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Survey and Introduction to the Focused Section
on Bio-Inspired Mechatronics

Abstract—Understanding and adapting the underlying princi-
ples of biological systems to engineering systems have the promise
of enabling many new mechatronic systems that can operate in
unstructured and uncertain environments robustly and efficiently.
This paper first reports a brief survey of recent studies on bio-
inspired mechatronic systems and their biological counterparts in
respects of locomotion, actuation, sensing, and control. Next, brief
highlights of the 20 papers in this “Focused Section on Bio-Inspired
Mechatronics” are given. Finally, current challenges and future
trends of bio-inspired mechatronic systems are described.

Index Terms—A ctuation, biological inspiration, control, design,
locