [mu]MAD such as med id sorting are also presented.	ns (LRP) is adhesion i. ce for force chanical	14:18-14:36		
Development Y. Yamamoto, To	of Concentric Micro Manipulation Syst kai Univ., Japan	em			
Recently micro man attentions because medical and bioeng manipulation probe rranslational position stationary. Facilitatin nighly expensive sy capability for micro mechanism. The cu developed.	ipulation and nano manipulation techniques have drawn a of their potential utilities not only in manufacturing fields bu ineering domains. Generally speaking, changing the orient is considered far more difficult in such systems than chang n alone, because such a rotary motion requires the probe t ng a posture changing mechanism leads to a large scale a stem. This research is intended to provide a posture chang manipulation at reasonable cost by introducing an offset pl rrent report presents a prototype system which has recentl	lot of at also in tation of a ging the tip be kept pparatus or ging anar hinge ly been	14:36-14:54		
Optimal Control Micromanipulatie E. Winder, Y. She U. C. Wejinya, C.	Based Active Force Sensing System for on en, N. Xi, Michigan State U., W. Sheng, Kettering Un A. Pomeroy, Michigan State U. USA	iiv.	_		
This paper presents micromanipulation u bonded to the surfa- sensing and actuatii due to external micr control scheme, a c boalancing the deform be obtained by calcu	the development of an active force sensing technology for using in-situ polyvinylidene fluoride (PVDF) layers symmetrice of a flexible cantilever beam structure. This beam has b ng PVDF layers. The sensing layer detects the deformation o-force acting at the sensor tip. Using a LQR optimal feed ounteracting bending moment is generated by the actuatin mation of the sensor beam. Furthermore, the micro-force v ulating the balance force.	r ically ioth n signal back g layer, alue can	14:54—15:12		
New Challenges X. Li, W. Wang, Z	in Precision Positioner Development <i>Chen</i> , Zhejiang Univ., China				
The paper summaria of positioner's main challenges it faces w imitations of typical flexure hinges and s Measurement devic poractice are classifie summarizes the dire	zes published researches on this subject and classifies the components. In Section I, the needs of precision positione with are mentioned. Then in Section II, the respective featu actuators are given in details. The translation mechanisms some other special mechanisms are described in Section II e is narrated in Section IV. In Section V, 3 types of positior ad and their comparisons are made. As the conclusion, Se actions for further researches.	em in light er and the ures and s like II. ners in ction VI	15:12-15:30		

	Locomotion			Human-Centered Robotic Systems	
MD1	Big Sur 1 (15:45–17:15)			Big Sur 2 (15:45–17:15)	MD2
	Jizhong Xiao, USA	CHA		Junji Furusho, Japan	
Design and Cor	Matthew D Summer, USA (CO-C	HAI	R Guilin Yang, Singapore	A Solution In
Robot <i>M. Summer, R. V.</i> This paper introduce RIDES (Remote Infr electrical, and contrr primary mission of tl environments. It is a complex indoor and such, a novel mecha	arley, J. Stiver, L. Davis, Harris Corp. – GCSD, USA es a multi-limbed walking robot, capable of vertical climbing, name astructure Delivery & Entry System). An overview of the mechani of architecture will be presented along with the current results. Th ne robot is aimed at search and rescue operations in urban/indus inticipated that a large degree of dexterity is required to tackle outdoor terrains as well as decaying urban/industrial settings. As anism and controller have been designed to address this need.	ed ical, ie trial	15:45-16:03	<i>G. Yang, W. Lin,</i> S'pore Inst. of Mfg. Tech., <i>K. M. Shabbir, C Yeo,</i> Nanyang Tech. I A solution-in-nature approach has been adopted in the design of a robotic arm that consists of a 3-DOF shoulder module, a 1-DOF elbow DOF wrist module. To mimic the driving scheme of the human arm, the t are all driven by cables which are functionally similar to human mu analysis issues, i.e., displacement analysis and cable-tension analysis more details. A closed-form solution is derived for the forward displ while an optimization technique is employed for the inverse displace effective cable-tension analysis algorithm is proposed based	A Solution-In- ture Approach B. Pham, S. H. Jniv., Singapore 7-DOF humanoid module, and a 3- pree arm modules scles. Two critical are addressed in acement analysis, ment analysis. An on convex theory.
Analysis and Sin Involute-Shape (nulation of a Wheeled-Vehicle with Auxiliary Wheels o AWIS) Mour M. Xie, Nanyang Tech, Univ., Singapore	f		A New Humanoid Robot Gait Generation Based on	Multiobjective Optimization
This paper introduce as an auxiliary devic adaptability on rugg continuous-variable. Moreover, the AWIS heights reaching alr and dynamics analy traversing obstacles results obtained vali	es an innovative design of Auxiliary Wheel of Involute-Shape (AW es for a wheeled-vehicle. The AWIS enhances the wheeled-vehicl ed terrain while not imposing complex-ity in the control. The radius of the AWIS allows for smoother motion in a sagittal plane is enables the wheeled-vehicle to traverse obstacles with maximur nost five times its base radius. In this paper, the kinematics, static ses are performed on the AWIS. The wheeled-vehicle with AWIS , ascending and descending a flight of staircase is simulated and date the functionality of the AWIS.	/IS) le's e. m cs, the	16:03-16:21	Up to now, the optimization algorithms are applied for humanoid rob where a single fitness function drives the optimization process. But of robot gait generation problem is subject to several objectives. In ord problem, in this paper, we propose a new method based on multiobje algorithm. In order to verify the effectiveness of our proposed method, v important conflicting objectives: minimum energy and minimu simultaneously. The angle trajectories are generated without neglec humanoid robot. Results using the Bonten-Maru humanoid re performance of the	ta offiv, sapari of gait generation, en, the humanoid of to deal with this ctive evolutionary ve considered two m torque change, ting the stability of obot show a good oroposed method.
A Neural Networ Link Mechanism M. Sato, K. Ishii, H	k Based Control System for a Mobile Robot Employing	g		A 3-D Exercise Machine for Upper-Limb Rehabilitation Usin w J. Furusho, K. Koyanagi, K. Nakanishi, Y	J ER Actuators ith High Safety . Fujii, Osaka U.
The transportation i for mobile robots be and the control syst one of the most pra have the difficulty ir robot employing the maneuverability of experiments to clim been carried out. N system and their ne	<i>N. Sato, K. Ishii</i> , Kyusyu Inst. of Tech., Japan The transportation using wheels is one of the most popular transportation mechanisms for mobile robots because its energy efficiency is high, the wheel mechanism is simple and the control system is well investigated. Therefore, the wheel type mobile robots are one of the most practical and widespread robots. However, the wheel type mobile robots have the difficulty in the rough terrain movement. In this research, a 6-wheeled mobile robot employing the linkage mechanism, "Zaurus", has been developed to extend maneuverability of wheel type mobile robots. In order to evaluate its maneuverability, the experiments to climb over a bump with twice height of diameter of the robot's wheel have been carried out. Neural Network and PID controllers are introduced as the control		16:21-16:39	K. Domen, K. Miyakoshi, Hyo U. Ryu, S. Takenaka, A. Inoue, Asahi Ka We have joined a project managed by 5-year NEDO (New Ene Technology Development Organization as a semigovernmental orga Ministry of Economy, Trade and Industry of Japan) Project, "Rehabilitat Upper and Lower Limbs", and developed a 3-D exercise machine for up using ER actuators. New training methods and exercises for upper limbs made possible by application of robotics and virtual reality technology with the development of EMUL. We also present the development of sof	go Coll. of Med. sei Eng., Japan rgy and Industrial nization under the on System for the per limbs (EMUL) s rehabilitation are . This paper deals tware for motion
A Gait-Transition S. Masakado, T. I	n Method for a Quadruped Walking Robot shii, K. Ishii, Kyusyu Inst. of Tech., Japan			Grasping Unknown Objects Based on 3D Model I B. Wang, L. Jiang, J. Li, H. Cai, Harbin Inst. H. Liu, Aerospace C	Reconstruction of Tech., China
Legged robots are of such as rough terra important problem a the stability. In this secured for a quadr a crawl gait and a ro crawl, Y-crawl, O-ro method, the commo standard gaits, are show that the propo	expected as the attractive tool to transport in various environment in, nuclear reactors, etc. The stability of their motion is one of mo and, especially, the gait change should be well considered not to l paper, we propose a successive gait-transition method with stabil uped walking robot. The gait-transitions from a standard gait sucl obtation gait are investigated to realize the static stable walk. The 2 station and their reverse gait are the standard gaits. In the propos on foot positions, those are the same leg arrangements among utilized for stable and smooth gait transition. The experimental re used gait transition is efficient and stable.	t Iose lity h as X- ied isults	16:39-16:57	Automatic grasping of unknown objects for multifingered hand is because the location and model of the object are unknown and configurations are numerous. In this paper, we propose a new strategy grasping prior unknown objects based on 3D model reconstruction. consists of a laser scanner, simulation environment, a robot arm multifingered robot hand. The object to be grasped is scanned by a 3D reconstructed in simulation scene. After different grasping are ev simulation scenes, an accurate arm and hand configuration can be calcu the robot arm and multifigered hand. The experimental results strongl effectiveness of the p	a difficult problem the possible hand for modeling and The whole system and the HIT/DLR laser scanner and aluated within the lated to command y demonstrate the proposed strategy.
Design of Mobile <i>J. Xiao, A. Sadeg</i> York, USA	Robots with Wall Climbing Capability h, M. Elliott, A. Calle, A. Persad, H. M. Chiu, City Coll. of N	Vew		Adaptive Neuro-Fuzzy Control Based Developmen Exoskeleton Leg for Human Walking Power CJ. Yang, B. Niu, Y. Chen, Zhejia	of a Wearable Augmentation Ing Univ., China
This paper describe robots which can ar transitions. Various adhesion mechanis DSP-based control and semi-autonome concepts. Future dir	es the ongoing work and technical achievement in developing chieve quick motion on various wall surfaces and smooth wall-tr aspects in mechanical design are discussed in detail, incl m, vacuum chamber seal, locomotion and transition mechan system is also described which enables the robot operating mar pusly. Several prototype robots are introduced to verify the d ections to improve the design are elaborated.	novel o-wall luding hisms. nually lesign	16:57-17:15	In this paper, a wearable exoskeleton leg conceived and designed to walking ability is proposed. The ultimate goal of this project is to provide methodology of designing and controlling a power assist system human's intellect as the central control system for manipula anthropomorphic device. The whole process of design, construction prototype experimental exoskeleton is presented; the feasibility and p novel ANFIS (Adaptive-Network-Based Fuzzy Inference System) based are studied followed by the conclusion as well as an outline of anticipate	augment human's an insight into the , which integrates titing the wearable in and control of a erformance of the I control algorithm d future research.

	Actuators in Mechatronic Systems			Localization and Planning			
MD3	Big Sur 3 (15:45—17:15)			Windjammer 1 (15:45–17:15)			
	Kyi Hwan Park, Korea	CHA		Stefano Chiaverini, Italy			
	Zeljko Popovic, USA	<u>CO-C</u>	HA	IR Tong-Ying Juang Taiwan			
Inverse Dynamic Damper W. Zhou, C. M. C In this paper, invers Rheological (MR) fli control actuator. A r two popular MR flui accuracy and mode damper based SDA force fidelity is achie	cs Control for Series Damper Actuator Based on MR <i>hew, G. S. Hong</i> , National U. of Singapore, Singapore e dynamics control is investigated to actively control the Magne id damper in Series Damper Actuator (SDA), a new type of for nodified Bingham model is proposed and proved by comparing d models, Bingham model and Bouc-Wen model, in terms of mo l inverse ability. Inverse dynamics control scheme is developed system and experimental results are also presented to show the eved.	Fluid ce with odel for MR nat high	15:45-16:03	Feedforward Global/Inertial Sensor Fusion Algorithm for A Positioning of a K. Lee, KAIST, Korea, J. Park, O. Khatib, St DS. Kwon, Korea Advanced Inst. of Science ar This paper introduces a coordinate transform method for global/iner minimizing modification of an existing control program of a mobile robot. sensor fusion algorithms use Kalman filters and modify the INS states b Because the structure of the proposed method has a feedforward filter, th advantage that the user does not want to change an existing control p robot. The feedback Kalman filter is designed so that the error betwee from GPS and odometry from INS converges to zero. Therefore the coo between the odometry and measured global position is not necessary	ccurate Globa a Mobile Robor anford U., USA ad Tech., Korea tial sensor fusior Most of GPS/INS y feedback loops the method has ar program of mobile en global positior profinate matching y in those errors.		
Development of Pneumatic Server K. Sumumori, J. 1	an Intelligeny Pneumatic Cylinder and Its Application D Mechanism Fanaka, T. Kanda, Okayama Univ., Japan	n to		Monte Carlo Multi-Robot Localization Based on Characte J. Liu, K. Yuan, W. Zou, Chinese Acad. of	Grid Cells and ristic Particles Science, China		
A new compact pne pneumatic cylinder micro optical MEMS oxidization process pneumatic position The piston rod posit the rod stroke. This developed for stepp to 1 mm positioning	umatic cylinder with a micro position sensor, named intelligent was developed. It consists of a piston rod with stripe codes and c encoder. The stripe codes were fabricated through a selective by irradiating with a YAG laser. The cylinder realizes a compac servo system. The servo experimental results were very promis ion is easily controlled at any desired position between both en paper reports also an adaptive servo algorithm which was newl ing positioning of the intelligent pneumatic cylinder, realizing ab accuracy without overshooting.	l a tt sing. ds of ly pout 0.3	16:03-16:21	Q. Yang, Univ. of Miss In this paper, a Monte Carlo method based approach for multi-ro described. In this approach, grid cells are used to describe the whole pa used in MCL method to estimate the pose of robot. Then, the sizes of adjusted to capture the characteristic particles that can represent particles. The characteristic particles can be used to estimate the rob operation space. Because the number of the characteristic particles is mu of the total particles, this approach can reduce the computing time g results are also given to show that this approach can obtain good localiza	ouri Rolla, USA bot localization is rticle set which is the grid cells are the property of al ot's position in its uch less than tha reatly. Simulatior tion performance		
Integrated Contr Actuation Syster L. A. Mianzo, S. J	ol and Power Electronics for an Electro-Mechanical \ m /. Netwon. Z. Popovic. Visteon Corp., USA	Valve		Range Sensor Data Filtering for Mobile Robe S. Baek, H. Park, S. Lee, Hong	ot Localization gik Univ., Korea		
L. A. Mianzo, S. J. Netwon, Z. Popovic, Visteon Corp., USA In an electro-mechanical valve actuated engine, computer-controlled solenoid actuators drive the valves that control airflow into the cylinders, allowing elimination of the camshaft and enabling fully variable valve timing. Control of individual valve timing optimized over all engine operating conditions allows the benefits of variable valve timing to be realized. This paper presents power electronics and control electronics architecture and its control algorithms that achieve precise coil current tracking and regulation of rail voltage which are critical in closed-loop control of the electro-mechanical valve actuator motion. Simulation and experimental results support the design.		16:21-16:39	Estimating the configuration is one of the key issues for succes navigation. Dead-reckoning is simple and fast but it can lead to inaccu estimates. Range sensors are widely used in known environment for may not always work due to sensor range limit. Optical flow sensor si mouse gives accurate relative movement but it requires strict vertica paper introduces new way of estimating robot configuration by combining range sensor data and optical flow information in known environment. F from range sensor information and estimation of the relative movement sensors are investigated. The proposed method is implemented and test	sstul mobile robo rate or unreliable localization, but i uch as the optica l placement. This g the consecutive reature extractior using optical flow ted with a mobile robot			
A Magnetically C Dampers for Exe B. Levins, I. Grav	Controllable Valve to Vary the Resistance of Hydrauli ercise Machines agne, Baylor Univ., USA	с		A Fast Path Planning Algorithm for Piano Mover's Prob G. E. Jan, TY. Juang, Na JD. Huang, CM. Su, CY. Cheng, National Taiwan Oc	lem on Raster itional Taipei U ean U., Taiwar		
While the majority c motion resistance, a a shock absorber, li positive" resistance adjust for higher or resistance of a linea the damper.	f exercise machines use weights, springs or spinning fans to ge a large number of machines also utilize linear fluid damping. Sin near dampers are compact, extremely reliable, and produce "do (resistance to both directions of motion). However, they are diff lower resistance. This paper illustrates a mechanism to vary the ar damper, and illustrates with experimental data certain propert	enerate nilar to ouble ficult to e ties of	16:39-16:57	This article presents the near-optimal path-planning algorithm for piano of robot motion among obstacles on raster. Beginning with a top vie arrangement among obstacles, the so-called free workspace is first ob expanding the obstacles. The proposed method adopts virtual obs collision avoidance scheme based on the higher geometry maze routing the possible directions to find the near-optimal path from the sour destination position. The time complexity of this method is in average worst case, where N and R are the numbers of cells in the free w detection circle with the radius of VRI as its collision-det	mover's problem w of a workspace tained by virtually tacle domain anc algorithm with al ce position to the o or O(RN) for the orkspace and the ection domain,		
Pressure Observ N. Gulati, E. J. Ba	ver Based Servo Control of Pneumatic Actuators arth, Vanderbilt Univ., USA			Optimization of Emergency Trajectories for Autonomous Respect to Linear Veh	Vehicles with		
Pneumatic systems like reliability, comp weight ratio, the use This paper presents costly pressure sen Experimental result observer based con	are highly non-linear by their nature. Despite their many advan liance for interaction tasks requiring backdrivability, and high po e of such systems is restricted primarily because of its high initia the development of a robust observer based controller to elimin sors and therefore obtain a low cost pneumatic servo system. s are presented that demonstrate the effectiveness of this press troller.	tages ower to al cost. nate sure	16:57-17:15	K. Hirsch, J. Hilgert, W. Lalo, D. Schr U. Duisburg-E This paper looks at a trajectory planning strategy for autonomous v defined nominal trajectory is analyzed with reference to obstacles mod safety areas. Based on the results of this analysis, an emergency trajec by using the method of elastic bands which provides flexible trajector changes of curvature and therefore good driveability. In a second s behavior of the vehicle is evaluated using the bicycle mode approximation of the steering angle along the trajectory. Then the calculated from this steering angle is improved by iterating the steering a	amm, M. Hiller, ssen, Germany rehicles. The pre- eled from circulai tory is calculated pries with minima step, the dynamic I along with a firs vehicle trajectory ngle based on		

	Micro Robotics, Assembly, and Synthesis			
MD5	Windjammer 2-3 (15:45-17:15)			MEMO
	Metin Sitti, USA	CHAIR		
	Yi Su, Singapore	CO-CHA	IR	
6 DOF Dexterous Q. Zhou, P. Korho This paper presents gripping/handling sy optoelectronic comp microparts having s translational alignmu- focusing. All six actu- network-based cont system includes thra and mission layer. V the system is demoi First Research A and -Assembly T A. Almansa, S. C	s Microgripper for Inspection of Microparts <i>brinen, B. Chang, V. Sariola</i> , Helsinki Univ. of Tech., Fi e a novel 6 DOF (degree-of-freedom) piezoelectric micro vstem for automatic dexterous manipulation and inspection of boonents. The purpose of the system is to pick-and-place and ize of 300 to 400 μm square. The alignment task includes b ent for field-of-view and focusing, and rotational alignment for uation axes are controlled based on strain gauge sensor fee rol system is used for automatic control of the gripper. The ee hierarchical layers: actuator control layer, motion plannin /isual servoing is applied in automatic handling. The perform nstrated in a fully automated inspection task.	inland of micro d aligns ooth or uniform edback. A control g layer, nance of Indling	15:45-16:03	
Mechatronic compe but very especially i The Research and ⁻ Assembly in Microte scale. Topics as dee methods and microa institutions participa	tences represent a strong component in Microsystem Techr n Microhandling and –assembly, a field with challenging req Training Network "Advanced Methods and Tools for Handlin cchnology" (ASSEMIC) addresses this research field at a Eu sign and development of microgrippers, intelligent micromar assembly technologies for industrial production are dealt wit ting in this project.	nologies, quirements. Ig and Iropean nipulation th by the 14	16:03-16:21	
Electrodepositio Microtubes P. Loew, N. Taka A concept of using e microtubes on a Sili used. At first, Coppe water through the h clogged and were re of the Copper layer microtubes were lef and Lab-on-a-chip.	n Combined with Microjet Flow: Fabrication of Me ma, B. Kim, Univ. of Tokyo, Japan electrodeposition and microfluidic flow for the fabrication of r con wafer is presented. Two subsequent electrodeposition s er was deposited on a microporous Si membrane structure. oles of the membrane during deposition, the holes avoided I eplicated into the Copper layer. Gold was deposited on the i holes. Through selective etching of the Copper, free-standir t. This method could be useful in fabricating devices for cell	etal metal steps were By flowing being inner walls ng Gold handling	16:21-16:39	
A New Endoscop Microfibrillar Adl E. Cheung, M. E. of Science & Tech The diagnosis of ga advanced with the in effort to increase its locomoting the caps mechanism, actuate adhesive similar to the attachment mechan forces and liquid ad	pic Microcapsule Robot Using Beetle Inspired hesives Karagozler, Carnegie Mellon U., S. Park, B. Kim, Kor n., Korea, M. Sitti, Carnegie Mellon U., USA strointestinal diseases within the small intestine has been gintroduction of the endoscopic microcapsule in recent years. reliability and expand its functionality, a mechanism for stop sule within the digestive tract is proposed in this paper. This ad by shape memory alloy wires, utilizes a synthetic microfib the attachment mechanisms employed by beetles. This fibril ism is a combination of molecular adhesion caused by van hesion caused by capillary forces	rea Inst. In an pping and prillar Ilar der Waals	16:39-16:57	
Development of U. C. Wejinya, Y. In this paper, a micr with in-situ PVDF se system consists of a latex tubes with diffe channel. Effectively performance of the microassembly. The system. An effective the developed pneu	Pneumatic End Effector for Micro Robotic Manipu Shen, N. Xi, E. Winder, Michigan State Univ., USA or pneumatic end-effector for micromanipulation and microar ensing is designed and calibrated. The micro pneumatic end a DC micro-diaphragm pump and compressor, two regions or event parameters and different function such as microtool an controlling the suction force and pressure are critical for the micro-pneumatic end-effector for micromanipulation and e force sensing model was developed for the pneumatic end e calibration method is proposed and its results verify the be imatic end-effector system.	ulators ssembly d-effector of flexible ad air e d-effector chavior of	16:57-17:15	

	Mechatronics in Medical Applications			Modeling and Design of Mechatonic Systems			
ΤΔ1	Big Sur 1 (09:30—10:42)			Big Sur 2 (09:30-10:42)			
	Masayoshi Wada, Japan	СН	AIR	I-Ming Chen, Singapore			
	Michael Bailey-Van Kuren, USA	CO-C	HA	IR Marcelo H. Ang, Singapore			
Control of Model	-Based Wearable Anti-Gravity Muscles Support Sys	stem		Integrated Design for a Mechatronic Feed Drive System of N	lachine Tools		
T. Nakamura, K. S As an apprication of	Saito, Z. D. Wang, K. Kosuge, Tohoku Univ., Japan real world robotics, we have focused on developing a wearabl	le daily	60	The goal of this research is to develop a design optimization methodology modules of machine tools by treating all important characteristics	for mechatronic from all involved		
activities support system for physically weak person. For controlling a wearable human support device, we have proposed novel control algorithms. In these algorithms, joint support moments are calculated based on human body dynamics. In this paper to validate the usefulness of proposed system, the standing up motion, one of the hardest activities of daily life is analyzed and the usefulness of proposed method is discussed. Experimental results show the validity of the system.		:30-09:48	engineering domains in one single process. In this study, a mecha machine tools was broken into a structure and a control two-level system. for the structure design process, the Pro/E was used to build up the 3D AnSys was employed to design the mechanical structure and select optii for the machine tool. Next, in the control design process, a common co designed by MATLAB in this stage. Then, three important parameters were the machine tool design to achieve the overall system	atronic system of In the first stage or models and the mal components ntroller type was e established for am performance.			
Mechatronic App M. Bailey-Van Ku	Dications in Pediatric Therapy Devices ren, D. Scarborough, Miami Univ., USA			Design of Intelligent Mechatronical Systems with Modifial M. Koch, Univ. of Paderborn, C	ble Behaviors		
Mechatronic devices	s can provide solutions in pediatric physical and occupational t	herapy		B. Kleinjohann, Univ. of Paderborn/Siem	iens, Germany		
that improve the level of care, improve patient comfort, and explore new therapy methods. A family of mechatronic devices based on thin film sensors is discussed. Thin film force sensitive resistors (FSR) provide a low cost component for force based inputs. Pediatric applications in manual muscle testing, walking therapy, and feeding therapy are presented. Design considerations characterizing the needs of each pediatric device are summarized. System components including the actuators, sensors and controllers are presented.		09:48—10:06	methods into Petri net based specifications of autonomous behaviors. The work aims at the design of autonomous mechatronical systems with modifiable adaptive behavior and our extension handles the required modifiability. In order to combine Petri nets and learning methods, we modeled Q-Learning - a variant of Reinforcement Learning - with high-level Petri nets. The result can be integrated into Petri net models of autonomous mechatronical systems. For an evaluation of our approach, we have implemented a realistic application example. It has been evaluated by simulation as well as on a physical system.				
An Omnidirectio M. Wada, Saitama	nal 4WD Mobile Platform for Wheelchair Application a Inst. of Tech., Japan	IS		A New Continuously Differentiable Friction Model for Con	ntrol Systems Design		
In this paper, a new type of omnidirectional mobile platform with four-wheel drive (4WD) mechanism is presented. The mobile platform includes a pair of normal wheels on the rear side of the platform and a pair of omni-wheels on the front side. The two drive motors are coordinated by the omnidirectional control to translate the center of the chair in an arbitrary direction while chair orientation is controlled by the third motor individually. In the paper, kinematics and statics of the 4WD mechanism are analyzed and an omnidirectional control method is developed. The omnidirectional motions of the proposed 4WD drive system are tested by the computer simulations.		10:06-10:24	C. Makkar, W. Dixon, W. Sawyer, G. Hu, Univ. c For high-performance engineering systems, model-based controllers are t to accommodate for the system nonlinearities. Unfortunately, developing a for friction has been historically challenging. Typical models are either di- many other models are only piecewise continuous. Motivated discontinuous and piecewise continuous friction models are pro development of high-performance continuous ontrollers, a new mo proposed in this paper. This simple continuously differentiable mo foundation that captures the major effects reported and discussed in friction	of Florida, USA ypically required accurate models scontinuous and d by the fact that oblematic for the odel for friction is idel represents a on modeling and experimentation.			
Embedded FPGA Y. Liu, M. Jin, R. H Liu, N. Seitz, R.	A-Based Control of the HIT/DLR Hand Wei, H. Cai, Harbin Inst. of Tech., China Gruber, G. Hirzinger, DLR, Germany			A Unified Model for Design and VLSI Implementati Percept Y. Sun, N. Xi, Michigan State Univ. W. Sheng, Ketter	on of Robotic ive Controller ing Univ., USA		
In this paper, we de with effective mecha paper shows the de FPGA (Field Progra FPGA and higher le architecture, a FPGA peripheral cores, su with palm's FPGA b results clearly illustr paper.	veloped a performanceenhanced, standalone dexterous robot inical structure and lightweight control hardware. In the context sign methodology of HIT/DLR dexterous robot hand II controlle mmable Gate Array). Lower level controller is implemented in a vel controller is implemented in a DSP. Instead of a conventior to-based soft processor core is utilized. It includes a set of custo ch as data collection, brushless DC motors control and commu y Point-to-Point Serial Communication (PPSeCo). The experim ate the high performance of the control system we presented in	hand t, the er using an hal om unication hents n the	10:24-10:42	In this paper, a formal hybrid model is used for both the controller desig description. The model can describe the control functions and the high the robotic system. The high level structural description of the controller m the synthesizability of the control system. A hybrid simulation system is the hybrid controller design and implementation. The hybrid simular verified that the hybrid system model can be used for VLSI implemen- integrated system i	In and hardware level behavior of lodel guarantees proposed to test tion results have entation, and the is synthesizable.		

	Design of Parallel Mechanisms I			Sensor System Integration	
TA3	Big Sur 3 (09:30—10:42)			Windjammer 1 (09:30-10:42)	ΤΔ4
IAV	Koichi Osuka, Japan	Koichi Osuka, Japan CH/		Imad Elhajj, USA	1/14
Dunamia Analya	Guilin Yang, Singapore	<u> </u>	HA	IR Kourosh Parsa, Canada	Airereft Divet
C. B. Pham, Nan S. H. Yeo, Nanya	yang Tech. Univ., <i>G. Yang</i> , Singapore Inst. of Manuf. Tec ing Tech. Univ., Singapore	ch.,		W. Sheng, Kettering Univ., Y. Shen, N. Xi, Michigan St	Inspection tate Univ., USA
A Cable-Driven Parallel Mechanism (CDPM) possesses a number of promising advantages over the conventional rigid-link mechanisms, such as simple and light-weight mechanical structure, high-loading capacity, and large workspace. However, the formulations and results obtained for the rigid-link mechanisms cannot be directly applied to CDPMs due to the unilateral property of cables. For a CDPM, dynamic formulation is only valid as actuators exert positive torques. In this paper, cable winding method is studied as it improves the whole dynamic performance of the system. This is followed by dynamic formulation. A generic approach based on dimension reduction technique is proposed to check the existence of positive torques.		09:30-09:48	This paper proposes a new robotized mobile sensor network platform to conduct aircraft rivet inspection and addresses the motion planning problem involved. Due to the specific movement characteristics of the mobile robot, the path, or the rivet sequence, should enable each mobile robot to realize the localization-and-reposition process. In this paper we propose a new algorithm to extend our previous single robot path planning algorithm into the multiple robots version. This algorithm first decomposes the overall rivet set into multiple disjoint subsets based on a graph partitioning algorithm. Then for each subset, we apply our Find-Crawler-TSP algorithm to generate the path. Simulation results validate the proposed algorithm		
A 3-DOF Flexure W. Chen, W. Lin, Univ., G. Yang, S	e-Based Fixture for Passive Assembly of Optical Swit Singapore Inst. of Manuf. Tech., K. H. Low, Nanyang Te Singapore Inst. of Manuf. Tech., Singapore	ches ech.		Design and Mechatronic Implementation of an Accelerc Kinematically Redundant Inertial Mea <i>K. Par</i> sa, Canadian Space A	ometer-Based, surement Unit gency, Canada
This paper presents the design of a planar compliant fixture for optical switch assembly to automatically accommodate the uncontrollable assembly errors. The fixture comprises a platform movable in x-y-,; and three flexure-based supporting legs. Compliance performance is mainly concerned in the design. A closed-form formulation is developed to map the stiffness in the joints space into Cartesian space for generic 3-legged planar platforms. Based on the stiffness requirement, the structure and the configuration of the legs are synthesized and designed. Experimental results showed that the performance of the optical switch assembly system is improved significantly after adopting the fixture.		09:48-10:06	<i>T. A. Lasky, B. Ravani</i> , U. of Californ This paper discusses the design, calibration, and simulation of a r measurement unit based solely on accelerometers. The unit comprises two on each face of a cube. The sensor locations and directions are det locally optimize the numerical conditioning of the governing kinemati orientational installation errors are identified by off-line iterative g gravitational acceleration measurements made at a number of kin Furthermore, a procedure is developed through which the acceleration me be used to directly determine the body angular velocity; this results in a n	ia, Davis, USA edundant inertial s twelve sensors, ermined so as to ic equations. The processing of the own orientations. easurements can major accuracy	
Proposal of a No	Proposal of a New Forward Kinematics Calculating Method and Control Law for Parallel Link Manipulators <i>K. Osuka</i> , Kobe Univ., <i>H. Kubo</i> , Kawasaki Heavy Industries, <i>Y. Minase</i> , Kyoto Univ., <i>K. Ueshima</i> , <i>Y. Nakamura</i> , Murata Machinery, Japan In this paper, we propose a novel solving method of forward kinematics problem for PLMs and construct a task coordinated feedback control which used the character of Jacobian and made calculation easy. Then we prove the stability of this control system and verify the validity by the simulation and experiment.			Sensor Network Assisted	Teleoperation
K. Osuka, Kobe I Y. Minase, Kyoto In this paper, we pr and construct a tas and made calculation the validity by the s			10:06-10:24	Rapid advances in the field of sensing and sensor networks are opening the door to many new possibilities. This paper presents work related to interfacing a robot being controlled remotely via the Internet with a sensor network. The sensor network measurements are fed back to the operator and rendered in the form of a haptic force. This provides the operator with information regarding the environment and thus more efficient and safe operation. The challenge is to efficiently fuse the measurements from the different nodes and convey the result to the operator in an intuitive form. A centralized approach and a distributed approach for the fusion of sensed measurements are presented. In addition, experimental results are provided to highlight the concepts developed.	
Design, Modelin Manipulator Pal B. Denkena, B. H	g and Advanced Control of the Innovative Parallel .iDA leimann, H. Abdellatif, C. Holz, Univ. of Hannover, Germa	any		Development of the Balloon-Cable Driven Robot for Informat from Sky and Proposal of the Search Strategy at a I <i>F. Takemura</i> , Int'l Res. System Inst., <i>M. Enom</i>	ion Collection Major Disaster oto, T. Tanaka,
In this paper, desig manipulator PaLiD/ newly designed stru- the optimization of calculation of the dr of rigid-body and fri additional partial de demonstrate the qu and machining.	benkena, B. Heimann, H. Abdeirati, C. Hoiz, Oniv. of Hannover, Germany his paper, design, actuation concept and the advanced control of the parallel hipulator PaLiDA are presented. Commercial direct linear drives are integrated into dy designed struts variable in length. The strut's arrangement is carried out basing on optimization of the workspace and stiffness. A highly efficient approach for the sulation of the dynamics is presented. It is characterized by the uniform consideration gid-body and friction dynamics. The implementation of feedforward control with itional partial decoupling of actuator dynamics is shown. Experimental results nonstrate the quality of the achieved control in the range of high-speed manipulation machining.		10:24-10:42	K. Denou, Kobe U., Y. Kobayashi, S. Tadokoro, To At large-scale urban earthquake disaster, the human search and the infor are the most important process of rescue activities. This research deve cable driven robot for information acquisition from sky at crushed struct caused by huge earthquake. The balloon, which hangs up several sens SU), uses ``a natural shape balloon". Three cables are connected balloon with sensors is driven by expansion and contraction of the Moreover, we propose the human search system by electromagnetic wa lot of people have cellphones or mobile devices. Our proposing search	whoku U. Japan mation collection lops the balloon- tures at landslide ors (Sensor Unit, with SU, and the he cables length. aves. Recently, a n system is the

	Neural Control in Mechatronics			
TA5	Windjammer 2-3 (09:30—10:42)			MEMO
IAJ	Nader Sadegh, USA	CHAIR		
	Lilong Cai, Hong Kong	CO-CHA	١R	
Superficial Pain N. Matsunaga, A.	Model Using ANNs and Its Application to Robot Kuroki, S. Kawaji, Kumamoto Univ., Japan	Control		
In the coexistence of human should be or feeling at interaction of time or place in or concept of separatio controller based on pain model (ASPM) mechanical pain mo The proposed ASPI	sircumstance with humans and robots, sensory and emotion onsidered when the robots interact to human. A typical unp in is "pain". It is difficult to separate the robots from human i oexisting environment unlike factory automation design. Th on in the sense of safety is required. One approach is to de the pain that is subjective of human. In this paper, artificial caused by impact is proposed. This ASPM model consists odel, skin model and gate control by artificial neural networ M is applied to robot control and evaluated.	nal feeling of leasant in the sense hus a new ssign the superficial s of ks (ANNs).	09:30-09:48	
Tracking Contro W. Zuo, L. Cai, H	I of Nonlinear Systems Using Fourier Neural Net ong Kong Univ. of Science and Tech., Hong Kong	work		
A Fourier neural net tracking control of a complex Fourier exp physical meaning a of the basis function Taking advantage c of the system and is system is based on show the effectivene	twork (FNN) based control scheme is presented in this pap class of unknown nonlinear systems. The FNN employs o ponentials as the basis functions, and therefore the FNN ha nd the network topology is easily determined. Due to the or is, the FNN has a fast convergent speed and can avoid loc of the FNN, the proposed FNN controller requires no priori I is suitable for real time control. The stability analysis of the the Lyapunov theory. Experimental results on a gearbox a ess of the proposed controller.	er for rthogonal as a clear rthogonality al minimum. knowledge closed-loop re given to	09:48-10:06	
The Heart Disease Measurement, B A. Akhbardeh, S.	se Diagnosing System Based on Force Sensitive iorthogonal Wavelets and Neural Networks Junnila, M. Koivuluoma, T. Koivistoinen, A. Värri, Ta aland	e Chair's ampere		
Univ. of Tech., Finland 'he Heart Disease Diagnosing (HDD) system consists of a movement sensitive EMFI-film ensor installed under the upholstery of a chair. Whilst a man rests on the chair, this sensor roduces a signal containing components reflective of cardiac-Ballistocardiogram (BCG), espiratory, and body movement related motion. This paper describes briefly our developed IDD system and especially a combined intelligent signal processing method to detect, xtract features, and finally cluster BCG cycles. The system is designed to assist medical loctors in diagnosis. It uses high resolution Biorthogonal wavelet transform to extract sesential BCG features and then clusters them using Artificial Neural Networks		10:06-10:24		
PID Neural Netw M. Fardadi, A. Se	ork Control of SUT Building Energy Managemen Ik Ghafari, S. K. Hannani, Sharif Univ. of Tech., Iran	t System		
PID Neural Network Energy Managemen characteristics of pr networks can perfor neural network has structure. Simulatio this controller has s of the closed loop s	a controller design for Sharif University of Technology (SUT at System (BEMS) is addressed in this paper. The most im ocess systems are time delay with model uncertainties. An rm adaptive controller properties through learning processe the advantages of both conventional PID controllers and th n results using Modified Hooke-Jeeves Optimization Methor hort convergence time and quick learning speed and the p ystem is very good.	T) Building portant tificial neural es. PID ne neural od show that erformance	10:24-10:42	

	Aerial and Underwater Robots					
TR1	Big Sur 1 (11:00-12:30)				Big Sur 2 (11:00-12:30)	TR2
	Paul Y. Oh, USA	CH	AIR	2	Masayoshi Tomizuka, USA	
	Ruggero Frezza, Italy	CO-C	HA	\IR	Kok-Meng Lee, USA	
Aircraft Maneuve	r Regulation: A Receding Horizon Backstepping				Modelling and Control of a 2-DOF Planar Parallel M Semiconductor Packa	anipulator for
G. Notarstefano, I	R. <i>Frezza,</i> Univ. di Padova, Italy				J. W. F. Cheung, ASM Assembly Automation Ltd. & U.	. of Hong Kong
Coordinated flight is	a nonholonomic constraint that implies no sideslip of an aircraft	t. The	<u></u>		Y. S. Hung, U. of Hong Ko	ng, Hong Kong
equations of motion	in coordinated flight are kinematically reducible. This property	acible	1:00	Ar	novel direct-drive planar parallel manipulator for semiconductor pack	aging systems is
to write a lateral con	troller for the transverse dynamics independent of velocity. Ass	uming	<u> </u>	pre d	esented. High precision kinematics design, significant reduction on n Iriving power of the actuators over traditional XY motion stages are th	noving mass and ne benefits of the
coordinated flight, th	e maneuver regulator consists of a model predictive controller b	based	1:18	prop	posed manipulator. The mathematical model is obtained using Newt	on-Euler method
satisfied, the kinema	itic control action is back-stepped into dynamics to compute the))		to	and model-based control design approach is employed to design the orque controller. Experimental results demonstrate that the proposed	manipulator has
actuation of the cont	rol surfaces. The proposed control law is tested on a multi-body	y SW		signif	ficant improvements on motion performance in terms of positioning a	accuracy, settling
	on various maneuvers, including some aggressive ones.					
A MAV That Flies W. E. Green, P. Y	Like an Airplane and Hovers Like a Helicopter Oh, Drexel Univ., USA				Limit Cycles Due to Friction Forces in Flexible Join J. Soo, M. Tomizuka, Univ. of California at	t Mechanisms Berkeley, USA
Near-Earth environm	nents, such as forests, caves, tunnels, and urban structures ma	ike		-	The paper investigates the limit cycle phenomena in flexible joint me	chanisms due to
reconnaissance, sur accomplish. Micro-A	veillance and search-and-rescue missions difficult and dangero ir-Vehicles (MAVs), equipped with wireless cameras, can assist	ous to t in	11:1	mot fri	tor side Coulomb friction and load side friction with more emphasis of iction forces are studied separately as independent sources of limit of	on the latter. Two
such missions by pr	oviding real-time situational awareness. This paper describes an	n	8	instal	bility is considered as a sufficient condition for a limit cycle to appear	. Simulation and
superiority with hove	any enabling fixed-wing MAVS to supplement existing endurance ring capabilities. This secondary flight mode can also be used the	ce to	11:		experimental results are presented to	confirm analysis
avoid imminent collis	sions by quickly transitioning from cruise to hover flight. A sense	or suite	36			
angles is also descri	bed.	1011				
Exploring Search	n-And-Rescue in Near-Earth Environments for Aerial				Dynamic Model of a Compliant Link with Large Deflect	ion and Shea
Robots K. Sevcik, W. E. G	Green, P. Y. Oh, Drexel Univ., USA				CC. Lan, KM. Lee, Georgia Inst.	Deformation of Tech., USA
Homeland security r	nissions executed in near-Earth environments are often time		1	Th	ne dynamic model for links in mechanisms has often based on small	deflection theory
as bomb detection,	ensive and possibly dangerous. Aerial robots performing tasks search-and-rescue and reconnaissance could be used to conse	such erve	36-	is nec	cessary to capture the deflection caused by shear forces. A complete	e dynamic mode
resources and minin	nize risk to personnel. Flying in environments which are heavily		1	i	is presented to characterize the compliant link motion capable of larg	e deflection with
vehicles and sensor	suites operating in these environments. This paper explores the	e	:54	with	the essential geometric constraints that relate deformation and coor	dinate variables
challenges encounte	ared implementing several different sensing technologies in nea	ar-Earth are		cł	and solve them using a semi-discrete method based on the Newn	ark scheme and
presented to direct f	uture work.	arc		elemnet method. We expect that this model will serve as a basis for analyzing gene		
Dynamic Positio	ning of AUVs in Shallow Water Environment: Observ	ver		Co	compliant multi-l nceptual Design, Structural Analysis and Performance E	ink mechanisms valuation of a
S. Liu,, D. Wang,	∋sign <i>E. K. Poh, Y. Wang</i> , Nanyang Tech. U., Singapore				Novel Planar I Q. Ding, L. Sun, H. Hu, Y. Wang, Harbin Inst. d	Parallel Robot of Tech., China
This paper presents	a globally asymptotically stabilizing (GAS) output feedback con	ntroller	<u>+</u>	Т	This paper reports conceptual design and structural analysis of a nov	el planar paralle
for dynamic position	ing (DP) of Autonomous Underwater Vehicles (AUVs) operating	g in	1:54	throu	robot including parallelogram packages. The appropriate natural free	juencies of robo
displacement, vehic	e's velocity, and noise free position and rotation angle informati	ion		unou	links' and joints' flexibility is considered. And four main factors to c	Jetermine natura
which are used in th	e output feedback controller. A separation principle which holds	s for	2:12	freq	uency of the robot, payload, flexibility of joints, and cross section of l	inks and pose of
separation principle	is based on recent results of cascaded nonlinear systems and			manir	pulator confirm the simulation results. Performance evaluation experiments with	iments prove the
Lyapunov stability the	eory. The closed-loop system has been illustrated using an AU steep and the controller	IV and		robot than	t's performance under a 1D-2D fuzzy self-tuning PI controller, the se	ttling time is less ation reaches 50
A Debuet Neulin	an Controllor for Underster Vehicle Meninsleter			Imani	Invested in a fully Automated Creation and Lines 20	
Systems	ear Controller for Underwater Vehicle-Manipulator			impi	iementation of a Fully Automated Greenhouse Using SC/	LabVIEW
B. Xu, Tulane U.,	USA, S. Abe, Ritsumeikan U.; N. Sakagami, Tokai U., Ja	apan			S. Bhutada, S. Shetty, R. Malye, V. Sharma, S. Menon, R.	Ramamoorthy
S. K. Panalan, Tu			12:		VES INST. OT LECH. MUM	
In this paper, a robu vehicle- manipulator	st nonlinear controller is proposed for trajectory tracking of under systems (UVMS). The controller is non-adaptive and of sliding	erwater mode	12-	T (ne paper discusses the automation of a free-standing greenhouse u Control & Data Acquisition (SCADA) system. The end product is exp	sing Supervisory ected to aive the
type, and is designe	d based on the decentralized form of the dynamics of UVMS. It	has	-12	farm	ner or end-user a kiosk type approach. Entire greenhouse operation	will be governed
implementation. In c	mplicity, robustness, precise performance, and ease of rder to demonstrate the effectiveness of the controller. several		:30	а	and monitored through this klosk. This approach is fairly novel consid system design and the SCADA platform, NI LabVIEW 7.1. The des	iering the unified ign uses efficien
simulations using a	five degrees of freedom UVMS are conducted. The results show	w that		sen	nsing technologies enabling the controller to predict and act on situat	ions for perfectly
uncertainties about f	iler provides high performance of trajectory tracking in the prese the dynamics and hydrodynamic disturbances.	ence of		p	controlled climatic conditions. It also performs redundant and time d rogrammed, thus saving manpower. It uses scientific agricultural me	thods to obtain

	Design of Parallel Mechanisms II			Identification and Estimation in Mechatronics		
TB3	Big Sur 3 (11:00-12:30)			Windjammer 1 (11:00-12:30)		
	Max Meng, Hong Kong	CH/	AIR	Bin Yao, USA		
PohoTonis: Dosi	an Dynamic Modeling and Broliminary Control	0-0-0	HAI	R Wel wel wang, Canada	ninulators for	
L. Angel, J. M. Se Madrid, Spain	bastian, R. Saltaren, R. Aracil, R. Gutierrez, Univ. Pol. de	e		Model-Based Feedfor H. Abdellatif, B. Heimann, C. Holz, Univ. of Hann	invard Control	
The accomplishment of robotic tasks involving dynamical environments requires lightweight yet stiff structures, actuators allowing for high acceleration and high speed, fast sensor signal processing, and sophisticated control schemes which take into account the highly nonlinear robot dynamics. As a tool for the investigation of these issues we present the RoboTenis system. This system proposes the design and construction of a high-speed parallel robot that will perform complex tasks aided by a vision system. As a specialized application to demonstrate its speed and versatility we intend the robot to play table tennis. In this paper we present the design of the parallel robot, the dynamic modeling and the first control experiences. The results prove that the system is able of performing the desired		11:00-11:18	Model-based control of robotic manipulators necessitates accurate models. This issue is especially important for complex and coupled parallel manipulators. This paper provides a methodology that permits model parameters in a time-inexpensive manner. Due to the limi bounded and periodic excitation trajectory is advantageous. Only o procedure is necessary for accurate identification, which is carried ou Markov estimator. Rigid-body and friction models are identified an feedforward control. The success, accuracy and robustness of the propo are substantiated with a multitude of exp	ly parameterized mechanisms like the estimation of ted workspace, a ne measurement t by means of the nd integrated in a sed methodology erimental results.		
Parameter Synth Requirements	esis for Parallel Kinematic Machines from Given Pro	cess		Non-Linear Pressure Observer Design for Pneum N. Gulati, E. J. Barth, Vande	atic Actuators rbilt Univ., USA	
A. Pott, U. of Duisburg-Essen, T. Boye, U. of Stuttgart M. Hiller, U. of Duisburg-Essen, Germany Parallel kinematic machines are complex systems which kinematic properties vary in the workspace. Normally the machine's task implies requirements e.g. size of the workspace and dexterity that must be taken into account for the design of the machine. We demonstrate geometrical parameter synthesis based on interval analysis for the parallel kinematic machine with constant leg length Linapod. The proposed algorithm enables us to determine all parameter sets that fulfill given process requirements like size of the orientation workspace and a given upper bound on the kinematic dexterity. The use of interval analysis guarantees the validity of the results and is robust against numerical		11:18-11:36	Robust precision dynamic control of pneumatic systems requires motechniques. These controllers require full state knowledge of the system two of the states, two expensive pressure sensors per axis are required makes the system economically non-competitive with most electron actuation. This paper presents the development of two Lyapunov observers for the pneumatic actuator system. The first method show based stable pressure observer can be developed with the state equire method incorporates the output error to control the convergence pressures. Simulation and experimental results are presented that validate effectiveness of the program.	del-based control n. For measuring iired and hence ii nagnetic types of <i>y</i> -based pressure 's that an energy- iations. The other e of the observed demonstrate and posed observers.		
Mechatronic Des M. Petko, G. Karp	ign of a Parallel Manipulator for Milling iel, AGH Univ. of Science and Tech., Poland			Automated Modelling of Cartridge Valve S. Liu, B. Yao, Pure	Flow Mapping due Univ., USA	
The paper presents the process of development of a parallel manipulators for milling, and justifies why mechatronic approach can lead to successes. The resulting construction is a novel, versatile 3-RRPRR (Revolute-Revolute-Prismatic-Revolute-Revolute-points), fully-parallel manipulator with three translational degrees of freedom, characterizing in comparatively high payload capacity, large workspace and high attainable accelerations. The construction of the manipulator is shown, with analysis of its kinematics and dynamics. An initial controller for identification purposes is proposed, simulated and experimentally investigated. Finally, the conclusions are presented.		11:36-11:54	Proportional poppet-type cartridge valves are the key elements of th programmable valves. Unlike costly conventional four-way valves, the ca simple structure and is easy to manufacture, but its complicated mai makes the controller design and implementation rather difficult. This pape automated modelling of the cartridge valve flow mapping without using a and removing the valves from the system. The estimation of the flow map the pressure dynamics in the hydraulic cylinder with consideration c parameters like effective bulk modulus of fluid. Experimental result illustrate the effectiveness and practicality of the proposed novel autom	te energy saving rtridge valve has thematical model ar focuses on the iny extra sensors ping is based on of some unknown s are obtained to mated modelling method.		
Design of a 6-DC Architecture D. Chao, G. Zong	F Compliant Manipulator Based on Serial-Parallel			Towards an Ubiquitous Wireless Digital Writing Instrumen Motion Sensir G. Zhang, G. Shi, Y. Luo, H. Wong, W. J. Li, F	t Using MEMS 1g Technology ² . H. W. Leong,	
A novel dexterous 6 presented in this pa RRR mechanism. In optimal design of the lower stage is under shows that the lower resolution of 50nm, optics aligner.	DOF manipulator serially connected by two compliant parallel si per. The upper stage is a 3-RPS mechanism and the lower one virtue of the method of the physical model of the solution space e lower stage has been accomplished. Then, the calibration of th going by means of an ultra-precision vision system. The experir r stage possesses workspace of 120µm × 130µm × 18mrad wit 50nm, 18arcsec, respectively. This manipulator is to be used as	tages is is a 3- e, he ment th the s a fiber	11:54-12:12	Chinese U. of Hong Kong, <i>M. Y. Wong</i> , DAKA Developme MEMS accelerometers and gyros is developed for real-time recognitio motions, with appropriate filtering and transformation algorithms, b Writing System that can be used to record handwriting on any surface. T our µIMU is less than 25*70*20 mm, including the micro sensors, proces interface. We present our progress on using this µIMU based or algorithm, which has allowed the system to successfully transform h recognizable and recordable English characters. Our goal is to implement digital hand-writing instrument with PC and mobile of	ent, Hong Kong n of human hand becomes a Digital he overall size of sor, and wireless n Kalman filtering nand motions into it this system to a devices interface.	
Robotic Pet Bas Q. Ling, Chinese M. Tao, Chinese	ed Interactive Home Healthcare System Acad. of Sciences, <i>M. Meng,</i> Chinese Univ. of Hong Kon Acad. of Science, China	ıg,		Genetic Algorithm Based System Identification and I Optimum Ad D. Pereira, J. Pinto, Federal Univ. of Mato Gross	PID Tuning for aptive Control o do Sul, Brazil	
Using entertaining rr paper. The structure presented. Hybrid er behavior-based com robot with the ability ability of accomplish that the robotic pet r transmission and he robustness.	bobic pets in home healthcare monitoring system is featured in , features and control system of this home healthcare system a volutionary control architecture with the virtues of both Al-based trol architecture is proposed. The designed architecture endows of learning, adaptation, quick reactive speed and rationality, an ing given tasks. The design of home healthcare system makes eliably accomplishes the vital physiological data collection, data althcare tasks with strong situation adaptability, low costs and h	this ire I and is the id the sure a high	12:12-12:30	In this paper the Genetic Algorithm optimization technique, is succe system identification and PID tuning for optimum adaptive control approach, two independent Genetic Algorithms were used sequentiall used for system model identification and the second one for PID contro the plant model was identified the parameters found are used to tune th The performance of the system for a first order plant whose dynam changes in time are presented. The results show the cascaded Ge system capability to adapt the controller to dynamic plant characteristics to increase system performance	ssfully applied in . In the proposed y. The first one is oller tuning. Once ne PID controller. tic characteristics enetic Algorithms changes in order the and reliability.	

	Fuzzy Control Applications			
TR5	Windjammer 2-3 (11:00—12:30)			MEMO
	Jizhong Xiao, USA CHAIR			
	Luc Gaudiller, France	CO-CHAI	R	
Improvement of F. Matichard, L. G Appliquées, Franc	Potential Energy Exchange Using Nonlinear Cont Gaudiller, INSA de Lyon - Inst. National des Sciences Ce	rol		
This study proposes between a structure actions for which en the structure. A fuzz energy control is pro transient responses mode of the structur method is applied to	s a nonlinear control method for improving the energy excha and actuators. This paper deals with the improvement of st hulated strain energy is accumulated by actuators and then by modal control design aimed at improving this emulated po oposed. Energy released to the structure is then minimized a are reduced. Its efficiency is first analyzed on the control of re and a decrease of maximum control voltage is obtained. To the modal control of a smart structure actuated by a PZT c	inge iffness released to otential and a single Then the component.	11:00-11:18	
Nonlinear Appro Structures of Lin L. Gaudiller, F. Ma Appliquées, Franc	ach for Control of Mechanical Coupling Effects an nited Power atichard, INSA de Lyon - Inst. National des Sciences ce	nd Smart	1	
Smart structures are rigid body displacem on the one hand, to caused by rigid body actuators controlling control of linear or li independent nonline mono-articulated sm	e often constrained on voltage and power. Moreover, when s nents, mechanical couplings cause vibrations. The aim of th describe a control design that reduces vibrations in flexible y modes and, on the other hand, to optimize the mechanica glexible modes. The nonlinear method proposed highly imp nearized structures. The fuzzy design implemented to carry ear approaches is described after which the method is used nant structure. Simulation results show successive	subjected to is work is, structures I work of proves the out these to control a	1:18-11:36	
High Precision F Robotic Arm Bas Y. Chen, J. Zhao,	uzzy Impedance Control of Free-Form Surfaces P sed on Position Control <i>B. Wang, S. Han</i> , Jilin Univ., China	Polishing		
In this paper, a nove adjustment quantita control by adjusting characteristics of the based on the simula	I impedance control method for high precision fuzzy control tive factor is presented. This method can not only realize the impedance parameters, but also enhance the stability and o a system. We have demonstrated this strategy is feasible ar tion researches of free-form surfaces polishing robotic arm.	ller with self e real-time dynamic nd effective	11:36-11:54	
The Hybrid SOF- TY. Choi, KH S Korea	PID Controller for a MIMO Nonlinear System Seo, JH. Shin, JJ Lee, Korea Adv. Inst. of Science	and Tech.,		
The application of th multi output(MIMO) PID controller was in PID controller has lin adjust only a kinds of other parameters, di Ziegler-Nichols tunir guarantee to sure ge self-organizing-fuzzy	he hybrid self-organizing fuzzy PID(SOF-PID)controller to a nonlinear biped robot is studied in this paper. The self-organ nitially studied by H. B. Kazemian but actually his self-organ mits. The supervisory of the self-organizing-fuzzy PID control of parameters. In his study he has only tuned proportional ga ifferential and integral, were set by Ziegler-Nichols tuning m ng method is just kind of table based tuning method and the enerated parameter's fitness for current system. So in here y PID controller is introduced.	multi input nizing-fuzzy iizing-fuzzy oller can ain and ethod. re is no the hybrid	11:54-12:12	
Motion Mode Co <i>J. Xiao, S. Zhang,</i> <i>N. Xi</i> , Michigan St	ntrol in Double Inverted Pendulum System , Northeastern U., <i>J. Xiao</i> , City Coll. of City U. of New tate U., USA	/ York		
This paper presents which is based on fu inverted pendulum s proposed fuzzy com algorithm in neural r online. Experimenta	a motion mode control method for double inverted pendulu uzzy logic and neural network. After the description of the do system, a fuzzy neural controller is presented which is based posed variable and the parameters are optimized by back p network. Then motion modes of the system are defined and I Implementation and testing prove its validity.	m system buble d on the propagation adjusted	12:12-12:30	

	Space Applications I			Fixture and Grasping		
TC1	Big Sur 1 (14:00–15:30)		Ì	Big Sur 2 (14:00–15:30)	TC ₂	
	Marcello Romano, USA	CH	AIR	Ming-Yang Cheng, Taiwan		
	Gangbing Song, USA	CO-C	HA	IR		
Dynamics Analy The-Loop Dynam O. Ma, X. Diao, N	sis of a Cable-Driven Parallel Manipulator for Hardwa nic Simulation (I) ew Mexico State Univ., USA	are-In-		Analysis of Fixturing Dynamic Stabilit H. Deng, S. Melkote, Georgia Insi	y in Machining of Tech., USA	
This paper describe manipulator for a po microgravity dynam dynamics problems rigidity and vibratior cable-driven manipu	s a preliminary study of the dynamics of a 6-DOF cable-driven p tential application in a ground-based hardware-in-the-loop simul ics and contact-dynamics of spacecraft or robotic systems. Two are studied. One is the inverse dynamics problem and the other problem. The study results support the feasibility of using such plator for hardware-in-the-loop simulation of contact dynamics.	barallel lator of basic r is the a	14:00-14:18	This paper presents a systematic approach for analyzing the dynamic sta workpiece during machining. Insight into the effects of fixture-workpiece a material removal, and clamping forces on fixturing stability is obtained clamping forces on fixture-workpiece contact stiffness is also inver- stability is checked by monitoring the contact interaction between t fixture elements. A dynamic model that predicts workpiece motion su forces and a static model for contact deformation due to clamping are de the total contact motion. A simulation example is presented to illustr	ibility of a fixtured system dynamics . The influence of stigated. Fixturing he workpiece and ibjected to cutting weloped to obtain ate the approach	
Time-Optimal No. P. Sekhavat, A. F	onlinear Feedback Control for the NPSAT1 Spacecraft Jerning, I. Ross, Naval Postgraduate School, USA	't (I)		Grasping Objects with the Prototype of Index-Finger Pl Amplifier for Assisting Rheumatoid Ar	P Joint Motion thritis Patients	
NPSAT1 is a small actuators and a pito optimal sampled-da NPSAT1 in the pres rather, it is obtained each update instant shrinking horizon ar computation time. F performs well in the torques.	satellite being built at the Naval Postgraduate School. It uses ma h momentum wheel for attitude control. In this paper, a novel tim ta feedback control algorithm is introduced for closed-loop contru- sence of disturbances. The feedback law is not analytically explic by a rapid re-computation of the open-loop time-optimal control . The implementation of the proposed controller is based on a oproach and does not require any advance knowledge of the re-ground-test simulations show that the proposed control scher presence of parameter uncertainties and external disturbance	agnetic ne- ol of cit; I at me	14:18-14:36	K. Watanabe, H. Morishita, T. Mori, T. Sato, Univ. of The authors propose an exoskeletal robotic hand for assisting the rh patients physically. In this paper, we categorized the types of exoskeleta groups, based on the patients' condition or capability of movement. The a prototype of one of the groups, which amplifies the motion of inde Some verification experiments were conducted, in which three subjects pick objects and place them using the device. The results derived pr feasible to assist the patients with this type of su	of Tokyo, Japar eumatoid arthritis I devices into five n, we constructed x-finger PIP joint s were directed to ospect that it was upporting devices	
Multimodal Vibra	ation Control of a Flexible Structure Using Piezocerar	mics		Robustness of Power Grasp with Human Skin (<i>T. Hiruta, S. Sugamoto, K. Kosuge</i> , Toho	Characteristics	
(1) V. Sethi, G. Song, Univ. of Houston, USA This paper presents results of multimodal vibration suppression of a smart flexible cantilever beam by using single piezoceramic actuator and a single sensor. Piezoceramics PZT (Lead Zirconate Titanate) patches are surface-bonded on the beam and perform as actuator and sensor. System identification for the dynamics of the first three modes and model reduction techniques are employed to assist in control system design. The state space model from system identification is used for state estimation and development of control algorithm. A linear pole placement controller is designed and simulated using the identified model. Experimental results demonstrate the effectiveness of multimodal active vibration control of the structure using smart materials.		14:36-14:54	Human skin has anisotropic elasticity. In this paper, we reveal that robustness of power grasp is improved by assuming human-skin-like anisotropic elasticity of fingers. First, we briefly introduce a conventional method to derive contact forces considering compliani contacts between an object and robot fingers. Then, we model human skin characteristic with anisotropic elasticity and propose an algorithm based on a linear programming method to measure robustness of a given power grasp model with a multifingered hanc with human-skin-like anisotropic elasticity. Finally, calculation of a stability region for a planar power grasp model shows that the robustness of the power grasp is improved by assuming human-skin-like anisotropic elasticity at contact points			
Control of a Leg Evolved Dynami A. <i>Bursi, M. Di Pe</i> Pol. di Milano, Ita	ged Rover for Planetary Exploration Using Embedded cal Recurrent Artificial Neural Networks (I) erna, M. Massari, G. Sangiovanni, F. Bernelli-Zazzera, ly	d and	1	A Hybrid System Approach to Kinematic Modelling of Mutlifi J. Xu, Hong Kong U. of Science and Tech., G Z. Li, Hong Kong U. of Science and Te	ngered Hand's Finger Gaits J. Liu, RPI, USA ch., Hong Kong	
This paper presents planetary exploratio artificial neural netw approach allows rea global problem into neural network reali The neural-controlle tolerates a certain a	a new method for realizing the control system of a legged rover n. The controller is realized using a class of dynamical recurrent torks called CTRNN, and evolutionary algorithms. The proposed alizing the design of the controller in a modular way, decomposin a collection of low-level tasks to be reached. The embodied dyna zed has been tested on a virtual legged hexapod called N.E.Me. r has a high degree of robustness facing sensors noises and err mount of degradation, but above all it allows the robot performin	r for t Ing the amical Sys. rors, ng	1:54—15:12	Large-scale motion of the grasped object is one of the tasks,which is im dextrous manipulation of multifingered robotic hand. When the large-sca be accomplished only by rolling and sliding of the finger, finger gaiting used. In this paper, we propose a joint space representation of grasps, w stable grasp by a set of joints values with several grasping constraints describing the regrasping process with the joint space represer kinematic model of finger gaiting as a hybrid automaton. In this m constraints are involved. Finally, Simulation results verify the validity a	rolved in practica ile motion can noi , or regrasping, is hich represents a . Using primitives ttation, we build a odel, all grasping nd efficiency of	
Realization and Exploration (I) M. Massari, P. Ma Pol. di Milano, Ita	Control of a Prototype of Legged Rover for Planetary assioni, S. Nebuloni, G. Sangiovanni, F. Bernelli-Zazzera,	ļ,		Manipulation of Deformable Linear Objects with Knot Invari T. Matsuno, D. Tamaki, F. Arai, T. Fukuda, Nago	ant to Classify Condition ya Univ., Japar	
This paper concern exploration. The rot artificial neural netw and a brief descripti ends with the result neural network base	s the developement of a prototype of a six-legged robot for space bot is a testbed for a new control technique based on a peculiar k rork. Accounts are given on the shape and structure of the hexap on of its electronic circuit and computer interface is shown. The s of the tests on two different control systems (a standard one ar ad) and the comparison between the properties of the two metho	e kind of pod, paper nd the ods.	15:12-15:30	In this paper, we propose a description method of conditions of rope u model and knot theory. And, we also propose a recognition method to ob of rope from visual information obtained by the CCD cameras when a rol rope. There are many deformable objects such as papers, clothes, and r of a person. Robots need skills to manipulate deformable objects, in or parts in such space. However, it is difficult for robots to manipulate de well and possibility of failure to operate deformable objects cannot be theoretical framework of error recovery for deformable object manipulate error recovery system, it is necessary to abstract profitable data from de which are hyper detrace of free	sing a topologica bitain the structure bot manipulates a opes in life space der to take active eformable objects denied. Therefore on is required. Fon leformable object dom structures	

	Design Optimization in Mechatronics				Sensors and Sensing Systems	
TC3	Big Sur 3 (14:00-15:30)		ľ		Windjammer 1 (14:00—15:30)	TC4
105	Marcelo H. Ang, Singapore	CHA	AIR		Yoshikazu Mori, Japan	IUT
	Reinhard Guserle, Germany	CO-C	HA	IR	Ruggero Frezza, Italy	
Parametric Optin Transmission	nal Design of a Pinion-Rack Based Continuously Vari	iable			IR Sensor Array for a <i>H. Park, S. Baek, S. Lee,</i> Hon	a Mobile Robo t gik Univ., Korea
<i>J. Alvarez-Gallegos, C. A. Cruz-Villar</i> , CINVESTAV-IPN <i>EA. Portilla-Flores</i> , Univ. Autonoma de Tlaxcala, Mexico An alternative method for mechatronic systems concurrent design using the dynamic optimization framework is presented in this paper. A dynamic optimization problem (DOP) is proposed to obtain the optimal mechanical parameters values of a continuously variable transmission (CVT), where the kinematic and dynamic models are considered besides the performance criterion of the CVT mechanical ef_ciency. In order to solve the DOP, a sequential method is used to convert it into a nonlinear programming (NLP) problem. A SQP algorithm is used to solve the NLP problem.		14:00-14:18	This paper describes a new sensor system for improving the accuracy of the range information using multiple IR range sensors. Environment and obstacle sensing is the key issue for mobile robot localization and navigation. Laser scanners cover 180ć; and accurate but are too expensive. Radial range sensors such as laser scanner, IR scanne and Ultrasonic range sensor ring have blind spots so that small obstacle not close to the sensor may be easily missed. It is necessary to develop a low cost sensor system which covers 360 ^c and with small blind spots. A sensor system with 12 IR range sensors (each rotates ±37.8 ^c for overlapping area to reduce the blind spot) is designed and implemented			
Optimal Design (A. Mirzaei, M. Mo	of a Hybrid Controller for Antilock Braking Systems allem, D. B. Mirzaeian, Isfahan Univ., Iran				Active Sensing Based Mobile Rot J. Bae, S. Lee, Hon	ot Exploration gik Univ., Korea
Antilock braking sys and to improve vehi In this paper, an opi braking systems. Th so that maximum wi components of fuzz optimization techniq convergence near of performance of the	tems (ABS) have been developed to reduce tendency of wheel I cle control during sudden braking especially on slippery road su imized hybrid controller using a fuzzy system is proposed for an ne objective function is defined to maintain wheel slip to a desired heel tractive force and maximum vehicle deceleration are obtain y system are optimized using a genetic algorithm and error base ue. The error based global optimization approach is used for fas ptimum point. Simulation results show fast convergence and goo controller for different road conditions.	lock rfaces. titilock d level ed. All ed st od	14:18-14:36	Ar the p the grad grid	n algorithm has been developed for robots which explore the enviror ohysical properties (temperature in this paper). While the robot is mo- temperature and registers the value in the corresponding grid cell. maximum or minimum, simple gradient following is used. Robus dient using perturbation/correlation is described. By introducing the d cell, and considering the probability distribution, the robot doesn't h grid cells in the environment still providing fast and	iment to measure ving, it measures To reach the loca t estimation of the probability of each vave to visit all the l efficient sensing
A New Approach Quotient (MDQ)	for Mechatronic System Design: Mechatronic Design	n			Cooperative Multi-Target Surveillance Using a Muta	tional Analysis Approact
R. X. Lu, Nat'l U.	of S'pore, Singapore, C. de Silva, U. of British Columbia,			ĺ	A. Goradia, N. Xi, M. Prokos, Z. Cen, M. Mutka, Michigan S	tate Univ., USA
 R. X. Lu, Nat'l U. of S'pore, Singapore, C. de Silva, U. of British Columbia, Canada, M. H. Ang, A. N. Poo, National U. of S'pore H. Corporaal, Eindhoven Univ. of Tech., Netherlands In mechatronic system design, many issues are very complicated and are under multiple design criteria. In this paper a general and integrated approach is presented for the design of complex electro-mechanical systems. The formal approach is based on the concept of Mechatronic Design Quotient (MDQ). Five steps are presented to establish and optimize an MDQ index. The approach is illustrated with respect to the engineering decision making processes incorporated in manipulator design. Various design aspects of the complex problem including the number of degrees of freedom (DOF) 		ultiple design ept of imize e	14:36-14:54	The bed will be o acc for a	task of tracking multiple targets using a networked surveillance syst cause:(1) multiple targets need to be monitored and tracked continu not leave the view of at least one of the sensors; (2) the view of the ptimized so that at a given time targets are observed with a discern feature identification; (3) it is important to devise stable con complishing the surveillance task. This paper presents a mutational a r shape based control to model a multi-target surveillance scenario. In optimal multiple sensor task planning algorithms based on the tar- priority, to achieve optimal coverage of multiple targets using a sur	em is challenging ously so that they sensors needs to able resolution fo itrol algorithms fo analysis approach It further presents get resolution and veillance network
Optimization Alt Reluctance Drive D. Gerling, A. Sci	ernatives of Mechatronic Systems Containing Switch es nramm, Univ. of Federal Defense Munich, Germany	ed			Position Estimation for a Mobile Robot Using a Novel A Cantilever-Type Accelerometer with Imper Y. Mori, Ibaraki Univ., M. Uchiyama, Tokyo Me	ccelerometer dance Detector etropolitan Univ
In mechatronic syst particular mechanic possibilities are inve drive (SRD), energi: generate a linear ou optimization.	ems there are several different kinds of optimization alternatives , electronic and control means. In this paper, these different sstigated and compared for a special example: A switched reluct zed from a weak supply net, is coupled to an internal spindle-gea tput force. Special attention is paid to cost-effective means of	s, in tance ar to	14:54-15:12	In the	A. Goto, AMITEQ, nis paper, we present a method of position estimation for a mobile ro accelerometer. For the purpose of estimating the accurate posi developed a new accelerometer and propose a method. The imp "Inductcoder", provides digital data. The moving module consists cantilever, which causes no drift. The performance of these devic xperimentally. We propose an idea to reduce errors and to improve using a piezo actuator. In addition, in order to prevent the estin increasing, a stop cond	Co., Ltd., Japar bot using a nove ition of a robot, we bedance detector of a weight and a ses was evaluated the reproducibility nation errors from ition is discussed
Application of M Mechatronic Sys R. Guserle, M. F.	ultidisciplinary Simulation and Optimization of stems in the Design Process Zaeh, Tech. Univ. München, Germany				Model Based GPS/INS Integration for High Accurac Applications: Calibration of a Swarm of I S. Zilli, R. Frezza, A. Beghi, Univ.	y Land Vehicle MEMS Sensors di Padova, Italy
Dynamic and therm tools. Therefore, dy feed drive systems mechatronic system fast and efficient mo customized FE- and Based on a FEA-ex was also conducted have been verified. estimated	al properties crucially influence the attainable accuracy of machinamic loads and thermal influences on structural components are important factors to be considered in the design process of is. This publication describes the integration of CAx-tools to enally deling and optimization of machine tools. Through the developm IMBS-Analyses, the dynamic state of components is monitored. tension, an analysis of thermal influences on machine tool move in computational models. Using experimental research the mod Through the developed method, an estimation of the TCP-shift of the tool.	ine nd on ble a ment of ements dels can be	15:12-15:30	base i mus the p in n	We consider the problem of reconstructing the trajectory of a mobile ed on a mid-size van. Mobile mapping requires, of course, high accu- is achieved by resorting to costly GPS/INS integrated systems. The t guarantee high performance when the GPS signal is occluded. Th ossibility of using, in alternative, a swarm of low cost MEMS acceler andom positions and orientations. In order to be able to reconstruct relative position and orientation of each accelerometer should be propose a method for an automatic calibration of the cloud of MEM algorithm for trajectory reconstruction by GPS and MEMS acceleror	mapping system aracy. Usually this INS, in particular is paper concerns ometers mounted the trajectory, the known. Here, we IS sensors and ar meters integration

	Learning Control in Mechatronics			
TC5	Windjammer 2-3 (14:00—15:30)			MEMO
105	Nader Sadegh, USA	CHAIR		
	Takayuki Nakamura, Japan	CO-CHA	IR	
Command-Based Iterative Learning Control for Compensation of Servo Lag and Friction Effects <i>MS. Tsai, MT. Lin, HT. Yau,</i> National Chung Cheng Univ., Taiwan A command-based iterative learning control (ILC) architecture is proposed to compensate for friction effect and to reduce tracking error caused by servo lag. The proposed methodology utilizes the learning algorithm which updates the input commands based on the tracking errors from the previous machining process. It is shown that, for tracking a circle, the quadrant protrusions caused by friction can be reduced substantially by the updated command containing a concave shape located at the crossing of the zero velocity. Finally, analytical simulation and experimental results demonstrate that the command-based ILC algorithm can enhance the tracking performance significantly.				
High Performan. <i>T. Nakamura,</i> Y. In this paper, we pr PaLM-tree that is a We investigate the controlling an active response. The PaL correctly. Although closed-loop control pursuit eye movem We confirmed that of feedback control.	ce Control of Active Camera Head Using PaLM-T Sakata, T. Wada, H. Wu, Wakayama Univ., Japan opose a new feedback-error-learning controller enhanced I n easy-to-use function approximator developed by our rese ability of our feedback-error-learning controller by applying a camera head to pursuit a moving target with high accurac M-tree learns the inverse model in the feedback-error-learn our active camera head has unknown mechanical friction a system has a relatively large latency, our active camera he ent by our feedback-error-learning controller based on the our method could achieve high-performance control over th	ree by the parch group. it to cy and high ning scheme and our ead can PaLM-tree. ne tuned	14:18-14:36	
From Iterative Learning Control to Robust Repetitive Learning Control Y. Wang, D. Wang, B. Zhang, Nanyang Tech. U., Singapore Y. Ye, Zhejiang Univ. of Finance and Econ., China In this paper, a Robust Repetitive Learning Control (RRLC) scheme is proposed based on the frequency domain ILC design methodologies. A linear phase lead is introduced in the repetitive module to compensate the phase lag and widen the cutoff frequency of Q filter. The periodic disturbance rejection performance of system is improved. The robustness stability and performance of proposed scheme is analyzed and synthesis method are proposed to achieve overall system robust performance. The simulation results of active vibration control of Hexapod show that the proposed RRLC scheme can reject periodic disturbances significantly.				
Control of Discr P. Opdenbosch, I Online learning stat improvement to a m of the desired state method splits the cr online estimation of matrix. A neural nei adjustment of the n matrix and the Com to achieve the over	ete-Time Systems Via Online Learning and Estim N. Sadegh, Georgia Inst. of Tech., USA the trajectory control for discrete-time systems is considered nethod previously developed that learns the control input as s for state trajectory tracking control is investigated. The im portrol input into a nominal map and a learned adjustment in control parameters such as the system's Jacobian and Cc twork structure called the Nodal Link Perceptron Network learned trollability matrix are estimated online via a modified Broyde all control input.	herein. An s a function proved n addition to ontrollability earns the ucobian en method	14:54-15:12	
Learning Distrib A. H. Elahibakhsi Ryerson U., Cana Learning distributed main focus of this p convex objects by r information about th the group learns gra assignment algorith grasping different o objects.	uted Grasp in Presence of Redundant Agents h, M. Nili Ahmadabadi, U. of Tehran, Iran, F. Janabi- ada, B. Nadjar Araabi, U. of Tehran, Iran d object grasp by a group of robots with redundant member aper. We tackle the problem of learning form closure grasp multiple and redundant non-communicating robots without a he shape of objects. Agents' states and actions are designed asping different objects using Q-learning method and a cre im based on knowledge evaluation. It is shown that the tea bjects and can be extended for distributed grasp of deform	Sharifi, rs is the o for planar any ed such that dit m learns able	15:12-15:30	

	Space Applications II			Flexible Manipulate	ors and Structures	
TD1	Big Sur 1 (15:45–17:15)			Big S	ur 2 (15:45—17:15)	TD2
	Marcello Romano, USA	Marcello Romano, USA CHA		Kok-Meng Lee, USA		IDL
	Michčle R Lavagna, Italy	<u>CO-C</u>	HΑ	R Yan-Ru Hu, Canada		
Optimal Path Pla Artificial Vision S M. Massari, E. Ce	nning for Planetary Exploration Rovers Based on System for Environment Reconstruction (I) riani, L. Rigolin, F. Bernelli-Zazzera, Pol. di Milano, Italy			Shape Estimation of Inflatable Spa F. Peng, YR. Hu, A	ace Structures Using N . Ng, Canadian Space A	Jeural Network
In this paper an optimal path planning algorithm for rover navigation is presented. The algorithm is based on an artificial vision system which reconstructs the digital elevation map of the environment through the use of two stereo cameras. On the basis of this digital elevation map the optimal path is generated with a simulated annealing approach. The direct use of the information in the digital elevation map allows to design a detailed path which takes care of each detected feature of the environment and of the cinematic limitation of the rover.		15:45-16:03	achieve satisfactory performance. The a advantages in solving this problem. One o space is how to establish a model that environment and boundary tensions. This estimate the shape of inflatable s environment information and control tension showed the proposed scheme gave very	active shape control technic lifficulty to realize an active reflects the structure shap paper proposes a neural n tructures. A neural network s into the structure shape. good estimations of the mo	space in order to ue has shown its control system in es under different etwork scheme to to is trained to map Validation studies embrane flatness.	
Space System F Approach (I) A. Brambilla, A. D	ormation Planning and Scheduling: A Distributed a Costa, A. E. Finzi, M. R. Lavagna, Pol. di Milano, Italy			An Analytical Method for Design of 0 Man CC. Lan,	Compliant Grippers wit ipulation and Assembler KM. Lee, Georgia Inst	th Macro/Micro Applications t. of Tech., USA
The paper presents a distributed approach to the planning-scheduling to be faced by a space systems formation, to accomplish specific mission goals. A multi-agent architecture is here selected to cope with flexibility, reliability and robustness requirements. Each physical unit works coordinates its own resource-activity scenario with the other units to accomplish both personal and shared activities needed to gain the required goals. To this end, distributed temporal and resource nets are solved. Specific communication protocol and negotiation strategies are proposed to cope with the distributed problem solving. Simulations run on a 3-agents scenario of rover devoted to planetary surface exploration show the validity of the proposed approach.		16:03-16:21	This paper presents a method based on Nonli analyze contact problems of a compliant grip flexural motion of its fingers. For a planar co domain of discretization by one dimension. computed more efficiently than other met method is rather generic, its use will compliant devices. We illustrate these attra	near Constrained Optimiza per that gains its dextral m impliant gripper, this formul Hence the formulation is si hods such as finite elemen facilitate design analysis a ictive features with two type macro-handling and	tion techniques to anipulation by the lation reduces the mpler and can be t analysis. As this nd optimization of es of applications; d micro-assembly.	
Game Theory an Preliminary Desi Semicooperative <i>M. R. Lavagna, A</i>	d Possibilistic Logic to Face the Space Mission gn Optimization: A Coevolutive Architecture with a Protocol (I) . Mafficini, Pol. di Milano, Italy		٢	A Mathematical Model to Describ G. Alici, U. of Wollongong, Australia Avancee, I	e Bending Mechanics (I a, <i>P. Metz</i> , Inst. Francais France, <i>G. M. Spinks</i> , U	of Polypyrrole PPy) Actuators De Mecanique of Wollongong
<i>M. R. Lavagria, A. Manicini</i> , Pol. di Milano, italy The paper presents a possible approach for a support tool for the space system preliminary design in the very early phases. The proposed method generates the inputs the team of engineers works on, to design the space system preliminary configuration. The tool, starting from some generic and qualitative mission objectives, such as the planet to be visited and the number of possible on-board instruments, generates all possible high level architectures, and, thanks to a co-evolutive multi-objective optimization, sorts the final Pareto hyper-surface solutions, according to a predefined metric. Validations and simulations, run on real data given by scenarios and preliminary study results obtained		6:21-16:39	In order to make use of conducting polymer many cutting edge applications, and more understanding and predictability in quantifyin a valid mathematical model of such actuators establish and experimentally validate actuators for use in improving their displacer between the thermal strain and the real s change to set up the mathematical model, w	actuators such as PPy actu importantly to provide enh g their performance, it is ne . With this in mind, the aim a lumped-parameter mode nent and force outputs. We strain in the PPy actuators (which is a coupled structure	Jators suitable for anced degrees of weded to establish of this study is to I of strip-type PPy draw an analogy due to the volume al/thermal model	
A Visual Servoin M. Attolico, O. Ca Milano, Italy	g Control System for Lightweight Robotic Manipulato rgnel, R. Cazzoli, A. Davighi, F. Bernelli-Zazzera, Pol. di	or (I)		M J. H. Baek, J. C. Kim, S.	odeling on a Gimbal w C. Choo, NEX1 Future	ith an Antenna Co. Ltd., Korea
Traditional spacecraft w lighter spacecraft w important to conside and its attitude and realize a visual-serv material arm manip experimental tests of simulation set-up re	If structures were rigid, but there is now an increasing trend tow nose structures and appendages are flexible. It is thus more and er the interaction between the structural elements of the spacecra position control systems. The aim of this research program is to oing control system for a couple of two aluminum and composite ulators, innovative because of the very high flexibility. Some f tracking, to validate the system, are presented on a micro-grav alized for this project.	vards I more aft e vity	16:39-16:57	A model of an azimuth driving servo system was derived in this work. The validity of the m the model with experimental results. Whe antenna, the antenna should be considered magnitude of the backlash that results ir flexible antenna is smaller than the effect of system with a stiff antenna. When there is bandwidth, the derived model enables the	with a flexible antenna in odel was verified by compa n modeling the dynamics o as a flexible body. The effe extending the bandwidth i reducing the magnitude of a need to reduce the weig design of a tracking syster	a tracking system ring the results of f a gimbal with an ect of reducing the n a system with a the backlash in a ht and extend the n to be optimized.
On-The-Ground Navigation Using	Experiments of Autonomous Spacecraft Proximity- g Computer Vision and Jet Actuators (I)			Development and Analysis of a S YC. Lin, J.	nake Robot with Flexik J. Chou, National Taiwa	le Connectors In Univ., Taiwan
<i>M. Romano</i> , US N This paper presents spacecraft docking, test-bed has been d for validating analyti The test-bed consis the weightlessness used to determine the presents an overall results of autonomo	taval Postgraduate School, USA the status of the research on autonomous proximity-navigation which is on-going at the Space Robotics Laboratory of the NPS. esigned and is in the advance integration phase, which can be u cal and numerical results regarding dynamic models and control ts of two spacecraft models floating on a flat surface to simulate of the orbital flight. A custom-developed Vision Navigation Senso ne relative position and orientation of the two spacecraft. This pa description of the test-bed and reports the preliminary experimer us navigation of the chaser-spacecraft in the proximity of the targ	and . A used I laws. in 2D or is aper ntal get.	16:57-17:15	In this study, a snake robot with flexible co developed and an optimal velocity pl constraints of path, kinematics and the d modules which are connected by flexib stepper motors and controlled in a microcontrollers. The flexible connectors snake-like in its movement. A properly c accurately and smoothly. Furthermore, i amount of time without sliding or losing steps i	nnectors and distributed co anning approach was inves ynamics of the robot. The r le connectors. Each modul differential way for its direct make the robot's motion sr lesigned robot should track t would arrive at its destina if the optimal velocity plann	ontrol system was stigated under the obot includes five e is driven by two tion and speed by noother and more the planned path tion in a minimum ed by the study is applied.

	Computational Models and Methods			Magnetic Bearings		
TD3	Big Sur 3 (15:45-17:15)			Windjammer 1 (15:45-17:15)	TD4	
IDU	Yi Su, Singapore	CH	AIR	Eric Maslen, USA		
On Deal Time O	Ming-Yang Cheng, Taiwan	CO-C	CHA	IR Dong-Chul Han, Korea	sist Device (I	
MY. Cheng, C In contour following errors. The common the real-time contou there is a lack of eff overcome this diffic Based on the estim motion control sche following task. Expe estimation algorithm performances.	<i>C. Lee</i> , National Cheng Kung Univ., Taiwan applications, one of the main concerns is how to reduce contou in approach to this problem is to design the contour controller ba ur error information. However, for the free-form contour following rective algorithms for calculating contour errors in real time. To ulty, this study proposed a real time contour error estimation alg ated contour error obtained from the proposed algorithm, an inte me is employed to improve the machining accuracy for a contour errimental results indicate that both the proposed contour error in and the integrated motion control scheme exhibit satisfactory	ur ased on g tasks, gorithm. egrated ur	15:45-16:03	M. D. Noh, Chungnam National U., Korea, J. F. Antaki, Carn M. Ricci, J. Gardiner, E. Prem, LaunchPe H. S. Borovetz, U. of Pittsburgh, B. Paden, U. of California Santa In this paper, we describe a design process for a pediatric ventricu (PVAD). The central part of the device is a magnetically levitated rota creates a pressure rise (~100mmHg) at a required flow rate (~0.5L/ infants and small children. We have considered several different pun which an axial mixedflow pump configuration was chosen for further de pump impeller is supported by two radial permanentmagnet passive beau to the radial suspension, the axial motion of the impeller is actively c voicecoil actuator. A toroidallywound motor dri	Inegie Mellon U. oint Tech. LLC Barbara, USA Jar assist device iting pump which /min) suitable for mp topologies, o evelopment. The rings. In contras pontrolled using a ives the pump	
Emotional Mech J. Baker, Baker A Megapixel cameras together with satisfa capabilities, yet we the building blocks	atronicsA Concept Whose Time Will Come (I) daptive Optics, USA and a plethora of other high bandwidth multi-sensory devices e actory data I/O concurrent with inexpensive gigaflop processing cannot tackle some of the most basic problems of automation. J of robotics technology improves almost daily. What place, if any	exist And, /, do	16:03 -	A Q-Value Measurement for Damping Evaluation o O. Matsushita, F. Hiroyuki, I. Makoto, National I S. Muneharu, National Inst. of Advanced Industrial Science & The sensitivity function of feedback control systems is recommended Magnetic Bearing) equipped rotors to evaluate the stability margin. Alt rotor operation, we need to predict the resonance severity called Q-vali	If AMB Rotors Defense Acad & Tech., Japar I for AMB (Active ernatively before ue. In this paper	
the concepts of emu- hardware control? I what we already ha efforts in future hard observations and re	otion, social interaction, and possibly even religion have to do w t is time for B.E.A.U.T'Y, a unification theory of automation to he ve to its full potential and to help us determine where should pu dware and algorithmic development. I present some interesting esults of such a theory now in the early stages of development.	vith elp use it our early	- 16:21	the sensitivity and the Q-value are discussed and the difference is ma obtain the Q-value from the open loop transfer function is also discusse Q-value function is numerically and experimentally demonstrated so well rotors. This obtained Q-value peak agrees with exact values calculated and/or measured by the half pow	Ide clear. How to Id. Our proposed for several AME d by eigenvalues /er point method	
Approximate Mo Using Fuzzy Sys H. Schulte, Univ.	deling of a Class of Nonlinear Mechanical Oscillator stems and Its Application to Control Design Kassel, Germany	S		Effects of Actuator Dynamics in Active Control of Surge of Thrust Bearing D. Sanadgol, E. Maslen, Univ. of	with Magnetic g Actuation (I) f Virginia, USA	
<i>H. Schulte</i> , Univ. Kassel, Germany An effective modeling of nonlinearities and the analysis of the influence on the closed-loop dynamics in mechatronic systems such as servo systems is often crucial for high performance applications. For this we propose an analytical method of approximate modeling of a class of nonlinear mechanical oscillators using fuzzy systems. The emphasis in this work will be on a systematic description of the construction of fuzzy systems from known nonlinear models and an error analysis as a function of model complexity. Finally, its application as a model framework for an effective gain-scheduling control design method will be discussed.		16:21-16:39	Control of surge in centrifugal compressors is accomplished by modulating the clearance of the impeller with a magnetic thrust bearing. The controller is designed with the objective that system trajectories remain on the compressor characteristic ensuring zero steady state offset of impeller and maintaining efficiency of the compressor. Special attention is paid to the dynamic effects of the actuator, which is included explicitly in the control synthesis. Results from simulations of the nonlinear model for a single stage high speer centrifugal compressor show that the compressor characteristic curve can be stabilizer with acceptable control authority and modest dynamic requirements			
Hardware-In-The Combined HVAC D. Michalek, C. C	e-Loop-Simulation of a Vehicle Climate Controller wit C and Passenger Compartment Model Sehsat, R. Trapp, Behr-Hella Thermocontrol	th a		Control Designs for Low Loss Active Magneti B. C. D. Wilson, Air F P. Tsiotras, B. Heck-Ferri, Georg	ic Bearings (I orce Res. Lab gia Tech., USA	
1. Bertram, Tech In case of the Softw for an air conditionil elements (HVAC) a HIL-Simulation is th accurate models the HVAC and the sing presented. Further hardware platform of	. Univ. Innenau, Germany vare- and Hardware-in-the-Loop-Simulation (SIL- and HIL-Simul ng controller, models of the heating, ventilation and air conditior nd the passenger compartment are necessary. A main demand e real time capability. Therefore it is a challenge to create simpl at enable a fast calculation of the wanted values. Both models, le zone passenger compartment model and their interfaces will results of both models interacting in a HIL-Simulation on a comr connected via interfaces to the climate controller will be shown.	lation) hing I for the le but the be mercial	16:39-16:57	Highly efficient electromechanical flywheel batteries (FWBs) require the active magnetic bearings (AMBs). Since the losses in the FWB, and is proportional to the square of the electromagnet flux, it is imperative to n flux (or current) customarily used in the AMB control design. This pape experimental implementation of a generalized complementary flux consi zero- and low-bias operation. Furthermore, passivity theory is used to r bias control law singularity. Experimental evidence supports this claim frequency dom	e use of low-loss n AMB itself, are ninimize the bias per illustrates the traint to allow foo remove the zeroo n from a time and nain perspective	
Research on Ap Based on the Fu X. Wang, Jiliang Z. Qing, Jiliang U	proach for Pole Beacon Determination of Logistic Sy zzy Set Theory U., Y. Zhang, Zhejiang U. of Science and Tech. niv., China	/stem	16	Speed-Dependent Tool Tip Compliance Measurement of Machine Tool Spindle Using an Active Magnetic B HJ. Ahn, JH. Kim, Seoul National U., JJ. Le JH. Kim, Seoul National U., DY. Jang, Seoul Natio	a High-Speed Bearing (AMB e, ROKAF HC nal U. of Tech	
For two master bus Benchmarking impl about system evalu by means of Fuzzy performance is set. evaluation, a set of hierarchy is reckone meaning of Benchm	inesses (distribution and sorting) in one logistics system, ementation strategy is designed, and it is key to discuss the pro ation and mark-post quantification. Thereinto, the system is eva set theory; through comparing evaluation result, a score of idea Furthermore, according to the rout of hierarchical calculating of improved fuzzy values for each operation at the bottom of syste ed against fuzzy evaluation calculating rout. Finally, it expatiate nark combined with DEA and the effect of small mark-post	oblems aluated al f fuzzy em on the	:57-17:15	In this paper, we proposed a new measuring method of the speed-du compliance of a high-speed machine tool spindle using an AMB (active ma Single sine wave current excitation is injected through the AMB, and the d force responses are measured with a CCS (cylindrical capacitano dynamometer, respectively. Then, the tool tip compliance can be estin without any phase delay by dividing the frequency response from t displacement by that from the current to the force. A flexure test rig was	ependent tool tip agnetic bearing) lisplacement and ce sensor) and a mated accurately the current to the s designed to	

	Mechatronics in Manufacturing Processes	5		
	Windjammer 2-3 (15:45—17:15)			MEMO
	Hui Zhang, USA	CHAIR	{	
	Michael Bailey-Van Kuren, USA	CO-CHA	IR	
An Intelligent Di M. Bailey-Van Ku	sassembly Assistant for Man-Machine Demanufa ren, J. Soltani, Miami Univ., USA	acturing (I)		
In order to handle the complexity of demanufacturing operations, a combined man- machine system is proposed that incorporates projector-vision technology. An intelligent disassembly assistant has been developed to provide a flexible and efficient method for facilitating man-machine demanufacturing. The assistant is comprised of a set of software modules that are processed in a distributed computing environment. Hardware and software components of the intelligent assistant are identified. The assistant determines the base elements of the structure, checks for stability, and then determines a disassembly sequence. A projector-vision system provides information to a human operator and detects operations performed on the product, adapting to unexpected human operator behavior.			15:45-16:03	
A Measurement Error of a Miniat JH. Lee, Y. Liu,	System Based on Capacitance Sensors for Geor urized Machine Tool SH. Kweon, SH. Yang, YS. Kim, Kyungpook Na	metric at'l U.,		
Korea		·	1	
Miniaturized machir miniature componen dissipation and no I geometric errors of compensated. In thi capacitance sensor two straightness, ro machining tool. An	te tool has been presented as a promising technique for m nts due to its advantages such as miniaturized error source mitation of the materials. To achieve submicron machining a miniaturized machine tool should be accurately identified s paper, a novel multi-degree-of-freedom measuring syste s and a sensing target is proposed for simultaneous meas II, yaw and pitch error motions along one moving axis of a error estimation algorithm is developed for calculation	achining es, less heat g accuracy, d and m with five urement of miniaturized	6:03-16:21	
Intelligent Manip C. Wögerer, G. N	ulation of Non-Rigid Parts Parts in Industry App ittmann, P. Tatzer, ARC Seibersdorf Res. GmbH, A	lications ustria		
The problems by m incidental and well I almost very complic mounting processes reason that industria and so low producti develop particularly material and to ada	anipulation of non rigid and flabby, ductile and adhesive pa known challenge in industrial automation practice. These p ated in each case. Nowadays many assembling, handling s of such products were still done by manual activities. This al productions move from central Europe to countries with on costs. For an efficient handling of theses parts it is neck intelligent and convenient Interfaces form the handling de ot it especially to the product in each application.	arts is an roblems are and s is often the low labour essary to vice to the	16:21-16:39	
Machining with I Machining Perfo H. Zhang, J. War Z. Pan, H. Cui, Z. This paper presents performance with flk industrial robots is s productivity. The pro- modeling, real-time rate for efficiency. E surface accuracy ca robots for machining	Flexible Manipulator: Toward Improving Robotic rmance g, G. Zhang, Z. Gan, ABB, Inc. Zhu, Stevens Inst. of Tech., USA the critical issues and methodologies to improve robotic r exile industrial robots. Compared with CNC machines, the ignificantly lower, resulting in unacceptable quality and low oblem is treated with a novel methodology that consists of deformation compensation for quality and controlled mate ixperimental results show that higher productivity as well a in be achieved, indicating a promising and practical use of g applications that is not possible at present.	nachining stiffness of ver stiffness rial removal s better industrial	16:39-16:57	
Intelligent Dual- YY. Chen, JC.	Speed Design for Face-Up Chemical Mechanical Lin, National Taiwan Univ., Taiwan	Polishing		
Chemical Mechanic size of the IC proce decreasing feature uniformity of the pro- the planarization pro- by the face-up desig cost. In this paper, a up CMP design. The optimization can sig	al Polishing (CMP) has become increasingly important as ssing stepping into under 0.25 ?m and the range of nanom size and the increasing complexity of circuit layouts manda cessing surfaces in multi-layer integrated circuits. To furth bcess, the traditional face-down CMP configuration is bein of the source of the source of the source of the source of the for its local planarity, small form factor, and economy in an intelligent dual-speed polishing procedure is proposed f e integration of two different polishing speeds with parame nificantly reduce the non-uniformity of the wafer surface	the feature neters. The ate the er improve g replaced material or the face- ter	16:57-17:15	

			-					
	Multi-Robot System				Rehabilitation Robots			
WΔ1	Big Sur 1 (09:30–10:42)			Big Sur 2 (09:30-10:42			WΔ2	
	Warren Dixon, USA	CH	AIR		Rajiv Dubey, USA			
Kasudadaa Daa	Kazuhiro Kosuge, Japan	CO-C	CHA	IR	William Singhose, USA	ted Debetie Armer Archiele	Fuchaetics and	
Knowledge Base K. Matsuda, H. Is	hihara, Kagawa Univ., Japan				wneeicnair-woun	ted Robotic Arms: Analysis,	Development	
In this paper, we ha	ve discussed on the effect of the knowledge sharing for the mu	Itiple	0	F	R. Alqasemi, E. McCaffrey, K	. Edwards, R. Dubey, U. of So	uth Florida, USA	
days, the broad bandwidth telecommunication method has been brought into the world of robotics. This has enabled the mobile robots to perform advanced communication. This is not only for master's or administrator's command use but for the exchange of the knowledge obtained from the operation. This knowledge sharing system will realize the evolution of the knowledge level of the entire module group and help the equalization of the intelligence level. Therefore, we propose the utilization of the knowledge sharing robot system at manufacturing scenes, and demonstrate the effects by a simplified simulation.		9:30-09:48	proc to eac obt	s paper rocuses on kinematic an robotic arms (WMRA). It addre ability to reach common positic sedure is developed for the kiner evaluate two commercial WMR, the manipulator. Design recomme ained and used to design a new This method will benefit the re- kinematic analysis of WMRA	harysis, evaluation and design of we esses the kinematics of the WMRA ons while performing activities of c matic analysis and evaluation of W As, the procedure for kinematic ar endations and insights with regard WMRA to overcome the limitation esearchers by providing a standard As that is capable of evaluating ind	with respect to its aily living (ADL). A MRAs. In an effort alysis is applied to to each device are s of these devices. lized procedure for ependent designs.		
Navigation and J. Chen, D. Daws	Control of a Wheeled Mobile Robot on, Clemson U., W. Dixon, T. Galluzzo, U. of Florida, U	JSA			н КН. S	Bed-Type Robotic System fo Seo, C. Oh, TY. Choi, JJ. Lo	er the Bedridder	
Several approaches for incorporating navigation functions into different controllers are developed in this paper for task execution by a nonholonomic system (e.g., a wheeled mobile robot) in the presence of known obstacles. The first approach is based on the use of a 3-dimensional (position and orientation) navigation function that is based on desired trajectory information. The navigation function yields a path from an initial condition inside the free configuration space of the mobile robot to a stable equilibrium point. A differentiable, oscillator-based controller is then used to enable the mobile robot to follow the path and stop at the goal position. A second approach is developed for a 2-dimensional (position-based) navigation function that is constructed using sensor.			09:48 — 10:06	An for and a the	Intelligent Bed Robot System (II their independent life in bed. The an array of pressure sensors att mattress is used to estimate the	BRS) is proposed to help the elder e IBRS is a special bed equipped ached onto the mattress. The pres pose of the patient, and an appro provided	ly and the disabled with two robot arms sure distribution or priate assistance is by the robot arms	
Cooperative Dis Bounded Curvat	tributed Robust Control of Modular Mobile Robots w ure and Velocity	/ith			Development of Straigh	t Style Transfer Equipment f	or Lower Limbs isabled "ABLE"	
X. Zhu, Y. Kim, N	I. Minor, Univ. of Utah, USA				Y. Mori, Ib	araki Univ., <i>J. Okada</i> , Tokyo N <i>K. Takavama.</i> Honda R&E	letropolitan Univ Co., Ltd., Japar	
A novel motion control system for Compliant Framed wheeled Modular Mobile Robots (CFMMR) is studied in this paper. This type of wheeled mobile robot uses rigid axles coupled by compliant frame modules to provide both full suspension and enhanced steering capability without additional hardware. The proposed control system is developed by combining a bounded curvature-based kinematic controller and a nonlinear damping dynamic controller. In particular, multiple forms of controller interaction are examined. A two-axle scout CFMMR configuration is used to evaluate the different control structures. Experimental results verify efficient motion control of posture regulation.		10:06-10:24	a relie	We developed straight style tra equipment consists of three mo extremity orthosis, and a pair o extremity orthosis is presen discussed through simulations. In daptability to the environment ar ed on telescopic crutches. In this environment is pro-	insfer equipment for a person with odules: a pair of telescopic crutche of mobile platforms. The prototype ited. Cooperative operations using n previous studies, these motions nd safety because it had executed paper, a new motion technique si oposed, and it is compared with the	disabled legs. This s, a powered lower of the power lower three modules are had a problem with the movement tha uitable for an actua e previous method		
Deformable Cag Transporation b Z. D. Wang, Y. H	ing Formation Control for Cooperative Object y Multiple Mobile Robots irata, K. Kosuge, Tohoku Univ., Japan				Playing A G. Kronreif, M. Kornf	Assistant for Physical Handid feld, M. Fuerst, C. Wögerer, B. ARC Seibersdorf Re	capped Childrer <i>Prazak, S. Mina</i> s. GmbH, Austria	
This paper address concept of Object C condition under whi from the given posit this paper, the Obje and a decentralized density of robots in	es the problem of multi-robots object transportation by using the losure. In contrast to Form or Force Closure, Object Closure is ch the object is trapped so that there is no feasible path for the ion to any position that is beyond a specified threshold distance ct Closure Margin used to decide the caging formation is addre control algorithm to perform a large object handling by controll the caging formation is proposed.	e object e. In essed ling the	10:24—10:42	The an this ar chi t pare T	work described in this paper is alyse how children with physical study it was proved through mar n important part of the developm ldren are very restricted in their he possibility to watch and obse ints are playing and so they com he study finally concludes that for	mainly based on a qualitative stud I handicaps play in comparison with ny statements from parents and the ent of a child, but that severe physic possibilities to play. Many of these rive how other children or their bro opensate their lack of experience of or children with severe physical has system can be a r	y which is aimed to h abled children. In erapists that play is sically handicapped children only have thers and sisters or nly to some extent ndicaps a toy robol easonable solution.	

	Artificial Intelligence in Mechatronics			Neuro-Fuzzy Control in Mechatronics	
WA3	Big Sur 3 (09:30-10:42)			Windjammer 1 (09:30-10:42)	WA4
	Shigeki Sugano, Japan	CH	AIR	Hideki Hashimoto, Japan	
An Evolutionary Z. Fan, Tech. U. o E. Goodman, Mic	Approach for Robust Layout Synthesis of MEMS of Denmark, Denmark, J. Wang, United Tech. Res. Cen higan State Univ., USA	ter		IR Using Adaptive Neuro Fuzzy Inference System in Electrical Arc Furr F. Janabi-Sharifi, G. Jorjani, I. Hassanzadeh, Ryersor	Developing an nace Simulator n Univ., Canada
The paper introduces a robust design method for layout synthesis of MEM resonators subject to inherent geometric uncertainties such as the fabrication error on the sidewall of the structure. The robust design problem is formulated as a multi-objective constrained optimisation problem after certain assumptions and treated with multi-objective genetic algorithm (MOGA), a special type of evolutionary computing approaches. Case study based on layout synthesis of a comb-driven MEM resonator shows that the approach proposed in this paper can lead to design results that meet the target performance and are less sensitive to geometric uncertainties than typical designs.)9:30—09:48	This paper presents the use of Adaptive Neuro- Fuzzy Inference Sy simulating the regulator control loop of the Electrical Arc Furnace (EA loop is the core part of steel making EAF, which controls positioning The non-linearity and complexity of EAF makes it very difficult to mathematical modeling techniques in building the process simular shows that, the EAF regulator loop could be modeled with the use parametric modeling method. The effort is extended to put together the the model in a cascade and come up with a complete regulat	stems (ANFIS) in F). The regulator of the electrodes. use the classical tor. This research of ANFIS as non- e different parts of or loop simulator.	
Self-Organizing C. H. Kim, T. Oga	Algorithm for Logic Circuit Based on Local Rules ata, S. Sugano, Waseda Univ., Japan			Haptic Modeling for Liver Cutting Based on Fuzzy W. Song, K. Yuan, Inst. of Automation, Chinese Acad. of	Neural Network Science, China
This study discusse characteristics inclu costs, _;capability fr We propose the use creating learning sy created and evaluat showed that this lea basic logic circuit, le simulation, and solv	is a learning algorithm for autonomous robots that has five ding autonomous exploration of effective output, low calculatio or multi-tasking, reusing past knowledge, and handling time se e of self-organizing network elements (SONE) as a method for stems that provide these characteristics. Using this method, we ted a Self-Organizing Logic Circuit. The results of our experime urning system met the requirements by being capable of creatir aarning additional knowledge, controlling a simple robot in a ring a maze problem.	n ries. e ents ng a	09:48-10:06	Based on image processing and 3D magnetic tracking, a scalpel a parameters acquisition was designed, and the performance was v cutting. Then a method for fuzzy system modeling was presented, variable space was partitioned equally at first, and the premises and th fuzzy rules were decided next, then the consequent parameters wer fuzzy membership functions (MF) of the input variables were opi neurofuzzy modeling technique based on ANFIS. Finally a haptic modeli	djusted for cutting alidated from liver that is, each inpul ne total number of re learned and the timized by using a ng for liver cutting was established.
Development of Avoidance and I Environment R. Malhotra, A. S This paper presents environment about as well as moving o for the mobile robot for the detection of robot is based on th to implement this st implementation of th	a Fuzzy Logic Based Mobile Robot for Dynamic Obs Dynamic Goal Acquisition in an Unstructured Carkar, Vellore Inst. of Tech., India the design of a mobile robot for obstacle avoidance in an which no a-priori information is available and which consists of bstacles. The paper concerns itself with the design of a fuzzy b , its integration into the control system and the sensor system to obstacles in its workspace. The obstacle avoidance strategy of le artificial potential field method. A fuzzy logic based system is rategy since it reduces the computational effort required in the ne artificial potential field method.	static orain used f the s used	10:06-10:24	An Adaptive Fuzzy-Neural Controller for Multiv J. Xiao, Northeastern U., China, J. Xiao, City Coll. of City Ur X. Xu, Northeastern U., China, N. Xi, Michigan S This paper presents an adaptive fuzzy-neural controller for multivaria incorporates the advantage of fuzzy logic and neural network. It is very and realize a single stage fuzzy controller for the problem of multiv inverted pendulum. After the description of the research background of c pendulum system, a fuzzy-neural controller is proposed which dimension fuzzy composed variable and the parameters are o propagation algorithm in neural network. And the parameters could b further. The proposed method gives a solution to design and realize higl controller in multivariable system. Simulation	ariable System hiv. of New York tate Univ., USA able system which difficult to design ariable system as juadruple inverted is based on three optimized by back be adjusted online h dimension fuzzy shows its validity.
Intelligent Explo Sensors S. Chakravorty, J	ration of Unknown Environments Using Vision Like . L. Junkins, Texas A&M Univ., USA			Mobile Agent in the Intelligent Space Which Can Learn H P. T. Szemes, T. Sasaki, H. Hashimoto, Univ.	luman Walking Behavior of Tokyo, Japan
In this work we presenvironment using v posed as the adapti path planning then ro of the environment, control literature. W non local sensors, f significantly acceler	tent a methodology for intelligent path planning in an uncertain vision like sensors. We show that the problem of path planning ve control of an uncertain Markov decision process. The strate reduces to computing the control policy based on the current e also known as the ``certainty equivalence" principle in the ada e propose a Monte-Carlo based estimation scheme, incorporai or estimating the probabilities of the environment process, whit ates the convergence of the associated path planning algorithr	can be egy for stimate ptive ting ch ms.	10:24-10:42	The knowledge of human walking behavior has primary importance for order to operate in the human shared space, with minimal disturb of of paper introduces such an observation and learning framework, whice human walking behavior from observation of human walking, using CC Intelligent Space. The proposed behavior learning framework app Network to approximate observed human behavior, with observation order to extract important training data from observation. Preliminary exp to demonstrate the merit of the intr	or mobile agent in ther humans. This ch can acquire the D cameras of the liles Fuzzy-Neural data clustering in pariment is shown roduced behavior.

	Motion Control			
$W/\Delta 5$	Windjammer 2-3 (09:30—10:42)			MEMO
	Tsu-Chin Tsao, USA	CHAIR	ł	
	Reza Langari, USA	CO-CHA	IR	
Aser Beam Ras of Time Varying J. Wang, TC. T. A laser beam raster trajectories on a mo is periodic with resp speed of the platforn system dynamics to varying model refer repetitive control is periodic profiles. Thi experimental results Tip-Tilt Mechani <i>E. Onillon, L. Lisco</i>	Model Reference Repetitive Control System sao, UCLA, USA scanning problem, where the laser beam must traverse cert ving platform is addressed in this paper. The raster scanning bect to the platform coordinate. The periodicity depends on th m. This problem is addressed by transforming the time doma to the platform's coordinate frame. In the control scheme, a time ence control is first designed to render a time invariant system then added to the compensated time invariant system to trace s paper presents the scheme's real time implementation and s. sm Controlled by an HBRISC2 Space Grade Proce wski, P. Spanoudakis, CSEM, Switzerland	tain g motion he feed ain m. A ck d its	09:30-09:48	
E. Gilson, SABCA The CSEM, or Swis Tip-Tilt mechanism mechanism allows t state space controll freedom has been c space grade proces Control System (IMI complex mechatron	A, Belgium s Center of for Electronics and Microtechnology, has develop based on a flexible guiding (Flextec) solution. This Tip Tilt three degrees of freedom, two angular ones and a translation er that takes into account coupling between the three degree developed. This controller is to be implemented on an HBRIS usor. The power electronic is based on a CSEM Intelligent Mo CS), developed to be used as a generic electronic front-end ics systems.	ped a n one. A es of SC2 otion for	09:48-10:06	
Automatic Contr M. Yamakita, A. U In this paper, traject balancer are discus applied for trajector balancing control. T interference is com method even when is shown by several	rol of Bicycles with a Balancer <i>Utano</i> , Tokyo Inst. of Tech., Japan tory tracking and balancing control for autonomous bicycles of sed.In the proposed control method, an input-output lineariza y tracking control and a nonlinear stabilizing control is used f he control methods are designed independently first and the pensated for later. The stability of the bicycles is ensured with the desired speed is zero. The effectiveness of the proposed numerical simulations using a detail model of a bicycle.	with a ation is for the ir h the d method	10:06-10:24	
Line Map Constr M. Jaradat, R. La The objective of this indoor environment proposed procedure measurements from occupancy grid map parameters from the represent the profile environment. The p line map construction spite of the uncertai	ruction Using a Mobile Robot with a Sonar Sensor ngari, Texas A&M Univ., USA s study is to present a way to construct a line map of an unkr using a mobile robot equipped with a single sonar sensor. T e consists of two main steps. In the first step, the sonar sensor in the robot surroundings are mapped into a two-dimensional b. In the second step, the Radon Transform is used to extrac e occupancy grid map. These parameters are subsequently to es of the detected objects as a representation of the robot resented experiments in this work have confirmed that the pr on approach is able to reconstruct the unknown indoor enviro nty in sensor measurements.	nown he or t the line used to roposed onment in	10:24-10:42	

	Iobile Robot Systems			Tele-Operation	
WR1	Big Sur 1 (11:00–12:30)			Big Sur 2 (11:00-12:30)	WR2
	Stefano Chiaverini, Italy	CH	IAIR	Wayne Book, USA	TUDE
	Mo-Yuen Chow, USA	<u> </u>	CHAI	IR Toru Namerikawa, Japan	
The Null-Space-I Robots G. Antonelli, F. Ar	Based Behavioral Control for Soccer-Playing Mobile richiello, S. Chiaverini, Univ. di Cassino, Italy			Passive Coordination of Nonlinear Bilateral Teleoperated M. McIntyre, Clemson U., W. Dixor D. Dawson, E. Tatlicioglu, Cle	Manipulators 1, U. of Florida mson U., USA
In this paper a behavior-based approach for the control of soccer-playing mobile robots is presented. The so-called Null-Space-Based (NSB) behavioral control differs from the other existing methods in the behavioral coordination, i.e., in the way the outputs of the single elementary behaviors are composed to yield a complex behavior. The developed approach is demonstrated in an experimental case study with a differential-drive mobile robot kicking a ball in a goal.		11:00-11:18	Significant research has been aimed at the development and contro systems. Two controllers are developed in this paper for a nonlinear tele that targets coordination of the master and slave manipulators and overall system. The first controller is proven to yield a semi-global asy the presence of parametric uncertainty in the master and slave mani models. The second controller yields a global asymptotic result despit user and environmental input forces. Continuous nonlinear integral fee used to accommodate for incomplete system knowledge for both o Lyapunov-based techniques are used to prove that all control obj	I of teleoperator operator system I passivity of the mptotic result in pulator dynamic e unmeasurable dback terms are f the controllers. jectives are met	
Controlling a Pat Programmable A P. Dong, G. Bilbro	th-Tracking Unmanned Ground Vehicle with a Field- nalog Array o, MY. Chow, North Carolina State Univ., USA			Higher-Order Sliding Mode Impedance Bilateral Telec Robust State Estimation under Constant Unknow L. G. Garcia-Valdovinos, V. Parra-Vega, Cli	vperation with vn Time Delay NVESTAV-IPN
Unmanned ground vehicle (UGV) path-tracking has been an important topic in Mechatronics real-time applications. This paper describes the implementation and performance of path-tracking UGV using a field programmable analog array (FPAA). The FPAA AN10E40 is a general-purpose, digitally reconfigurable analog chip. Its current commercial applications center on signal conditioning, base-band analog signal processing and rapid prototyping. This paper will show that the AN10E40 can also readily implement a control system for a path-tracking UGV. The FPAA controlled UGV made about 38% fewer tracking error with 22% faster traveling speed than a digital microcontroller (MC68HC11) controlled UGV.		11:18-11:36	<i>M. A. Arteaga</i> , UNAM, Mexic Time delay teleoperation systems have gained gradual acceptance due to technologica advancements, in particular in its communication channel, however, it is difficult t measure in real time the time delay. In this scheme, slave teleoperators are in contact t rigid environments, wherein slave control requires fast, robust and free of chatterin control, thus making first order sliding mode teleoperation control unsuitable. As a alternative, chattering free, higher-order sliding mode teleoperator control is proposed i this paper to guarantee robust tracking under constant, but unknown time delay		
Learning of Body Sensors N. Sekiguchi, T. 1	y Sense and Body Image for Mobile Robot with Visu <i>Tanaka, S. Kaneko</i> , Hokkaido Univ., Japan	al		Robust Control of Master-Slave Robot System Environmental R. Lin, T. Namerikawa, Nagaoka Univ. c	n Considering Uncertainties of Tech., Japar
We propose self-maintenance robot system as a method which realizes work for a long time without maintenance by the human workers. This system absorbs the change which occurs in robot's hardware by learning, and maintains working ability. We use a neural network which has a task common layer and a task independence layer to learning. In this report, we verify of this learning system by the computer simulation and the experiment in the real field.		11:36-11:54	This paper deals with robust control of a master-slave tele system considering environmen We construct a master-slave system by using two 2-DOF Direct Drive ro and design a robust control system via impedance shaping and Mu-Synth various uncertainties; e.g., environment and operator dynamics impedance model and time delay in telecommunications. The methodology can guarantee the robust stability and the robust performa uncertainties of the master-slave robotic system. Several experimental effectiveness of our proposed approach for various environmen	operation robotin tal uncertainties bot manipulators lesis considering s, perturbation o proposed contro ance for all these results show the tal uncertainties	
Human Machine Compensation A Y. Kunii, M. Moriy	Cooperative Tele-Driving System with Command Pa Igorithm ama, S. Nagatsuka, Y. Ishimaru, Chuo Univ., Japan	ath		Moving Average Based Adaptive Buffer for Haptic Media Sy i O. Wongwirat, S. Ohara, Tok	nchronization in Telehaptics ai Univ., Japar
In this paper, we dis drive system consis For corresponding t algorithm is applied then it causes the d and for traversing of measurement data difference is assume using a distortion co	cuss and evaluate our proposed human machine cooperative f ted of global and local path-planning, for a long range traversal o unknown obstacle, a conventional autonomous path-planning between each waypoint. A rover is up-dating environment data ifference between terrain data used for commanding of an oper f a rover. Therefore, we have to compensate path by using the which can be assumed more reliable than previous data. The ed as the distortion between each data set, and compensated b impensation matrix.	tele- bility. a, and rator latest by	11:54-12:12	Telehaptics is involved with remote surgery in teleoperation applications telehaptics of this type is a delay variation on networks, or jitter delay. To variation problem, a method of synchronization is required. This pay adaptive buffering control method for haptic media synchronizatio mechanism employs a moving average smoothing technique to calcu delay in accordance with the delay variations resulting from the network to expected delay is used to adjust the buffer size under a specified threshole the proposed synchronization using the adaptive buffer approach can pre- haptic sequences better than the fixed buffer approach under spe-	. The problem o o solve the delay per proposes the on. The adaptive late an expected raffics. Then, the d. As the results eservethe loss o cified conditions
Fuzzy Logic Self Over Avoidance Y. Li, Y. Liu, Univ	-Motion Planning and Robust Adaptive Control for T of Redundant Mobile Modular Manipulators . of Macau, Macao SAR, China	Гір-		A Robot Arm/Hand Teleoperation System with Telepresence H. Hu, J. Li, Z. Xie, B. Wang, Harbin Inst. of	e and Shared Contro of Tech., China
A redundant nonhol the atop manipulato automatically adjust concept, a kind of in logic self-motion pla robot from overturn mode function is de The proposed algor external disturbance	onomic mobile modular manipulator is investigated. Redundan r is used to avoid tipping over of the entire robot through ing self-motions in a realtime manner. Based on modular robot itegrated dynamic modeling method is proposed. A realtime fuz nner and a robust adaptive controller are presented to prevent without affecting the end-effector specified tasks. A new sliding vised, which is not only continuous but also infinitely differentia ithm does not need a priori dynamic parameters and has strong a suppression ability.	cy of zzy the g ble. g	12:12-12:30	This paper describes a master-slave teleoperation system which is devel the effectiveness of teleopresence in telerobotics applications. The dataglove augmented with an arm-grounded force feedback dev dexterous hand and utilizes a Spaceball to control robot arm. Contact force the finger sensors can be feedback to the operator and visual telepi collect the remote operation scenes and display to the operator by a primitive autonomous grasp system based on parallel joint torque/p	oped to evaluate operator wears a ice to control the es measured by resence system stereo helmet. A iosition control is developed

	Software for Mechatronic Systems			Control Application in Mechatronics I	
WR3	Big Sur 3 (11:00—12:30)			Windjammer 1 (11:00-12:30)	WR4
1105	Roland Siegwart, Switzerland	CHA	AIR	Cevat Gokcek, USA	
	Hiroshi Hashimoto, Japan	CO-C	HA	IR Li-Chen Fu, Taiwan	
Distributed Colla Operation	aborative Decision Support System for Rocket Laund	ch		Resonance Se <i>C. Gokcek</i> , Michigan St	eking Control ate Univ., USA
S. Misono, S. Koide, N. Shimada, M. Kawamura, S. Nagano Galaxy Express Corp., Japan This paper presents an overview of a decision support system for rocket launch operation from the viewpoint of distributed collaboration mechanisms. The system comprises interface agents that mediate between operators on site or support engineers in distance and various Web Services that function as large-grain-size task modules for operation support. In order to orchestrate the distributed Web Services over the Internet, we have adopted Semantic Web Services technology that enables to compose the atomic Web Services in order to achieve the given goal. The interface agent for operation support is also a Web Service Agent that behaves that composes Web Applications of a Real-Time Software Framework for Complex Mechatronic Systems <i>F. Pont, S. Kolski, R. Siegwart,</i> Swiss Fed.I Inst. of Tech. Lausanne (EPFL), Switzerland As the complexity of the missions to be performed by mechatronic systems grows, so does the amount of embedded software to be produced and the number of involved specialists. System complexity management and software integration become more important. In this paper, we present an initial implementation of a real-time capable software framework for complex mechatronic systems that facilitates embedded		11:00-11:18 11:18-11:36	An adaptive control method that seeks the unknown resonant frequency of a load drives it at its resonant frequency to achieve optimal performance is proposed investigated. The method is based on estimating the derivative of the average po with respect to the driving frequency and using this estimate to adaptively control driving frequency. Assuming that the driving frequency is sufficiently large compare the amplitude of sinusoidal perturbation, a nonlinear model that accurately predicts performance of the resonance seeking control system is developed. This develo model is subsequently linearized to obtain a linear time-invariant model that facilita both analysis and design. Guidelines for designing the resonance seeking cor system are also provide <i>H. S. Choi, J. M. Lee,</i> Busan National Univ., Kor This paper presents a distributed precedence queue mechanism to resolve unexpe transmission delay of a lower priority transaction in a CAN based system, which kee fixed priority in data transactions. The mechanism can be implemented in the upper sub-of the data link layer (DLL), which is fully compatible with the original medium accontrol layer protocol of CAN. Thus the mechanism can be implemented dynamically use fixed priority in associons are going on without any hardware modification. The proprisolution provides a superset of the CAN logical link layer control, which can coexist		
software development and integration. The framework also promotes software components reuse across applications, architecture reuse and software portability across hardware platforms. To illustrate the proposed solution, Composite Component Framework for RT-Middleware <i>N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, WK. Yoon</i> , National Inst. of Advanced Industrial Science and Tech., Japan We have studied a framework of RT-Component which promotes application of Robot Technology (RT) in various field. In this paper, we will discuss robotic system development methodology and our RT-Middleware concepts. The system development methodology using RT-Component, and new framework to make composite component for RT-Component will be shown. A evaluation of composite component framework, which realizes low level and real-time composition of independent RT-Components, will		11:36-11:54	the older CAN applications. Effectiveness of the proposed mechanism is verifiered experience of the proposed mechanism of the		
A Generic Softw System Using XI G. Glez. de River Madrid, Spain This paper describe robots. The platform design or communic addition of new hard accessible through processes are perfor system is accessibl in order to detect th	are Platform for Controlling Collaborative Robotic ML-RPC a, R. Ribalda, J. Colas, J. Garrido, EPS-Univ. Autónoma as a software platform used for controlling any set of collaborativ in is specially designed for users without special skills on hardware cation topics. The platform provides a standard to simplify the dware devices. The system runs over Linux operating system; if different programming languages. Calls among architecture ormed using XML-RPC. Data transport is TCP-IP based; therefor e from a conventional Internet link. Some experiments are perfor e programming languages.	a de ve are t is ore the ormed	11:54-12:12	the chatter problem often encountered in conventional slidir Task Skill Transfer of 3-Prong Plug <i>WK. Yoon, T. Suehiro, H. Onda, K. Kitaga</i> This paper describes how to write a task skill program for a 3-prong p One of important features in this paper is that it is easy to program a ho and so on. In a previous paper, we proposed a task skill transfer method teleoperation. The task skill is composed of an initial condition, a task final condition. The task skill motion is implemented by the hybrid impeda which is effective to a positional error. A motion process of the task skill the results of teleoperation experiment. Thus, the task skill is generated data and the teaching intention is	Ig-mode controls. 3 Manipulation <i>ki</i> , AIST, Japan Jug manipulation. Jug earch motion d using a bilateral skill motion and a ance/force control (ill is defined from are obtained from from the teaching (motion strategy).
Image Training A K. Ishii, J. Hataya Inst. of Tech., H.	Assist System for Motor Skill Learning Ima, K. Seki, T. Kobayashi, H. Murakoshi, Tokyo Metrop Hashimoto, Tokyo U. of Tech., Japan	olitan		Backstepping Controller Design for a Planar Maglev Posit <i>M.</i> -Y. Chen, Chir SK. Hung, LC. Fu, National Tai	ioning System Ia Inst. of Tech. wan U., Taiwan
We propose image a monitor, cameras displays the learner learner can put dow monitor. Since the p learning, the learner system provides eff between the learner system to learning h	training assist system for motor skill learning. The system cons , sensors, and PCs. The system captures the learner's motion a 's motion by 3DCG in the virtual environment on the monitor. The n a point and comments in the virtual environment displayed by point is overlapped on the instructor's motion and displayed while r can train the motor skill with the specified point. Moreover, the ective functions for the motor skill learning such as the compari r's motion and the instructor's, the current and the past. We ada (yudo (Japanese archery) as one of the motor skill learning.	ists of and he y the ile e ison apt the	12:12-12:30	In the previous research, an electro-magnetic actuator system has to implemented successfully. Based on those experiences, a prototype Maglev positioning system is designed in this research. In the new stru- motion (both levitation and propulsion) results from a sum of repelling for on some magnet from its corresponding coil. Likewise, the associated initially derived and analyzed, and then a backstepping controll positioning system is developed. Finally, from the experimental re performances including regulation, tracking accuracy and	be designed and of a novel planar ucture, the carrier ces each exerted full-DOF model is er for this Maglev sults, satisfactory d control stiffness.

	Intelligent Process Automation			
WR5	Windjammer 2-3 (11:00—12:30)	Tan, USA CHAIR		MEMO
11DU	Jindong Tan, USA			
	Michael Branicky, USA	CO-CH/	٩IR	
S. Chhatpar, M. E	Robotic Assemblies Using Probing and Particle F Branicky, Case Western Res. Univ., USA	Filtering		
This paper deals wi clearance. We focus (x,y,z). We impleme acquired map of key explores the contac map. The strategy p computational effici errors in map-match was highly success were successful.	th robotic assemblies where position uncertainty exceeds a s on the assembly of a key in a lock, with lock-position uncer- ant a localization strategy that resolves uncertainty using a p y-lock contact configurations. Using the key as a probe, the t C-space at various positions matching those with the pre- progressively localizes lock-position to achieve assembly. F ency, we use particle filtering, which can handle the discreti- ning and track multiple solutions simultaneously. The impler ful: uncertainty was reduced by more than 95% and 45 of 5	essembly ertainty in pre- strategy acquired or ization mentation 0 trials	11:00-11:18	
Sintering Finish L. Peng, Z. Ji, So	Point Intelligent Control uthern Yangtze U., China, J. Tan, Michigan Tech. U.	, USA		
Sintering process is nonlinear unknown Traditional Adaptive with an accurate lind disturbance is limite unknown nonlinear divided into linear a system object in this	very important for blaster furnace production. This plant is object, the traditional control is hard to achieve good results pole placement method is effective in linear control system ear model essentially. Its capability to overcome nonlinear d. The neural network identifier can set up an accurate mo- object. A neural network model with a special structure, wh nd nonlinear parts, is applied into identify an unknown nonli s paper. The model identification speed and accuracy are in	a heavy s. n theory del for an ich is inear mproved.	11:18-11:36	
Optimizing Mate Surface Manufac H. Chen, N. Xi, M J. Dahl, Ford Mot	rial Distribution for Tool Trajectory Generation in cturing ichigan State U., <i>W. Sheng,</i> Kettering U. or Co., USA	1		
Automatic CAD-guid such as spray paint trajectories for free- challenging due to t model. Because of f constant. Also the p width to be changed algorithms are deve	ded tool planning has many applications in surface manufacting, spray forming and indirect rapid tooling. Generating too form surfaces to satisfy the given requirements is still highly he complex geometry of free-form surfaces and the spray go the irregular shape of automotive parts, the spray width ma ath integration for a part with multiple patches may need th d. This will increase the material distribution deviation. In this loped to minimize the material distribution deviation because	cturing, bl y gun y not be a le spray is paper, se	11:36—11:54	
Intelligent Auton H. Zhang, Y. Qiu,	nated Negotiation Mechanism in E-Commerce Southwest China Normal Univ., China			
Negotiation is an im negotiation is comp agreement. This pa fuzzy method so as performed by anton finding mutually-agr humans, results sho	portant function for e-commerce system to be efficient. How licated, time-consuming and difficulty for participants to rea per aims to establish an automated negotiation mechanism to alleviate the difficulty of negotiation. This automated neg ymous agents that use fuzzy logic and issue-trading strateg eed contracts. The negotiation experiment setup between a ways that agents have the ability to replace humans in negot	wever, ch an l based on otiation is gies in ligents and iation.	11:54-12:12	
Development of Design in CAPP	an Integrated System for Setup Planning and Fix	ture		
r. Zriang, G. Pen The separation of C development. This p that is capable of ca intelligent approach automatically planni requirement, manuf design. Further mor fixture design appro- that the setup plan f	g, marbin mst. or recn., China APP and CAFD often causes conflict and delays for the pro paper overcomes these obstacles by describing a develope mying out setup planning and fixture design concurrently. A for setup planning is introduced. In this approach, the setu ed based on key factors of machining practice, tolerance acturing cost and fixturing constraints from the feedback of e, a hybrid RBR and fuzzy evaluation method based autom ach is also described. In proposed system, the feedback is for machined part is generated on the basis of feasible fixtu	oduct sd system An ps are fixture natic to ensure re plan.	12:12-12:30	

Network-Based Mechatronics					Visual Servoing		
WC1	Big Sur 1 (14:00-15:12)			Big Sur 2 (14:00-15:1		Big Sur 2 (14:00—15:12)	WC2
	Mo-Yuen Chow, USA	CH			Bruno Siciliano, Italy		
Peer-To-Peer Mu	Iti-Robot Coordination Algorithms: Petri Net Based	-00-0	JHA	IR Ar	Experimental Setup for	Visual Servoing Applications	on an Industrial
Analysis and De W. Sheng, Ketteri	sign ing Univ., USA, <i>Q. Yang</i> , Iteris Inc., USA				V. Lippiello, B.	Siciliano, L. Villani, Univ. Napol	Robotic Cell Federico II, Italy
In this paper, a peer-to-peer coordination algorithm is developed to provide robustness to multi-robot missions, in the context of exploring unknown environments. The validation, analysis and design of the coordination algorithm require formal modeling methodologies. We propose a stochastic Petri net (SPN) based method to analyze and design efficient peer-to-peer coordination algorithms. By running the Petri net model, optimized parameters are obtained to improve the efficiency of the multirobot team. Peri Net simulation and algorithm implementation have validated the proposed algorithm.		14:00-14:18	An experimental setup for visual servoing applications on an industrial robot presented in this paper. The setup is composed of two industrial robot mar equipped with pneumatic grippers, a vision system and a belt conveyor. Th industrial robot controllers have been replaced by a single PC with softwar under a real-time variant of the Linux operative system. A vision-oriented environment named VESPRO has been developed on a PC running under Wir operating system, which allows programming image processing and visua tasks, using one or more cameras. Advanced user interfaces permit fast, reliable prototyping of control schemes based on visual measu		astrial robotic cell is robot manipulators weyor. The original th software running n-oriented software under Windows NT and visual tracking ermit fast, safe and ual measurements.		
Intelligent Space WL. D. Leung, I MY. Chow, Nort	e with Time Sensitive Applications R. Vanijjirattikhan, Z. Li, L. Xu, T. Richards, B. Ayhan, th Carolina State Univ., USA				Integrated Camera Moti K. Janschek, V. Tchern	ion Compensation by Real-Tir Tracking and Imag ykh, S. Dyblenko, Tech. Univ. D	ne Image Motion e Deconvolution resden, Germany
Intelligent Space (iS sensors, actuators, networks. iSpace is and control algorithr engineering disciplir image processing, c "Johnny6 plays fetcl University. The desc for this project.	space) is a relatively new concept to effectively use distributed robots, processors and information technology over communica a large scale Mechatronics System by integrating sensors, acturns in a communication system using knowledge from various ses such as automation and control, hardware and software des communication and networking. This paper describes a project h in iSpace" to prototype an iSpace at North Carolina State cription includes hardware, software and networking algorithms	ation uators sign, used	14:18-14:36	inter motio ima time an perfo	This paper presents the conc nal compensation of attitude in the optical path by an active on in a closed loop system wit age deblurring through deconv image motion measurement onboard optical correlator. The system elements and gives ormance model, which contain	cept of a smart satellite pushbroom i nstability effects. The compensation opto-mechatronic stabilization of th h visual feedback. Residual distortion volution. Both corrective actions are which is based on an auxiliary matr he paper describes the principles of o detailed performance figures deriv- is all relevant components of the smart	maging system with is performed within e focal plane image ns are corrected by derived from a real- x image sensor and operation, the main d from a simulation art imaging system.
Muscle-Like Con K. Naruse, Univ. o	trol of Entertainment Robot Over Internet of Aizu, <i>M. Oya</i> , Hokkaido Univ., Japan				Visual Servoing for Con	strained Robots: A New Com Framework and Its Experir	Diete Theoretical nental Validation
This paper proposes the combination of the Web services technology and the autonomous robot motion generation is the proper approach. For the motion generation, we introduce the muscle-like control method, which can be applied to any kinds of robots easily with proving a variety of creature-like motions. The method is applied to gait generation of a simulated four-legged robot, and the results show that it can transit from a motion to another one smoothly. In addition, the simulated robot is controlled by the Web services over Internet for investigating the feasibility of the proposed control scheme in a real network circumstance. The result shows that the proposed method provides us smooth control of the robot, even we have overhead of Web service processes and delayed communication.		14:36-14:54	T ford Came o fricti the	the theoretical framework and ce control is presented. This s position and the contact for era and robot parameters are f friction at the joint and contact ion and viscous contact friction escheme, a Linux-RTAI OS es manipulator equip	A. Espinosa-Rome experimental validation of a new im scheme produces convergence of th ce between the end-effector and th considered uncertain. Furthermore, ct point arise. Therefore, compensa n are also studied. In order to prove operimental system is used to obtain oped with a JR3 force sensor and a	o, UADY, Mexico age-based position- e constrained visual constraint surface. important problems ion of dynamic joint the effectiveness of a direct-drive robol digital fixed camera.	
Analysis of Dela L. Yang, Y. Li, Be G. Yang, Singapo	y and Traffic Load in Networked Control System iHang Univ., China re Inst. of Manuf. Tech., Singapore			н W. Г	Kalman Filter Design and	Implementation for the 2D Re Co Gonzales, Lockheed Martin Spa	al-Time Testbed ontrol Using EVS
Time delay and dela systems (NCS). Aim delay and network-c intentions, propertie mathematic descrip presented. Furtherm discussed. Taking tl simulation of corres methods is verified.	ay jitter are the critical issues in system design of networked cor- ning at the particularity of control network, the conceptions of loc Jelay are proposed in view of control and network, and their is and acquiring methods are compared. The theoretical analysis tion about characteristic and evaluating index of network-delay nore, the traffic load composition and estimating method are he double-motors synchronization control system as an example ponding NCS is implemented. The validity of above mentioned	ntrol op- is and are e, the	14:54-15:12	Thi att for no perfor	is paper addresses Kalman Fi EVS. Initial work revealed tha amount of noise. A 3-state Ka enuate the vision data noise. ominal cases without external apply a 0.015 N-m external di- results. Finally, the tesi rmance with the designed Kal- that the system perform	Iter implementation for a 2D spaced at the angle measured by the EVS v alman filter was therefore designed The Filter model was derived and q disturbance and simulation for the s sturbance torque were conducted a tbed closed-loop normal pointing pe man Filter were tested and evaluate nances met the 0.25 degree RMS p	raft control using an ras has a significant and implemented to antified. Simulation ame noise level but nd gave satisfactory rformance and slew d. The results show pinting requirement.

Sensor Plat. Enabling Multiple Modes of Mobility I		Control Applications in Mechatronics II			
WC3	Big Sur 3 (14:00-15:12)			Windjammer 1 (14:00-15:12)	WC4
	Ravi Vaidyanathan, USA	CH	AIR	Yangmin Li, Macau	1104
	Tom Huynh, USA	<u>CO-C</u>	HA	IR Jangmyung Lee, Korea	
Design of an Aut Part I Mechanica A. Boxerbaum, P. R. Vaidyanathan,	tonomous Amphibious Robot for Surf Zone Operatio I Design for Multi-Mode Mobility (I) Werk, R. D. Quinn, Case Western Res. U. Naval Postgraduate School, USA	n:	1.	Assembly Approach for Birr M. J. Hwang, KAIST, S. Y. Chung, Samsung He D. Y. Lee, Korea Advanced Inst. of Science an	anual Robots eave Industries d Tech., Korea
The capability of au water surf zone is c importance is the at terrestrial settings. Tinspiration to addres create an autonomor prototype design, ba completed.	tonomous and semi-autonomous platforms to function in the sha ritical for a wide range of military and civilian operations. Of part ility to transition between locomotion modes in aquatic and The study of animal locomotion mechanisms can provide specifi as these demands. In this work, we summarize on-going efforts bus, highly mobile amphibious robot. A water-resistant amphibio ased on the biologically-inspired Whegs™ platform, has been	allow ticular to to	4:00-14:18	environment where it is difficult to have fixtures. The assembly is pla level with assembly models using contact states and their transitions velocity commands are automatically derived from the task-level symbo solving constrained optimization problem formulated with assembly positions of the workpieces. The proposed approach is evaluated with peg-in-hole assembly with an L-shape peg, that ordinary position control	s in instructined nned at the task . The lower-level blic transitions by y constraints and simulation of the al scheme cannot complete.
Design of an Aut Part II - Hardwar R Harkins J Wa	tonomous Amphibious Robot for Surf Zone Operatio e, Control Implementation and Simulation (I) rd, R. Vaidvanathan, Naval Postoraduate School	ns:		Fast-Motion Trajectory Generation for a New Direct-Drive	Planar Parallel Manipulator
A. S. Boxerbaum,	<i>R. D. Quinn</i> , Case Western Res. Univ., USA		_	A new direct drive planar parallel relation manipulator in propagat	of for fact motion
This paper describe Western Reserve U amphibious robot. A field tested. This rot waypoint navigation transmit sensor (vis prototype design, ba completed. This des	s on-going work at The Naval Postgraduate School (NPS) and on niversity (CWRU) to create an autonomous highly mobile first generation land-based prototype has been constructed an bot design, based on a tracked element, is capable of autonomo , self orientation, obstacle avoidance, and has the capacity to ual) feedback. A water-resistant second generation amphibious ased around the biologically inspired Whegs platform, has been sign marries the unprecedented mobility of WhegsTM with	Case d bus	14:18-14:36	positioning. Because of nonlinearity of kinematics and dynamics, the achi velocity and maximum acceleration vary at different points and directi manipulator move with fully high velocity and high acceleration al trajectory, a fast-motion trajectory generation technique is introduced. Gis speed and torque of the actuators, the available values of maxii maximum acceleration along the specified trajectory are firstly derived, motion profiles are generated. Finally, the experiments of trajector conducted or	ed for last-motion levable maximum ons. To make the long the specified ven limitations on mum velocity and and then several ry generation are the manipulator.
A Robot Designe Cockroach Loco T. Wei, R. D. Quil	ed for Walking and Climbing Based on Abstracted motion Mechanisms (I) an, R. E. Ritzmann, Case Western Res. Univ., USA			Leader-Formation Navigation Using Dynamic Form X. Chen, Y. Li, Univ. of Macau, Mac	mation Pattern ao SAR, China
MechaRoach II is a hexapod robot under development that will test strategies for transitioning between the two. The locomotion principles that allow cockroaches to make these transitions have been studied and mechanisms using abstractions of those principles have been developed for the robot. These principles include usage of features of leg and foot morphology, leg compliance, gait adaptation, and body flexion. MechaRoach II has a single drive motor, a motor for steering, and a motor to actuate a body flexion joint. The single drive motor powers all six legs, and each leg uses 4-bar mechanisms to recreate cockroach-like foot trajectories. The robot normally walks in a tripod gait, but uses passive torsionally compliant devices.		14:36-14:54	Formation navigation is an interesting topic in robotic community. In this on two aspects of formation navigation, leader-formation keeping and ob- A local control strategy based on adaptive NN control with robust te obstacle avoidance strategy are proposed. It is proved that if formation continuous, even interaction topology is dynamic, the robots using strategy must form the formation determined by formation pattern. <i>A</i> formation pattern, a simulation illustrates formation navigation within where there exist two kit	s paper, we focus stacle avoidance. rm and a general pattern is smooth g the local control Applying dynamic a an obstacle field inds of obstacles.	
A Multi-Sensory Tracking Strateg J. Bailev. M. Willis	Robot for Testing Biologically-Inspired Odor Plume ies (I) s. R. D. Quinn, Case Western Res. Univ., USA			Stability Analysis and Control of Overhead Crane with Tin K. Moustafa. United Arab Emira	me-Dependent Flexible Cable ates Univ., UAE
Many animals routir they release. A robo provide a reliable m Working towards thi Wind sensors were The robot autonomo following a plume. In inspired by the haw	hely locate environmental resources by tracking the chemical plut to table to match the performance of these biological examples we ethod for locating sources of turbulently dispersed chemicals. s goal, a suitable sensor suite was interfaced to a mobile robot. developed and integrated on the platform with chemical sensors pusly orients to wind and moves upwind similar to animals that a n future work the robot will be used to test odor tracking algorith kmoth Manduca sexta.	umes vould s. are ms	14:54-15:12	M. Trabia, U. of Nevada at Las Vegas, USA, M. Ismail, Zaga: A mathematical model of an overhead crane system with load hoisting an is presented. The model consists of a hyperbolic partial differential equati dynamics of the moving flexible cable and ordinary differential equatio trolley and payload dynamics. Lyapunov direct method is used to desig boundary control law that achieves trolley and payload desired posit vibration reduction of the flexible cable. The proposed control law is base variables for the trolley and the cable. The stability of the closed loop s boundary control scheme is proved through the use of inequality and	zig Univ., Egypt ad a flexible cable on describing the ons describing the ons and ensures ad on measurable system under this d metric analysis.

	Robot Control			
WC5	Windjammer 2-3 (14:00—15:12)			MFMO
	Aiguo Ming, Japan	CHAIR		
	Tao Ming Lim, Singapore	CO-CHA	١R	
An Application of with Collisions M. Yamakita, A. 7	f Nonlinear Receding Horizon Control to Posture Faura, Y. Onodera, Tokyo Inst. of Tech., Japan	Control		
In this paper, an ext predictive control (N on continuation met collision. The validit experiment.	ension of nonlinear receding horizon control (RHC) or mod IPC) for switched systems with state discontinuity is propos hod and GMRES method and it is applied for a posture cor y of the method is demonstrated by a numerical simulation	el sed based htrol with a and an	14:00-14:18	
Balancing 3D Ob S. M. Yesiloglu, H Turkey	ojects with Rolling Constraint by Redundant Man <i>I. Temeltas</i> , Istanbul Tech. U., <i>O. Kaynak</i> , Bogazici I	ipulator J.,		
A novel methodolog about its contact poi Two-layer controller the manipulator stay second layer, the con neighborhood of an, transition a dynamic disturb the static bal equilibria cone form	y is presented for a practical problem of balancing a round int posing pure rolling constraint at the tip of a redundant m r, the objective of the first of which is to balance the object a ys in a singularity-free predefined task-space, is designed. , ontact point of the balanced object is aimed at repositioning , also predefined, conceptual center of task space. We call balance. In order to achieve the dynamic balance, one ne lance in a controlled manner. We, then, introduce the conce ed by the collection of static and dynamic equilibria.	object lanipulator. as long as At the l at a close this eds to ept of an	14:18-14:36	
A New Motion Co A. Ming, M. Henm	ontrol Method for Golf Swing Robot Hitting a Ball ni, C. Xu, M. Shimojo, U. of Electro-Communications	l , Japan		
A new golf swing rol with motion control control the motion o method for controllir motion state of the r reference trajectory has been implemen	bot to simulate human motion has been developed. This pa of the robot for hitting a ball. For the case, it becomes impo f the robot after the impact, to avoid breaking a club. In this ng the robot adaptable to various impact conditions is propor obot is estimated first by an extended Kalman filter, and a is generated on-line according to the estimated state. The ted to the robot successfully.	aper deals rtant to s paper, a osed. The new method	14:36—14:54	
Unified Force an Architecture on a <i>T. M. Lim,</i> SIMTe SIMTech, Singap	d Motion Control Using an Open System Real-Tin a 7 DOF PA-10 Robot ch, <i>Q. H. Xia, M. Ang</i> , National U. of Singapore, <i>S.</i> Y ore	me 4. Lim,	1	
The operational spa robotic systems with PA-10, we implement tracking. Impact con- end-effector comess to perform the requi- controller, we are a latency. Software a	ace formulation provides a framework for the analysis and on the respect to interactions with their environments. Using the ented unified force and motion control to achieve force and introl algorithm was also implemented to remove oscillation into contact with a stiff environment. The control algorithm ired real-time computation. With the modifications to the PA ble to achieve high sampling rates with minimum communi rchitecture was also developed to achieve software modula	control of modified position when the uses a PC A-10 cation arity.	4:54—15:12	

	Navigation of Mobile Robots			Industrial Vision	
WD1	Big Sur 1 (15:30–16:42)			Big Sur 2 (15:30–16:42)	WD2
	Yoshio Yamamoto, Japan	CH	AIR	Winncy Du, USA	
	Yan Meng, USA	<u>CO-C</u>	CHA		
A Scalable Graph Systems J. Tan, Michigan	n Model and Coordination Algorithms for Multi-Rob	ot		A Normalization Based Image Affine Estimation I Co H. I. Kang, S. Lim, K. I. Kim, Y. I. Son, Myong	echniques for mputer Vision gji Univ., Korea
This paper presents cooperation and rec composes of a colle sensors. The syster terrains or disaster r cooperative multi-ro geometrical relation model, this paper di the mobile robots.	a distributed model and the orresponding control algorithms for leployment of mobile sensor networks. A mobile sensor network ction of wireless connected mobile robots equipped with a vari n can be rapidly deployed to hostile environment, inaccessible relief operations. The mobile sensor network is essentially a bot system. Delaunay Triangulation (DT) is used to define the ship between neighboring sensor nodes. Based on this distribu- scusses a fault tolerant algorithm for autonomous self-deploym	or the rk iety of uted nent of	15:30-15:48	In this paper, we propose the estimation method for the image affir computer vision. The first estimation method is given based o normalization and the second estimation method is based on normalization. In addition, we show that rotation and aspect ratio in obtained using the central moments of both the original image and th Finally, we propose the modified version of the normalization method control the size of the image. It turns out that the XYS method performance than the XSR method for the image having the asp	ne information for n the XYS image n the XSR image formation can be le sensed image. d so that we may has much better lect ratio change.
Online Dead-Loc Presence of Box YC. Chang. Y.	k Avoidance Scheme of Wheeled Mobile Robot und like Obstacles, Yamamoto, Tokai Univ., Japan	er the		Development of an Automatic Optical Measurem Automotive Part Surf Q. Shi, N. Xi, Michigan State Univ., Y. Chen, FORD Motor	ent System for ace Inspection Company, USA
This paper presents mobile robots. The p hough transformatic minima problem has system controller (L distance between th potential field methor follow a smooth traj autonomously whet	a path planner for the design of autonomous vehicles such as both planner is based on the potential field method. Through the in the obstacle detection is accomplished by laser scanner. The is been solved by redefining the repulsive potential field. Also the ook-ahead Control) gives the robot the capability of controlling he reference point and the center of the robot. As a result, the od performs effectively under our system and allows the mobile ectory in a flexible manner for attaining the desired goal her in a static or dynamic environment.	e local ne the robot	15:48-16:06	This paper introduces an automated 3D optical measurement syst inspection, Coordinate Measurement Machines (CMMs) provide accur- but are very time consuming because only one point can be acquired ea sensor based robotic 3D measurement system can acquire an automol patch-by-patch, which reduces the inspection time significantly. This p pixel-to-pixel sensor calibration scheme and a bounding box based method which are developed for the automatic optical measurement sy complex surfaces. Experiment results are presented	stem. In industrial ate measurement ach time. An area tive part's surface paper describes a d sensor planning stem of large and and discussed.
A Dynamic Self- Y. Meng, Stevens	Reconfigurable Mobile Robot Navigation System			A Multi-Scale Focus Pseudo Omni-Directional Robot Visio Intelligent In	n System with nage Grabbers
A mobile robot navig emergencies under well with new enviro navigation. This pap dynamically reconfig high-performance m described to improv reconfiguration arch can be easily extend multi-robot systems	gation system must adapt to the highly dynamic environments the real-time constraints. Sometimes some sensors may not w onments while others may need to swap in at runtime to continu per presents an agent-based embedded system platform which gure the robot system on the fly by integrating FPGA hardware incroprocessors system. Several dynamic reconfiguration mode e the system efficiency with low reconfiguration latency. The itecture specifically for vision system is also presented. This pl ded to other robot systems, such as server robots, space robot	and vork ue the and els are latform is, and	16:06-16:24	Q. Zhou, K. Yuan, W. Zou, P. Lu, Chinese Acad. of S H. Hu, Uni In this paper, the development of an intelligent image grabber and it multi-scale focus pseudo omni-directional robot vision system is pre- developed intelligent image grabber is designed using DSP and FPGA t can do both the task of image grabbing and the task of image processing directional robot vision system, which can "see" the four directions simuli sets of intelligent image grabbers and cameras, is realized and a strategy which can improve the efficiency of this pseudo omni-dire system is also proposed. Experimental results show	Sciences, China v. of Essex, UK ts application to a esented. The new echnology, which J. A pseudo omni- taneously using 4 multi-scale focus ection robot vision good agreement.
Design of Transı System A. Lazinica, B. Ka	oort Mobile Robot Behavior in Self-Organizing Asse talinic, Vienna Univ. of Tech., Austria	mbly			
Bionic Assembly Sy elements are autono organization, adapta robot type in the sys presented. Transpo avoidance capability environment.	stem is a concept of self-organizing assembly system which be omous mobile robots. The basic characteristics of the system a ation and reconfiguration. This paper is focused on transport m stem and the simulation of robot's navigation in Webots softwar rt mobile robot should be designed to navigate with collision <i>i</i> in the shop floor environment, flexibly coping with the changir	asic are self- obile re is ng	16:24-16:42		

	Sensor Plat. Enabling Multiple Modes of Mobi	ility II		Vibration and Noise Control	
WD3	Big Sur 3 (15:30–16:42)			Windjammer 1 (15:30—16:42)	
1105	Roger D. Quinn, USA	CH	AIR	Eric Maslen, USA	1104
	Ravi Vaidyanathan, USA	CO-C	HA	IR Makoto Iwasaki, Japan	
A Robot with Co JU. Choi, B. L. R. E. Ritzmann, F	ckroach Inspired Actuation and Control (I) Rutter, Case Western Res. U., D. A. Kingsley, Sarcos R. D. Quinn, Case Western Res. U., USA			Experimental Verification of Stability Analysis of Close Shapir J. Huey, W. Singhose, Georgia Inst	d-Loop Signal 1g Controllers . of Tech., USA
Robot V has been of discoidalis. Its relati structure, relatively the cockroach. In ar animal, actuators w includes biologically actuator tensioning and resulting improv	constructed with inspiration from the death head cockroach, Bla ve leg segment lengths, joint degrees of freedom, exoskeleton light legs, and location of its center of mass are all similar to the n attempt to take further advantage of the neuromechanics of the ith muscle-like properties have been employed. The robot's cor v inspired gait generation and inverse kinematics components. v reflex which approximates the function of muscle tone is introd vements to system response are shown.	berus ose of ne ntroller An uced,	15:30-15:48	Input shaping is a vibration control technique that operates by f commands so that the modified command does not excite the frequencies. Usually, input shaping is implemented as a filtering operation feedback loops. However, this prevents input shaping from effecting s issues including disturbance rejection, initial condition response, etc. research has studied the use of input shapers within feedback loop present some investigations toward the fundamental understanding of he utilized within feedback loops affect stability. Experimental results on	Itering reference system's natural on outside of any ome vital control Therefore, some s. This paper will ow input shapers a crane illustrate the key results.
Behavioral Feed Systems D. W. Palmer, M.	back As a Catalyst for Emergence in Multi-Agent Kirschenbaum, L. Seiter, J. Shifflet, P. Kovacina,			Robust Time-Optimal Command Shaping for Veloc Piezoelec Y. Xu, P. H. Meckl, Pur	ity Tracking of tric Actuators due Univ., USA
John Carroll Univ Swarm algorithms n random selection of many behavioral po ends. Randomness range of agent beha behavioral feedback restricted list of use of time, space, or ca	., USA ely on randomness to produce solutions for complex problems. actions and chance interactions of agents force a swarm to att ssibilities reinforcing the productive ones and dampening the however, is a dual-edged sword: it is necessary to insure a wic avior, but also a source of inefficiency and wasted resources. U c, we reinforce effective use of randomness using it to select ful actions. By observing an agent's behavior over the three doi ategory, we establish a context for the application of randomnes	The tempt dead de sing from a mains ss.	15:48-16:06	This paper introduces a robust time-optimal command shaping application of piezoelectric actuators on scanning tunneling microscop feedback control has been widely used to improve the linearity, the maxi substantially limited by the turnaround transients in the scan path. There approach is considered to improve the scan speed. In the authors' earl input design method was proposed for a general class of systems v mode. When this method is applied to velocity tracking, however, uniqu This paper proposes a solution to these problems by modifying the suff the frequency domain for robust inputs of velocity tracking, and the s	technique for the y (STM). Though mum scan rate is fore, feedforward ier work, a robust without rigid-body e problems arise. icient condition in earch procedure.
Utility of a Sensor Platform Capable of Aerial and Terrestrial Locomotion R. J. Bachmann, BioRobots, LLC, F. Boria, P. Ifju, U. of Florida R. D. Quinn, Case Western Res. U., J. Kline, R. Vaidyanathan, Naval Postgraduate School, USA Homeland security and national defense include many missions that would be served by a multi-sensor platform capable of flying, landing, perching, and walking. Soldiers in an urban environment could obtain near- and medium-field intelligence. Maritime personnel would benefit from a small aerial vehicle that could 'perch on' (hang from) the high point of a cargo ship during interdiction operations. The surveillance capabilities of unmanned aerial vehicles would be enhanced by a steatithy vehicle able to gain closer approach to the target. Long term surveillance could be performed by a vehicle capable of flying, walking, and taking off from the ground.		1	Input Shaping for Continuum Beams under Longitue J. Fortgang, W. Singhose, Georgia Inst The applicability of standard input shapers to continuum longitudinal be in this paper. The effectiveness of different input shapers, specifically th	Jinal Vibration . of Tech., USA ams is presented ne Zero Vibration,	
		6:06—16:24	the Zero Vibration and Derivative, and the Unity Magnitude-Zero Vib investigated. Also, the sensitivity of these schemes to modelling en Through a derivation of the equation of motion of a longitudinal be shapers are shown to have the same vibration reducing characteristics of continuum systems as they do for lumped parameter systen contribution of higher modes is also shown to impact the response negative input shape	ration shapers, is ors is presented. am, single mode for the first mode ms. However, the , especially when rs are employed.	
				Residual Vibration Suppression in Repetitive Positionir Initial Value M. Iwasaki, M. Kawafuku, H. Hirai, Nagoya Inst.	ig by Practical Compensation of Tech., Japan
			16:24-16:42	This paper presents a novel residual vibration suppression methodology fast-response and high-precision positioning in machine tool driv positioning motions, as the interval period of position references becaresidual vibration in response due to undesired initial values deteriorate accuracy, since the positioning controller is generally designed on the costate variables are zero. In this research, an Initial Value Compensation (proposed under the theoretical study on effects of the initial value transient response. The IVC can appropriately assign poles and zer characteristic of position output for the initial values by applying an	for the repetitive ves. In sequential omes shorter, the as the positioning indition that initial (IVC) approach is as on the position ros of the transfer n additional input.

	Adpative Control			
WD5	Windjammer 2-3 (15:30—16:42)			MEMO
	Bin Yao, USA CHAIR			
Ada a thus 11 In Car	Kazuya Sato, Japan	CO-CHA	IR	
Adaptive H-Infini Using Gradient A K. Sato, Saga U.,	ity Control for Linear Slider with Friction Compens Algorithms with Projection <i>K. Tsurut</i> a, Kyushu Sangyo U., <i>A. Shoji</i> , Saga U., Jap	sation pan		
In this paper an ada developed, based o dynamics can be de the LuGre model is updated by estimatin applications., gradie parameter estimatio some experimental	ptive tracking control of a servo mechanism with friction is n notion of H-infinity optimality. It is assumed that the friction escribed by the LuGre model. The nonlinear characteristic fur parameterized by Neural-Network (NN). The friction paramet ng strategy in this proposed method. To cope with the practic int algorithms with projection method is also applied to the ur n methods. Effectiveness of the proposed method is evaluat results.	nction of ters are cal nknown ted via	15:30-15:48	
Robust Adaptive X. Wei, L. Del Re	Control of Quasi-LPV Systems , Johannes Kepler Univ., <i>J. Tan</i> , Michigan Tech. Univ.	., USA		
In this paper a robus varying (LPV) syster system model, inclu least square estimat The robust stability of One simulation exar demonstrates that th performance than th	st adaptive pole placement method for a class of linear parar m based on input-output description is constructed after the I ding its un-modeled error model term, is presented. The recu- tion algorithm with dead zone is applied for the parameter es of closed-loop system is analyzed and the robust bound is de mple illustrates the effectiveness of the control algorithm and ne adaptive control based on LPV model can achieve better ne controller based on linear time varying (LTV) model.	meter LPV ursive stimation. erived.	15:48—16:06	
A Globally Stable with Input Satura	e High Performance Adaptive Robust Control Algo ation for Precision Motion Control of Linear Motor	orithm Drive		
System Y. Hong. B. Yao.	Purdue Univ., USA		_	
This paper focuses actuator authority fo uncertainties, unmo achieved by breakin uncertainties (such a friction, cogging forc guaranteed transien incorporating the we	on the synthesis of nonlinear adaptive robust controller with r a linear motor drive system, which is subject to parametric deled nonlinearities and input disturbances as well. Global st g down the overall uncertainties to state-linearly-dependent as viscous friction) and bounded nonlinearities (such as coul e and etc.) and treating them with different strategies. Further t performance and final tracking accuracy can be obtained b ell-developed adaptive robust controller.	saturated tability is lomb ermore, a by	16:06-16:24	
Adaptive Nonline J. Lee, W. Dixon,	ear Contour Coupling Control for a Machine Tool S J. Ziegert, C. Makkar, Univ. of Florida, USA	System		
The quality of produ tolerances maintain mitigate contour error development in this normal and binorma (CCC)). Unlike previ knowledge of the ind developed to compe methods are used to tracking.	cts from a machine tool system is largely determined by the ed, which is a function of how well the desired contour is trac- ors in a three axis machine tool feed drive system, the contro- paper is based on an error system that is transformed into ta al components to the desired contour (i.e., a cross coupling co- ious CCCs, the first controller in this paper does not assume ertia and friction matrices. Specifically, an adaptive estimate ensate for uncertain friction and inertial parameters. Lyapuno to craft the adaptive estimate and to prove global asymptotic of the standard standar	cked. To ol angential, controller e exact is ov-based contour	16:24-16:42	

AUTHORS INDEX

A	
Abdellatif, Houssem	TA3.4, TB4.1
Abe, Seiji	TB1.5
Ahn, Hyeong-Joon	MC3.2, TD4.5
Akhbardeh, Alireza	TA5.3
Alici, Gursel	MA3.2, TD2.3
Almansa, Ana	MC5.1, MD5.2
Alqasemi, Redwan	WA2.1
Alvarez-Gallegos, Jaime	TC3.1
An, Zhenwei	WC4.2
Ando, Noriaki	MC2.2, WB3.3
Ang, Marcelo	TC3.3, WC5.4
Angel, Luis	TB3.1
Antaki, James F	TD4.1
Antonelli, Gianluca	WB1.1
Antonello, Riccardo	MB5.1
Aracil, Rafael	TB3.1
Arai, Fumihito	TC2.5
Arrichiello, Filippo	WB1.1
Arteaga, Marco A.	WB2.2
Asaka, Kinji	MA3.1
Attolico, Michele	TD1.4
Ayhan, Bulent	WC1.2

В	
Bachmann, Richard J.	WD3.3
Bae, Jungyun	TC4.2
Baek, Joo Hyun	TD2.4
Baek, Sungjin	MD4.3, TC4.1
Bailey, Justin	WC3.4
Bailey-Van Kuren, Michael	MB4.1, TA1.2, TD5.1
Baker, Jeffrey	TD3.2
Balabanava, Natallia	MC5.1
Barth, Eric J	MD3.5, TB4.2
Bassi, Amarjeet Singh	MA4.1
Beckwith, Jonathan	MC2.1
Beghi, Alessandro	TC4.5
Behkam, Bahareh	MA2.3
Bernelli-Zazzera, Franco	TC1.4, TC1.5, TD1.1, TD1.4
Bertram, Torsten	TD3.4
Bhutada, Sarang	TB2.5
Bilbro, Griff	WB1.2
Book, Wayne	MC2.1
Boria, Frank	WD3.3
Borovetz, Harvey S.	TD4.1
Bou, Silvia C	MC5.1, MC5.2
Boxerbaum, Alexander S	WC3.1, WC3.2
Boye, Tim	TB3.2
Brambilla, Andrea	TD1.2
Branicky, Michael	WB5.1
Bu, Fanping	MB1.1
Burdick, Joel	MC4.3
Bursi, Alessandro	TC1.4

C	
Cai, Hegao	MD2.4, TA1.4, WC4.2
Cai, Lilong	TA5.2
Calle, Angel	MD1.5
Capi, Genci	MD2.2

Carbone, Paolo	MB5.1
Cargnel, Ottavio	TD1.4
Cazzoli, Roberto	TD1.4
Cen, Zhiwei	TC4.3
Ceriani, Elisa	TD1.1
Chakravorty, Suman	WA3.4
Chang, Bo	MD5.1
Chang, Jee-Uk	MC3.2
Chang, Ya-Chun	WD1.2
Chao, Daihong	TB3.4
Chen, B. M.	MA1.4
Chen, Chin-Yin	MB5.3. TA2.1
Chen, Guoiin	MC4.5
Chen. Heping	WB5.3
Chen, I-Ming	MC3.4. MC3.5
Chen J	MA1.4
Chen Jian	WA1 2
Chen Liang-Chiang	MB3 4
Chen Mei-Yung	MA4.4 WR4.5
Chen Wenije	TA3 2
Chen Xin	WC4 3
Chen Vifan	WO4.3 WD2 2
Chen Ving	MD2.2
Chen, Yuoyan	
Chen, Yung Yaw	TD5.5
Chen, Tung-Taw	100.0
Chen, Ziehen	IVIAJ.J MOS S
Cheng Chen Min	
Cheng, Childo-Mill	VVD4.J
Cheng, Chil-Cheng	IVIDO.J, TAZ. I
Cheng, Ulung Ming	
Cheng, Hung-Ming	IVIAJ.Z
Cheng, Lun-Hong	
Cheng, Ming-Yang	ID3.1 MD5.4
Cheung, Eugene	MD5.4
	IBZ.1
Chew, Chee Meng	MD3.1
Chnatpar, Siddharth	WB5.1
	WB1.1
Chiu, George	MA5.2
Choi, Ho Seek	WB4.2
Choi, Hyun-Seung	MA4.2
Choi, Jong-ung	WD3.1
Choi, Tae-Yong	TB5.4, WA2.2
Chong, Chiet Sing	MB5.2
Choo, Soo-Chung	TD2.4
Chou, Jui Jen	TD2.5
Chow, Mo-Yuen	WB1.2, WC1.2
Chung, Seong Youb	WC4.1
Cocci, G	MC1.4
Colas, José	WB3.4
Coombs, T A	MB1.2
Corporaal, Henk	TC3.3
Cruz-Villar, Carlos Alberto	TC3.1
Cui, Hongliang	TD5.4

D	
Da Costa, Andrea	TD1.2
Dahl, Jeffrey	WB5.3
Daley, Wayne	MB4.3
Davighi, Andrea	TD1.4

Davis, Laurance		MD1.1
Dawson, Darren	WA1.2,	WB2.1
de Silva, Clarence		TC3.3
Dean León, Emmanuel Carlos		WC2.3
Del Re, Luigi		WD5.2
Delli Colli, Vincenzo		MC1.5
Deng, Haiyan		TC2.1
Denkena, Berend		TA3.4
Denou, Kazuya		TA4.4
Di Perna, Marco		TC1.4
Diao, Xiumin		TC1.1
Ding, Qingyong		TB2.4
Dixon, WarrenTA2.3, WA1.2,	WB2.1,	WD5.4
Domen, Kazuhisa		MD2.3
Dong, Lixin		MA5.3
Dong, Puxuan		WB1.2
Dong, Zaili		MA3.4
Du, Winncy	MB4.2,	WC2.4
Dubey, Rajiv		WA2.1
Dyblenko, Serguei		WC2.2

E	
Edwards, Kevin	WA2.1
Elahibakhsh, Amir Hosein	TC5.5
Elhajj, Imad	TA4.3
Elliott, Matthew	MD1.5
Enomoto, Masaya	TA4.4
Espinosa Romero, Arturo	WC2.3

F	
Fan, Zhun	WA3.1
Fantner, Georg E	MB5.5
Fardadi, Mahshid	TA5.4
Filipi, Zoran	MB1.4
Finzi, Amalia	TD1.2
Fleming, Andrew	TC1.2
Fortgang, Joel	WD4.3
Frezza, Ruggero	TB1.1, TC4.5
Friend, James Robert	MB3.2
Fu, Li-Chen	MA4.4, WB4.5
Fuerst, Martin	WA2.4
Fujii, Yuki	MD2.3
Fujimoto, Hiroshi	MA1.2
Fukuda, Toshio	TC2.5
Fukushima, Keisuke	MA1.2
Furusho, Junji	MD2.3

G	
Galluzzo, Tom	WA1.2
Gan, Zhongxue	TD5.4
Ganapathiraman, Subburengan	MB4.5
Garcia Valdovinos, Luis Govinda	WB2.2, WC2.3
Gardiner, Jeff	TD4.1
Garrido, Javier	WB3.4
Gaudiller, Luc	TB5.1, TB5.2
Gehsat, Carsten	TD3.4
Gerling, Dieter	TC3.4
Gilson, Eric	WA5.2
Glez. de Rivera, Guillermo	WB3.4
Gnanaprakasam, Pradeep	MB4.5
Gokcek, Cevat	WB4.1
Gonzales, Michael	MB4.2, WC2.4
Goodman, Erik	WA3.1
Goradia, Amit	TC4.3
Gorski, Jason	TA4.3

Goto, Atsutoshi	TC4.4
Gravagne, Ian	MD3.4
Green, William E	TB1.2, TB1.3
Gruber, R	TA1.4
Guan, Liming	MC4.5
Guinot, Jean-Claude	MC5.2
Gulati, Navneet	MD3.5, TB4.2
Guo, G. X	MA1.4
Guserle, Reinhard	TC3.5
Gutierrez, Raul	TB3.1

Н				
Haliyo, Dogan Sinan				MC5.2
Han, Dong-Chul			MC3.2	, TD4.5
Han, Shuang				TB5.3
Hannani, S.K				TA5.4
Hansma, Paul K				MB5.5
Harkins, Richard				WC3.2
Hashimoto, Hideki	MB2.2,	MC2.2,	MC2.3,	WA4.4
Hashimoto, Hiroshi		MB2.2,	MC2.3,	WB3.5
Hassanzadeh, Iraj				WA4.1
Hatayama, Junichi				WB3.5
Hayashi, Ryota				MB2.4
Hebert, Martial				MC4.1
Heck-Ferri, Bonnie				TD4.4
Heimann, Bodo			TA3.4	, TB4.1
Henmi, Masanobu				WC5.3
Hilgert, Jens				MD4.5
Hiller, Manfred			MD4.5	, TB3.2
Hirai, Hiromu				WD4.4
Hirata, Yasuhisa				WA1.4
Hiroyuki, Fujiwara				TD4.2
Hirsch, Karina				MD4.5
Hiruta, Tomoaki				TC2.3
Hirzinger, Gerd			TA1.4,	WB2.5
Ho, Aaron				MA3.4
Ho, Duan-Cheng				MC4.4
Holz, Christian			TA3.4	, TB4.1
Hong, Geok Soon				MD3.1
Hong, Yun				WD5.3
Hou, Zhen			MB4.5,	MC4.2
Hsia, T. C.				MC1.1
Hu, Guoqiang				TA2.3
Hu, Haiying			TB2.4,	WB2.5
Hu, Huosheng				WD2.3
Hu, Yan-Ru				TD2.1
Huang, Jeng-Lin				MB3.4
Huang, Jun-Da				MD4.4
Huey, John				WD4.1
Hung, Shao-Kang			MA4.4,	WB4.5
Hung, Y.S.				TB2.1
Hwang, Gilgueng				MC2.2
Hwang, Jin Kwon				MC1.3
Hwang, Myun Joong				WC4.1
Hwu, En-Te				MA4.4

l l	
Ifju, Peter	WD3.3
Inoue, Akio	MD2.3
loi, Kiyoshi	MC2.4
Ishihara, Hidenori	WA1.1
Ishii, Chiharu	MB2.2, MC2.3
Ishii, Katsunori	WB3.5
Ishii, Kazuo	MD1.3, MD1.4
Ishii, Takayuki	MD1.4
Ishimaru, Yoshinori	WB1.4

Ismail, Mohammed	WC4.4
Itoh, Akitoshi	MA2.4
Iwasaki, Makoto	WD4.4

J	
Jan, Gene Eu	MD4.4
Janabi-Sharifi, Farrokh	TC5.5, WA4.1
Jang, Dong-Young	TD4.5
Janschek, Klaus	WC2.2
Jaradat, Mohammad	WA5.4
Jeon, Doyoung	MB2.1
Jeon, Soo	TB2.2
Ji, Zhicheng	WB5.2
Jiang, Hao	MC4.3
Jiang, Li	MD2.4
Jie, Degang	WC4.2
Jin, Minghe	TA1.4
John, Stephen William	MA3.2
Jorjani, George	WA4.1
Juang, Tong-Ying	MD4.4
Jung, Seul	MC1.1, MC2.5
Junkins, John L	WA3.4
Junnila, Sakari	TA5.3

K	
Kagami, Satoshi	MB2.5
Kalyanam, Krishnamoorthy	MA1.3
Kamada, Takayoshi	MC1.2
Kamamichi, Norihiro	MA3.1
Kanda, Takefumi	MD3.2
Kaneko, Shun'ichi	WB1.3
Kang, Chang-lk	MA1.1
Kang, Hwan II	WD2.1
Karagozler, Mustafa Emre	MD5.4
Karino, Yasushi	MC1.2
Karpiel, Grzegorz	TB3.3
Kartik, Venkataraman	MB3.1
Katalinic, Branko	WD1.4
Kawafuku, Motohiro	WD4.4
Kawaji, Shigeyasu	TA5.1
Kawamura, Masanori	WB3.1
Kaynak, Okyay	WC5.2
Khan, Bruno	MB1.3
Khatib, Oussama	MD4.1
Kim, Beomjoon	MD5.3
Kim, Byungkyu	MD5.4
Kim, Chyon Hae	WA3.2
Kim, Jin Cheon	TD2.4
Kim, Jin-Hyun	TD4.5
Kim, Jong-Hyuk	TD4.5
Kim, Kab II	WD2.1
Kim, Young-Hoon	MA1.1
Kim, Young-Suk	TD5.2
Kim, Youngshik	WA1.3
Kindt, Johannes H	MB5.5
Kingsley, Daniel A.	WD3.1
Kirschenbaum, Marc	WD3.2
Kitagaki, Kosei	WB3.3, WB4.4
Kleinjohann, Bernd	TA2.2
Kline, Jeffrey	WD3.3
Knopf, George	MA4.1
Kobayashi, Tomohiro	WB3.5
Kobayashi, Yasuyuki	TA4.4
Koch, Markus	TA2.2
Koide, Seiji	WB3.1
Koivistoinen, Teemu	TA5.3

Koivuluoma, Mikko	TA5.3
Kolski, Sascha	WB3.2
Kondo, Eiji	MC4.1
Kong, Kyoungchul	MB2.1
Kong, S. K	MA3.4
Kontz, Matthew	MC2.1
Korhonen, Petteri	MD5.1
Kornfeld, Martin	WA2.4
Kosuge, Kazuhiro	TA1.1, TC2.3, WA1.4
Kotoku, Tetsuo	WB3.3
Kovacina, Peter	WD3.2
Koyanagi, Ken'ichi	MD2.3
Kozuki, Takahiro	MA3.1
Kronreif, Gernot	WA2.4
Kubo, Hitoshi	TA3.3
Kunii, Yasuharu	WB1.4
Kuroki, Asayo	TA5.1
Kwak, Sang-Yong	MC3.2
Kweon, Sung-Hwan	TD5.2
Kwon, Dong-Soo	MD4.1

L	
La, Jong-Pil	MA4.2
Lalo, Wildan	MD4.5
Lam, Raymond	MA3.4
Lan, Chao-Chieh	TB2.3, TD2.2
Langari, Reza	WA5.4
Lasalandra, Ernesto	MB5.1
Lasky, Ty A	MC1.1, TA4.2
Lavagna, Michèle R	TD1.2, TD1.3
Law, W. C	MA3.4
Lazinica, Aleksandar	WD1.4
Le, Minh Viet	MA4.3
Le, Phu Dung	MA4.3
Lee, Cheng-Chien	TD3.1
Lee, Doo Yong	WC4.1
Lee, Jae-Ha	TD5.2
Lee, Jang Myung	WB4.2
Lee, Jinho	WD5.4
Lee, Joon-Jae	TD4.5
Lee, Ju-Jang	TB5.4, WA2.2
Lee, Kok-Meng	MB4.3, MB4.4, MC3.3, MC3.4
	MC3.5, TB2.3, TD2.2
Lee, Kyoobin	MD4.1
Lee, Sooyong	MD4.3, TC4.1, TC4.2
Lee, Sung-Q	MC3.1
Lee, I. H	MA1.4
Lee, Woon Kyu	MC2.5
Lei, K. F	MA3.4
Leong, Philip H. W.	IB4.4
Leung, Wai-Lun Danny	WC1.2
Levins, Brett	MD3.4
LI, Unun-Unung	
LI, JIAWEI	IVID2.4, VVB2.5
LI, JINNUA	MC4.2
	WIB4.3, WIB4.4
LI, Wei	
LI, Well J	IVIAJ.4, I D4.4
LI, AIIIXIII	
Li, Taliyiiiii	WC1 4
Li, Tulliud	VVC1.4 TC2.4
Li, Zexially	102.4 M/C1.2
	VVC1.2 MP1.2
Lin, Neal I	
Lini, Ollee Mall	IVICO.4, IVICO.0 N//CE /
Lini, Ger Folig	4 د ص10 1 د ص
	VVDZ. I

Lim, Tao Ming	WC5.4
Lin, Hong-Dar	MC4.4
Lin, Jia-Chuan	TD5.5
Lin, Ming-Tzong	TC5.1
Lin, Ruiqu	WB2.3
Lin, Wei	MC3.4, MC3.5, MD2.1, TA3.2
Lin, Yen-Cheng	TD2.5
Ling, Qinghua	TB3.5
Lippiello, Vincenzo	WC2.1
Lisowski, Leszek	WA5.2
Liu, Guanfeng	TC2.4
Liu, Hong	MD2.4, TA1.4, WB2.5
Liu, Jinming	MB1.4
Liu, Juncheng	MD4.2
Liu, Rong	TB3.4
Liu, Shuyong	TB1.4
Liu, Song	TB4.3
Liu, Yanjie	WC4.2
Liu, Yisheng	MB5.4
Liu, Yiwei	TA1.4
Liu, Yu	TD5.2
Liu, Yugang	WB1.5
Loew, Peter	MD5.3
Love, Lonnie J.	MA5.4
Low, Kin Huat	TA3.2
Lu, Peng	WD2.3
Lu, Rose Xiujuan	TC3.3
Lu, Yi	MA1.4
Lu, Yu-Sheng	WB4.3
Luo, Yilun	TB4.4
Luo, Zhi-Wei	MA3.1

М	
Ma, Ou	TC1.1
Mafficini, Andrea	TD1.3
Makkar, Charu	TA2.3, WD5.4
Makoto, Ito	TD4.2
Malhotra, Rajiv	WA3.3
Malvezzi, Monica	MC1.4
Malye, Rohan	TB2.5
Masakado, Seiji	MD1.4
Masaki, Jun	MC4.1
Maslen, Eric	TD4.3
Massari, Mauro	TC1.4, TC1.5, TD1.1
Massioni, Paolo	TC1.5
Matichard, Fabrice	TB5.1, TB5.2
Matsuda, Keishi	WA1.1
Matsunaga, Nobutomo	TA5.1
Matsuno, Takayuki	TC2.5
Matsushita, Osami	TD4.2
McCaffrey, Edward	WA2.1
McIntyre, Michael	WB2.1
Meckl, Peter H	WD4.2
Meisel, Jerome	MB1.3
Melkote, Shreyes	TC2.1
Meng, Max	TB3.5
Meng, Yan	WD1.3
Menon, Shilpa	TB2.5
Methil-Sudhakaran, Nandagopal	MB2.3
Metz, Philippe	TD2.3
Mianzo, Lawrence Andrew	MD3.3
Miao, L	MA3.4
Michalek, David	TD3.4
Mina, Stefan	WA2.4
Minase, Yuki	TA3.3
Ming, Aiguo	WC5.3
Minor, Mark	WA1.3

Mirzaei, Ahmad	TC3.2
Mirzaeian Dehkordy, Behzad	TC3.2
Mishima, Tetsuro	MA2.4
Misono, Shohei	WB3.1
Mitobe, Kazuhisa	MD2.2
Miyakoshi, Koichi	MD2.3
Miyoshi, Shinya	MC2.4
Mizoguchi, Hiroshi	MB2.5
Moallem, Mehdi	TC3.2
Moon, Ji Won	MA5.4
Mori, Taketoshi	TC2.2
Mori, Yoshikazu	TC4.4, WA2.3
Morishita, Hiroshi	TC2.2
Moriyama, Makoto	WB1.4
Mou, J. Q	MA1.4
Moustafa, Kamal	WC4.4
Mukherjee, Ranjan	MB2.3
Muneharu, Saigo	TD4.2
Murakoshi, Hideki	WB3.5
Mutka, Matt	TC4.3

N	
Nadjar Araabi, Babak	TC5.5
Nagai, Masao	MC1.2
Nagano, Susumu	WB3.1
Nagatsuka, Shingo	WB1.4
Nakagawa, Shinsuke	MA1.2
Nakamura, Kentaro	MB3.2
Nakamura, Takahiko	TA1.1
Nakamura, Takayuki	TC5.2
Nakamura, Yoichi	TA3.3
Nakanishi, Kazuhiko	MD2.3
Namerikawa, Toru	WB2.3
Naruse, Keitaro	WC1.3
Nebuloni, Stefano	TC1.5
Nelson, Bradley J	MA5.3
Netwon, Stephen J.	MD3.3
Ng, Alfred	ID2.1
Niitsuma, Mihoko	MB2.2, MC2.3
Nili Ahmadabadi, Majid	IC5.5
Nittmann, Gerald	1D5.3
Niu, Bin	MD2.5
Non, Myounggyu D.	1D4.1
Notarstefano, Giuseppe	IB1.1
NUNZI, EMIIIA	MB5.1

0	
Oboe, Roberto	MB5.1
Ogata, Tetsuva	WA3.2
Oh, Changmok	WA2.2
Oh, Kyeung Heub	MC1.3
Oh, Paul Y	TB1.2, TB1.3
Ohara, Shigeyuki	WB2.4
Ohyama, Yasuhiro	MB2.2
Okada, Jun	WA2.3
Okada, Nobuhiro	MC4.1
Onda, Hiromu	WB4.4
Onillon, Emmanuel	WA5.2
Onodera, Yasuo	WC5.1
Opdenbosch, Patrick	TC5.4
Osuka, Koichi	TA3.3
Oya, Makoto	WC1.3
Р	
Paden, Brad	TD4.1

Pai, M.A	MB1.5
Palmer, Daniel W.	WD3.2
Pan, Cheng-Tang	MB5.3
Pan, Zengxi	TD5.4
Pandian, Shunmugham R	TB1.5
Pang, C. K	MA1.4
Park, Hyungwoong	MD4.3, TC4.1
Park, Jaeheung	MD4.1
Park, Kyi-Hwan	MA4.2, MC3.1
Park, Sukho	MD5.4
Parker, Johne	MB4.5, MC4.2
Parra Vega, Vicente	WB2.2, WC2.3
Parsa, Kourosh	TA4.2
Peng, Fujun	TD2.1
Peng, Gaoliang	WB5.5
Peng, Huei	MB1.4
Peng, Li	WB5.2
Pereira, Dionisio	TB4.5
Petko, Maciej	TB3.3
Pham, Cong Bang	MD2.1, TA3.1
Phelps, Tommy J	MA5.4
Pianetta, Piero A	MA2.1
Pinto, Joăo	TB4.5
Poh, Eng Kee	TB1.4
Pomeroy, Craig A.	MC5.4
Pont, Frederic	WB3.2
Poo, Jim A.N	TC3.3
Popovic, Zeljko	MD3.3
Portilla-Flores, Edgar-Alfredo	TC3.1
Pott, Andreas	TB3.2
Prandi, Luciano	MB5.1
Prazak, Barbara	WA2.4
Prem, Edward	TD4.1
Prokos, Mathew	TC4.3
Pugi, Luca	MC1.4
Purnawali, Hendra	MD1.2

Q	
Qing, Zhaobo	TD3.5
Qiu, Yuhui	WB5.4
Quinn, Roger D.	WC3.1, WC3.2, WC3.3
-	WC3.4, WD3.1, WD3.3

P	
	TD0.5
Ramamoorthy, Radhika	TB2.5
Ravani, Bahram	TA4.2
Régnier, Stéphane	MC5.2
Ribalda, Ricardo	WB3.4
Ricci, Mike	TD4.1
Richards, Tyler	WC1.2
Rigolin, Luca	TD1.1
Rinchi, M	MC1.4
Ritzmann, Roy Earl	WC3.3, WD3.1
Romano, Marcello	TD1.5
Rondinone, Adam J	MA5.4
Ross, Issac	TC1.2
Rust, Carsten	TA2.2
Rutter, Brandon L.	WD3.1
Rymuza, Zygmunt	MC5.1
Ryu, Ushio	MD2.3

S	
Sadegh, Ali	MD1.5
Sadegh, Nader	MB1.3, TC5.4
Saito, Kazunari	TA1.1

o // · /	
Saito, Masato	MB2.2, MC2.3
Saito, Tomoko	MA2.2
Sakagami Norimitsu	TB1 5
Cakamata Kavaka	MAD 0
Sakamoto, Кауоко	MAZ.Z
Sakata, Yoshio	TC5.2
Sakava Kota	MB2.5
Saltaran Bagua	TD2 1
	163.1
Sanadgol, Dorsa	TD4.3
Sangiovanni, Guido	TC1.4, TC1.5
Sariala Vaikka	MD5 1
Sarkar, Atri	WA3.3
Sasaki. Akinori	MC2.3
Sasaki Takoshi	
Sato, Kazuya	WD5.1
Sato, Masanori	MD1.3
Sato Tomomasa	TC2.2
Oate Vasuali	102.2
Sato, Yasushi	MC2.4
Sawyer, Wallace	TA2.3
Scarano Maurizio	MC1.5
Coarbarough Danna	TA1 0
Scarborougri, Dorina	IAI.Z
Schitter, Georg	MB5.5
Schramm Andreas	TC3 4
Cohramm, Distor	MD4 F
	MD4.5
Schulte, Horst	TD3.3
Sebastian Jose Maria	TB3 1
	100.1
Seiter, Linda	VVD3.2
Seitz, N	TA1.4
Sekhavat Poova	TC1 2
Soki Kozubiko	\MD2 5
	VVD3.3
Sekiguchi, Naohiro	WB1.3
Selk Ghafari. Ali	TA5.4
Seo Kan Ho	TB5 / WA2 2
	TDJ.4, WAZ.2
Setni, Vineet	101.3
Sevcik, Keith	TB1.3
Sevcik, Keith Shabhir Kurbanhusen, Mustafa	TB1.3 MD2.1
Sevcik, Keith Shabbir Kurbanhusen, Mustafa	TB1.3 MD2.1
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen	TB1.3 MD2.1 MA3.3
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen Sharma, Vivek	TB1.3 MD2.1 MA3.3 TB2.5
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen Sharma, Vivek Shen, Yantao	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3 MC5.4 MD5.5 TA4.1
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen Sharma, Vivek Shen, Yantao Shong Weikug	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1 WP5.3
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen Sharma, Vivek Shen, Yantao Sheng, Weihua	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen Sharma, Vivek Shen, Yantao Sheng, Weihua	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen Sharma, Vivek Shen, Yantao Sheng, Weihua Sher, Kun-Lin	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen Sharma, Vivek Shen, Yantao Sheng, Weihua Sher, Kun-Lin Shetr, Siddarth	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen. Sharma, Vivek Shen, Yantao Sheng, Weihua Sher, Kun-Lin Shetty, Siddarth	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TD4.4
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen. Sharma, Vivek Shen, Yantao Sheng, Weihua Sher, Kun-Lin Shetty, Siddarth Shi, Guangyi	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen Sharma, Vivek Shen, Yantao Sheng, Weihua Sher, Kun-Lin Shetty, Siddarth Shi, Guangyi Shi, Huli.	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen Sharma, Vivek Shen, Yantao Sheng, Weihua Sher, Kun-Lin Shetty, Siddarth Shi, Guangyi Shi, Huli. Shi Quan	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2 2
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen. Sharma, Vivek Shen, Yantao Sheng, Weihua Sher, Kun-Lin Sher, Kun-Lin Shetty, Siddarth Shi, Guangyi Shi, Huli Shi, Quan Shibata Tokanori	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen. Sharma, Vivek Shen, Yantao Sheng, Weihua Sher, Kun-Lin Shety, Siddarth Shi, Guangyi Shi, Huli. Shi, Quan Shibata, Takanori.	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen. Sharma, Vivek Shen, Yantao Sheng, Weihua Sher, Kun-Lin Shetty, Siddarth Shi, Guangyi Shi, Huli Shi, Quan Shibata, Takanori Shifflet, Jason	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen. Sharma, Vivek Shen, Yantao Sheng, Weihua Sher, Kun-Lin Shetty, Siddarth Shi, Guangyi Shi, Huli Shi, Quan Shibata, Takanori Shifflet, Jason Shimada, Norikazu	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2 WB3.1
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen. Sharma, Vivek Shen, Yantao Sheng, Weihua Sher, Kun-Lin Shetty, Siddarth Shi, Guangyi Shi, Huli. Shi, Quan Shibata, Takanori. Shifflet, Jason Shimada, Norikazu	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2 WB3.1 MC4.3
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen. Sharma, Vivek Shen, Yantao. Sheng, Weihua Sher, Kun-Lin Sher, Kun-Lin Sher, Kun-Lin Sher, Kun-Lin Sher, Kun-Lin Shiguangyi Shi, Guangyi Shi, Huli. Shi, Quan Shibata, Takanori. Shifflet, Jason Shimada, Norikazu Shimizu, Sota.	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2 WB3.1 MC4.3
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen. Sharma, Vivek Shen, Yantao Sheng, Weihua Sher, Kun-Lin Sher, Kun-Lin Shety, Siddarth Shi, Guangyi Shi, Huli Shi, Quan Shibata, Takanori Shifflet, Jason Shimada, Norikazu Shimizu, Sota Shimojo, Makoto	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2 WB3.1 MC4.3 WC5.3
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen Sharma, Vivek Shen, Yantao Sheng, Weihua Sher, Kun-Lin Sher, Kun-Lin Shetty, Siddarth Shi, Guangyi Shi, Huli Shi, Quan Shibata, Takanori Shifflet, Jason Shimada, Norikazu Shimizu, Sota Shimojo, Makoto Shimojo, Shinsuke	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2 WB3.1 MC4.3 WC5.3 MC4.3
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen. Sharma, Vivek Shen, Yantao Sheng, Weihua Sher, Kun-Lin Shety, Siddarth Shi, Guangyi Shi, Huli Shi, Quan Shibata, Takanori. Shibata, Takanori. Shifflet, Jason Shimada, Norikazu Shimizu, Sota Shimojo, Makoto Shimojo, Shinsuke	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2 WB3.1 MC4.3 WC5.3 MC4.3 TB5.4
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen. Sharma, Vivek Shen, Yantao. Sheng, Weihua Sher, Kun-Lin Sher, Kun-Lin Shidarth Shidarth Sher, Kun-Lin Shidarth Shid	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2 WD3.2 WB3.1 MC4.3 WC5.3 MC4.3 TB5.4
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen. Sharma, Vivek Shen, Yantao Sheng, Weihua Sher, Kun-Lin Sher, Kun-Lin Shety, Siddarth Shi, Guangyi Shi, Huli. Shi, Guangyi Shi, Huli. Shi, Quan Shibata, Takanori. Shifflet, Jason Shimada, Norikazu Shimizu, Sota Shimojo, Makoto Shimojo, Shinsuke Shin, Jin-Ho Shoji, Akihito	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2 WB3.1 MC4.3 WC5.3 MC4.3 TB5.4 WD5.1
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen. Sharma, Vivek Shen, Yantao Sheng, Weihua Sher, Kun-Lin Sher, Kun-Lin Sher, Kun-Lin Sher, Kun-Lin Sher, Kun-Lin Sher, Kun-Lin Sher, Kun-Lin Shi, Guangyi Shi, Guangyi Shi, Guangyi Shi, Guangyi Shi, Guangyi Shi, Guangyi Shi, Guangyi Shibata, Takanori Shifflet, Jason Shimada, Norikazu Shimizu, Sota Shimojo, Makoto Shimojo, Shinsuke Shin, Jin-Ho Shoji, Akihito Siciliano, Bruno	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2 WD3.2 WB3.1 MC4.3 WC5.3 MC4.3 TB5.4 WD5.1 WC2.1
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen. Sharma, Vivek Shen, Yantao Sheng, Weihua Sher, Kun-Lin Sher, Kun-Lin Shetty, Siddarth Shi, Guangyi Shi, Guangyi Shi, Huli Shi, Quan Shibata, Takanori Shibata, Takanori Shifflet, Jason Shimada, Norikazu Shimizu, Sota Shimojo, Makoto Shimojo, Shinsuke Shin, Jin-Ho Shoji, Akihito Siciliano, Bruno Siegwart Roland	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2 WD3.2 WB3.1 MC4.3 WC5.3 MC4.3 TB5.4 WD5.1 WC2.1 WC2.1 WC2.1
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen. Sharma, Vivek Shen, Yantao. Sheng, Weihua Sher, Kun-Lin Sher, Kun-Lin Shimata, Takanori Shimata, Takanori Shimata, Takanori Shimata, Norikazu Shimata, Norikazu Shimojo, Makoto Shimojo, Shinsuke Shin, Jin-Ho Shoji, Akihito Siciliano, Bruno Siegwart, Roland Singhoco William	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2 WD3.2 WB3.1 MC4.3 WC5.3 MC4.3 TB5.4 WD5.1 WC2.1 WC2.1 WC2.1 WC2.1 WC2.1 WC2.1
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen. Sharma, Vivek Shen, Yantao Sheng, Weihua Sher, Kun-Lin Sher, Kun-Lin Shimada, Norika Shimada, Norikazu Shimada, Norikazu Shimojo, Shinsuke Shin, Jin-Ho Shoji, Akihito Siciliano, Bruno Siegwart, Roland Singhose, Wiliam	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2 WD3.2 WB3.1 MC4.3 WC5.3 MC4.3 TB5.4 WD5.1 WC2.1 WC2.1 WC2.1 WC2.1 WC2.1 WC2.1 WC2.1 WC2.1 WC2.1 WC2.1
Sevcik, Keith	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2 WB3.1 MC4.3 WC5.3 MC4.3 TB5.4 WD5.1 WC2.1 WB3.2 WD4.1, WD4.3 MA2.3, MB3.1, MD5.4
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen Sharma, Vivek Shen, Yantao Sheng, Weihua Sher, Kun-Lin Sher, Kun-Lin Shetty, Siddarth Shi, Guangyi Shi, Guangyi Shi, Guangyi Shi, Huli Shi, Quan Shibata, Takanori Shifflet, Jason Shimada, Norikazu Shimizu, Sota Shimojo, Makoto Shimojo, Shinsuke Shin, Jin-Ho Shoji, Akihito Siciliano, Bruno Siegwart, Roland Singhose, William Sitti, Metin Smedley, Keyue Ma	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2 WD3.2 WD3.1 MC4.3 WC5.3 MC4.3 TB5.4 WD5.1 WC2.1 WB3.2 WD4.1, WD4.3 MA2.3, MB3.1, MD5.4 MB1.5
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen. Sharma, Vivek Shen, Yantao Sheng, Weihua Sher, Kun-Lin Sher, Kalaar Shimolo, Shinsuke Shin, Jin-Ho Shoji, Akihito Shoji, Akihito Siciliano, Bruno Siegwart, Roland Singhose, William Sitti, Metin Smedley, Keyue Ma Soltani Justin	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2 WD3.1 MC4.3 WC5.3 MC4.3 TB5.4 WD5.1 WC5.1 WC2.1 WC5.1 WC2.1 WC5.1 WC5.1 WC5.1 WC5.1 WC5.1 WC5.1 WC5.1 WC5.1 WC5.1 WC5.1 TB4.4 WD5.1 WC5.3 TB5.4 WD5.1 WC5.1 TD5.1
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen Sharma, Vivek Shen, Yantao Sheng, Weihua Sher, Kun-Lin Sher, Kun-Lin Shimada, Norikazu Shibata, Takanori Shibata, Takanori Shibata, Takanori Shibata, Takanori Shibata, Takanori Shimada, Norikazu Shimada, Norikazu Shimojo, Shinsuke Shin, Jin-Ho Shoji, Akihito Siciliano, Bruno Siegwart, Roland Singhose, William Sitti, Metin Smedley, Keyue Ma Soltani, Justin	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2 WD3.2 WD3.2 WD3.2 WD3.1 MC4.3 WC5.3 MC4.3 TB5.4 WD5.1 WC2.1 WD5.1 WC2.1 WB3.2 WD4.1, WD4.3 MA2.3, MB3.1, MD5.4 MB1.5 TD5.1
Sevcik, Keith	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2 WD3.2 WB3.1 MC4.3 WC5.3 MC4.3 TB5.4 WD5.1 WC2.1 WB3.2 WD4.1, WD4.3 MA2.3, MB3.1, MD5.4 MB1.5 TD5.1 MC3.3
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen Sharma, Vivek Shen, Yantao Sheng, Weihua Sher, Kun-Lin Shety, Siddarth Shi, Guangyi Shi, Guangyi Shi, Guangyi Shi, Huli Shi, Quan Shibata, Takanori Shifflet, Jason Shimada, Norikazu Shimizu, Sota Shimojo, Makoto Shimojo, Shinsuke Shin, Jin-Ho Shoji, Akihito Siciliano, Bruno Siegwart, Roland Singhose, William Sitti, Metin Smedley, Keyue Ma Soltani, Justin Son, Hungsun Son, Kwon Joong.	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2 WD4.1 WD5.1 WC2.1 WD3.2 WD4.1, WD4.3 MA2.3, MB3.1, MD5.4 MB1.5 TD5.1 MC3.3 MB3.1
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen. Sharma, Vivek Shen, Yantao. Sheng, Weihua Sher, Kun-Lin Sher, Kadarth Shiftet, Jason Shiftet, Jason Shimada, Norikazu Shimada, Norikazu Shimada, Norikazu Shimada, Norikazu Shimojo, Makoto Shimojo, Shinsuke Shin, Jin-Ho Shoji, Akihito Siciliano, Bruno Siegwart, Roland Singhose, William Sitti, Metin Smedley, Keyue Ma Soltani, Justin Son, Hungsun Son, Kwon Joong. Son Young Ik	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2 WD3.2 WD3.1 MC4.3 WC5.3 MC4.3 TB5.4 WD5.1 WC5.2 WC5.1 WC5.2 WC5.1 WC5.2 WC5.2 WC5.3 MC4.3 WC5.1 WC5.1 WC5.1 WC5.1 WC5.1 WC5.1 WC5.2 WC5.1 WC5.2 WC5.2 WC5.2 WC5.2 WC5.2 WC5.2 WC5.2 WC5.3 W
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen. Sharma, Vivek Shen, Yantao. Sheng, Weihua Sher, Kun-Lin Sher, Kun-Lin Shimada, Norika Shin, Juason Shimada, Norikazu Shimojo, Makoto Shimojo, Shinsuke Shin, Jin-Ho Shoji, Akihito Siciliano, Bruno Siegwart, Roland Singhose, William Sitti, Metin Smedley, Keyue Ma Soltani, Justin Son, Hungsun Son, Kwon Joong. Son, Young Ik	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2 WD3.2 WD3.2 WD3.2 WD3.2 WD3.2 WD3.2 WD3.2 WD3.2 WD3.2 WD3.2 WD3.2 WD3.2 WD3.2 WD3.2 WD3.2 WD3.2 WD3.2 WD3.1 MC4.3 MC4.3 MC4.3 MC4.3 MA2.3, MB3.1, MD5.4 MB1.5 TD5.1 MC3.3 MB3.1 WD2.1
Sevcik, Keith	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2 WD3.2 WD3.2 WD3.1 MC4.3 WC5.3 MC4.3 TB5.4 WD5.1 WC2.1 WB3.2 WD4.1, WD4.3 MA2.3, MB3.1, MD5.4 MB1.5 TD5.1 MC3.3 MB3.1 WD2.1 MC1.3
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen Sharma, Vivek Shen, Yantao Sheng, Weihua Sher, Kun-Lin Shety, Siddarth Shi, Guangyi Shi, Guangyi Shi, Huli Shi, Quan Shibata, Takanori Shifflet, Jason Shimada, Norikazu Shimizu, Sota Shimojo, Makoto Shimojo, Shinsuke Shin, Jin-Ho Shoji, Akihito Siciliano, Bruno Siegwart, Roland Singhose, William Sitti, Metin Smedley, Keyue Ma Soltani, Justin Son, Hungsun Son, Kwon Joong Son, Young Ik Song, Chul Ki	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2 WD4.1 WD5.1 WC2.1 WB3.2 WD4.1, WD4.3 MA2.3, MB3.1, MD5.4 MB1.5 TD5.1 MC3.3 MB3.1 WD2.1 MC1.3 MC2.5
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen. Sharma, Vivek Shen, Yantao. Sheng, Weihua Sher, Kun-Lin Sher, Kun-Lin Sher, Kun-Lin Sher, Kun-Lin Sher, Kun-Lin Sher, Kun-Lin Sher, Kun-Lin Sher, Kun-Lin Shift, Jason Shift, Guangyi Shi, Huli. Shi, Quan Shibata, Takanori. Shifflet, Jason Shimada, Norikazu Shimizu, Sota Shimojo, Makoto Shimojo, Shinsuke Shin, Jin-Ho Shoji, Akihito Shoji, Akihito Siciliano, Bruno Siegwart, Roland Singhose, William Sitti, Metin Smedley, Keyue Ma Soltani, Justin Son, Hungsun Son, Kwon Joong. Son, Young Ik Song, Chul Ki Song, Deok Hee Song, Gangbing	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2 WD3.2 WD3.2 WD3.2 WD3.1 MC4.3 WC5.3 MC4.3 TB5.4 WD5.1 WC2.1 WD5.1 WC2.1 WB3.2 WD4.1, WD4.3 MA2.3, MB3.1, MD5.4 MB1.5 TD5.1 MC3.3 MB3.1 WD2.1 MC1.3 MC2.5 TC.1
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen. Sharma, Vivek Shen, Yantao. Sheng, Weihua Sher, Kun-Lin Shety, Siddarth Shi, Guangyi Shi, Huli. Shi, Guangyi Shi, Huli. Shi, Quan Shibata, Takanori. Shibata, T	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.1 WC2.1 WD3.2 W
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen. Sharma, Vivek Shen, Yantao Sheng, Weihua Sher, Kun-Lin Shety, Siddarth Shi, Guangyi Shi, Huli. Shi, Guangyi Shi, Huli. Shi, Quan Shibata, Takanori. Shifflet, Jason Shimada, Norikazu Shimizu, Sota Shimojo, Makoto Shimojo, Shinsuke Shin, Jin-Ho Shoji, Akihito Siciliano, Bruno Siegwart, Roland Singhose, William Sitti, Metin Smedley, Keyue Ma Soltani, Justin Son, Hungsun Son, Kwon Joong. Son, Young Ik Song, Chul Ki Song, Chul Ki Song, Cangbing Song, Ruiyin	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2 WD3.2 WD3.1 MC4.3 WC5.3 MC4.3 TB5.4 WD5.1 WC2.1 WB3.2 WD4.1, WD4.3 MA2.3, MB3.1, MD5.4 MB1.5 TD5.1 MC3.3 MB3.1 WD2.1 MC1.3 MC2.5 TC1.3 MC2.5 TC1.3 MC2.5 TC1.3 MC5.4
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen Sharma, Vivek Shen, Yantao Sheng, Weihua Sher, Kun-Lin Shety, Siddarth Shi, Guangyi Shi, Guangyi Shi, Huli. Shi, Quan Shibata, Takanori. Shifflet, Jason Shimada, Norikazu Shimizu, Sota Shimojo, Makoto Shimojo, Shinsuke Shin, Jin-Ho Shoji, Akihito Siciliano, Bruno Siegwart, Roland Singhose, William Sitti, Metin Smedley, Keyue Ma Soltani, Justin Son, Hungsun Son, Kwon Joong. Son, Young Ik Song, Chul Ki Song, Chul Ki Song, Cangbing Song, Ruiyin Song, Weiguo	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2 W
Sevcik, Keith Shabbir Kurbanhusen, Mustafa Shahinpoor, Mohsen. Sharma, Vivek Shen, Yantao. Sheng, Weihua Sher, Kun-Lin Sher, Kun-Lin Sher, Kun-Lin Sher, Kun-Lin Sher, Kun-Lin Sher, Kun-Lin Sher, Kun-Lin Sher, Kun-Lin Shift, Jason Shift, Guangyi Shi, Huli. Shi, Quan Shibata, Takanori. Shifflet, Jason Shifflet, Jason Shimada, Norikazu Shimizu, Sota Shimojo, Makoto Shimojo, Shinsuke Shin, Jin-Ho Shoji, Akihito Shoji, Akihito Siciliano, Bruno Siegwart, Roland Singhose, William Sitti, Metin Smedley, Keyue Ma Soltani, Justin Son, Hungsun Son, Kwon Joong. Son, Young Ik Song, Chul Ki. Song, Deok Hee Song, Gangbing Song, Ruiyin Song, Weiguo Spanoudakis, Peter	TB1.3 MD2.1 MA3.3 TB2.5 MB2.3, MC5.4, MD5.5, TA4.1 MC5.4, TA2.4, TA4.1,WB5.3 WC1.1 MB5.3 TB2.5 TB4.4 MC4.5 WD2.2 MA2.2 WD3.2 WD3.2 WD3.2 WD3.1 MC4.3 WC5.3 MC4.3 TB5.4 WD5.1 WC5.1 WC5.1 WC5.1 WC5.1 WC5.1 WC2.1 WB3.2 WD4.1, WD4.3 MA2.3, MB3.1, MD5.4 MB1.5 TD5.1 MC3.3 MB3.1 WD2.1 MC1.3 MC2.5 TC1.3 MB5.4 WA2.2 WD4.2 WD4.2 WD4.2 WD4.2 WD5.2

Spinks, Geoffrey M	TD2.3
Spinola, Guido	MB5.1
Srinivasan, Bala	MA4.3
Stiver, James	MD1.1
Sturm, S	MB1.2
Su, Chien-Min	MD4.4
Su, Yi	MB5.2
Subramanian, Arunkumar	MA5.3
Suehiro, Takashi	WB3.3, WB4.4
Suen, Y. K	MA3.4
Sugamoto, Syusaku	TC2.3
Sugano, Shigeki	WA3.2
Summer, Matthew	MD1.1
Sumumori, Koichi	MD3.2
Sun, Lining	TB2.4, WC4.2
Sun, Yu	TA2.4
Szemes, Peter Tamas	MC2.2, WA4.4

Т	
Tadokoro, Satoshi	TA4.4
Takama, Nobuyuki	MD5.3
Takayama, Kazuhiro	WA2.3
Takeda, Daisuke	MB2.2
Takemura, Fumiaki	TA4.4
Takenaka, Shigekazu	MD2.3
Tamaki, Daichi	TC2.5
Tamura, Wataru	MA2.4
Tan, Han-Shue	MB1.1
Tan, Jindong	WB5.2, WD1.1, WD5.2
Tan, Xiaobo	MA3.3
Tanaka, Junichi	MD3.2
Tanaka, Takayuki	WB1.3
Tanaka, Takuma	TA4.4
Tanie, Kazuo	MA2.2
Tao, Mei	TB3.5
Tarn, T. J	MA2.1
Tatlicioglu, Enver	WB2.1
Tatzer, Petra	TD5.3
Taura, Ayako	WC5.1
Tchernykh, Valerij	WC2.2
Temeltas, Hakan	WC5.2
Thurner, Philipp J	MB5.5
Ting, Yung	MB3.4
Toba, Takakiyo	MB2.5
Tomassi, Giovanni	MC1.5
Tomizuka, Masayoshi	MA1.1, TB2.2
Trabia, Mohamed	WC4.4
Trapp, Ralph	TD3.4
Tsai, Meng-Shiun	TC5.1
Tsao, Tsu-Chin	MA1.3, WA5.1
Tsiotras, Panagiotis	TD4.4
Tsujio, Showzow	MB2.4
Tsuruta, Kazuhiro	WD5.1

U	
Uchiyama, Masataka	TC4.4
Ueha, Sadayuki	MB3.2
Ueshima, Kazuro	TA3.3
Utano, Atsuo	WA5.3

V	
Vaidyanathan, Ravi	WC3.1, WC3.2, WD3.3
Vanijjirattikhan, Rangsarit	WC1.2
Varley, Robert	MD1.1
Venture, Gentiane	MC5.2

Villani, Luigi	WC2.1
Värri, Alpo	TA5.3

W	
Wada, Kazuyoshi	MA2.2
Wada, Masayoshi	TA1.3
Wada, Toshikazu	TC5.2
Wang, Bidou	TB5.3
Wang, Bin	MD2.4, WB2.5
Wang, Danwei	TB1.4, TC5.3
Wang, Jiachuan	WA3.1
Wang, Jianjun	TD5.4
Wang, Junqing	WA5.1
Wang, Wei Wei	MA4.1
Wang, Wen	MC5.5
Wang, Xiaolin	TD3.5
Wang, Yigang	TB1.4, TC5.3
Wang, Yongjie	TB2.4
Wang, Zhi Dong	TA1.1, WA1.4
Ward, Jason	WC3.2
Watanabe, Keisuke	TC2.2
Wei, Ran	TA1.4
Wei, Terence	WC3.3
Wei, Xiukun	WD5.2
Wejinya, U. C	MC5.4
Wejinya, Uchechukwu C	MD5.5
Wen, Jun	MB1.5
Werk, Philip	WC3.1
Wickert, Jonathan	MB3.1
Willis, Mark	WC3.4
Wilson, Brian Christopher David	TD4.4
Winder, Eric	MC5.4, MD5.5
Wong, Heidi	TB4.4
Wong, Ming Yiu	TB4.4
Wongwirat, Olarn	WB2.4
Wu, Haiyuan	TC5.2
Wogerer, Christian	TD5.3, WA2.4

Х	
Xi, Ning	MB2.3, MC5.4, MD5.5, TA2.4
-	TA4.1, TB5.5, TC4.3, WA4.3
	WB5.3, WD2.2
Xia, Qing Hua	WC5.4
Xiao, Jizhong	MD1.5, TB5.5, WA4.3
Xiao, Jun	TB5.5, WA4.3
Xie, Ming	MD1.2
Xie, Zongwu	WB2.5
Xu, Bin	TB1.5
Xu, Chunquan	WC5.3
Xu, Guohua	MC4.5
Xu, Jijie	TC2.4
Xu, Le	WC1.2
Xu, Qingsong	MA5.1
Xu, Xinhe	WA4.3
Xu, Yongkai	WD4.2

Y	
Yamakita, Masaki	MA3.1, WA5.3, WC5.1
Yamamoto, Yoshio	MC5.3, WD1.2
Yamazaki, Hiro-o	MC1.2
Yan, Liang	MC3.4, MC3.5
Yang, Canjun	MB5.4, MD2.5
Yang, Guilin	MC3.4, MC3.5, MD2.1, TA3.1
	TA3.2, WC1.4
Yang, J. P	MA1.4

Yang, Liman	WC1.4	Zhang, Guanglie	TB4.4
Yang, Qingyan	WC1.1	Zhang, Hong	WB5.4
Yang, Qinmin	MD4.2	Zhang, Hui	TD5.4
Yang, Seung-Han	TD5.2	Zhang, Kesong	MC4.5
Yang, Shih-Ming	MB3.5	Zhang, Mingjun	MA2.1
Yao, Bin	MB3.3, TB4.3, WD5.3	Zhang, Shi	TB5.5
Yau, Hong-Tzong	TC5.1	Zhang, Yun	TD3.5
Ye, Yongqiang	TC5.3	Zhang, Yuru	WB5.5
Yeary, Lucas	MA5.4	Zhao, Ji	TB5.3
Yeo, Song Huat	MD2.1, TA3.1	Zhong, Jinghua	MB3.3
Yesiloglu, S. Murat	WC5.2	Zhou, Qingrui	WD2.3
Yin, Tsung-I	MB3.5	Zhou, Quan	MD5.1
Yokota, Masao	MD2.2	Zhou, Wei	MD3.1
Yoon, Woo-Keun	WB3.3, WB4.4	Zhou, Yuan	MD1.2
Youm, Woo-Sub	MC3.1	Zhu, H	MA1.4
Yu, Yong	MB2.4	Zhu, Miaofen	MC4.5
Yuan, Kui	MD4.2, WA4.2, WD2.3	Zhu, Xiaorui	WA1.3
		Zhu, Zhenqi	TD5.4
		Ziegert, John	WD5.4
Z		Zilli, Samuel	TC4.5
Zaeh, Michael F	TC3.5	Zong, Guanghua	TB3.4
Zhang, Bin	TC5.3	Zou, Wei	MD4.2, WD2.3
Zhang, George	TD5.4	Zuo, Wei	TA5.2
		•	

CHAIRS INDEX

Α	
Ang, Marcelo H	TA2,TC3
В	
Bailey-Van Kuren, Michael	MB4, TA1, TD5
Bertram, Torsten	MB1
Book, Wayne	MC2, WB2
Branicky, Michael	WB5
C	
Cai, Lilong	MA1, TA5
Chakravorty, Suman	WA3
Chen, I-Ming	MC3, TA2
Cheng, Ming-Yang	TC2, TD3
Chiaverini, Stefano	PL2, MD4, WB1
Chow, Mo-Yuen	T3, WB1, WC1
D	
Delli Colli, Vincenzo	MC1
Dixon, Warren	WA1
Du, Winncy	MC4, WC2, WD2
Dubey, Rajiv	WA2
E	
Elhajj, Imad	TA4
F	
Frezza, Ruggero	TB1, TC4
Fu, Li-Chen	MA4, WB4
Fukuda, Toshio	PD

Furusho, Junji	MD2
Gaudiller Luc.	TB5
Gokcek, Cevat Guserle, Reinhard	WB4 TC3

Н	
Han, Dong-Chul	TD4
Hashimoto, Hideki	MB2, MC2, WA4
Hashimoto, Hiroshi	WB3
Hu, Yan-Ru	TD2
Huynh, Tom	WC3
- , , -	
1	
Iwasaki, Makoto	WD4
J	
Juang, Tong-Ying	MD4
К	
Kosuge, Kazuhiro	WA1
L	
Langari, Reza	WA5
Lavagna, Michèle R.	TD1
Lee, Jangmyung	WC4
Lee. Kok-Meng	PL1, TB2, TD2
Li Wen J	MA3, MB5
Li Yangmin	WC4
,	

Lim, Tao Ming Love, Lonnie J	WC5 MA5
М	
Maslen, Eric Meng, Max Meng, Yan Ming, Aiguo Mori, Yoshikazu Mukherjee, Ranjan	TD4, WD4 MB2, TB3 WD1 WC5 TC4 MC1
N	
Nakamura, Takayuki Namerikawa, Toru Nelson, Bradley J	TC5 WB2 MA5
0	
Oh, Paul Y Osuka, Koichi	TB1 TA3
Р	
Park, KyiHwan Parker, Johne Parsa, Kourosh Peng, Huei Popovic, Zeljko	MD3 MB4, MC4 TA4 T1 MD3
0	
Quinn, Roger, D	WD3
B	
Romano, Marcello Roy, Debanik	TC1, TD1 T4, T5
S	
Sadegh, Nader Sato, Kazuya Schitter, Georg	MB1, TA5, TC5 WD5 MC5

Sheng, Weihua	WC1
Siciliano, Bruno	WC2
Siegwart, Roland	WB3
Singhose, William	WA2
Sitti, Metin	MA2, MB3, MD5, T2
Song, Gangbing	TC1
Su, Yi	MB5, MD5, TD3
Sugano, Shigeki	WA3
Summer, Matthew D	MD1
T	
Tan, Jindong	WB5
Tomizuka, Masayoshi	PD, PL3, TB2
Tsao, Tsu-Chin	MA1, WA5
V	
Vaidvanathan Ravi	WC3 WD3
	1100, 1120
W	
Wada, Masayoshi Wang Wei Wei	ΤΑ1 Μαλ τβλ
X	
Xiao, Jizhong	MD1, TB5
Y	
Yamakita, Masaki	MA3
Yamamoto, Yoshio	MC5, WD1
Yang, Guilin	MC3, MD2, TA3
Yang, Shih-Ming	MB3
Yao, Bin	TB4, WD5
Z	
Zhang, Hui	TD5
Zhang, Mingjun	MA2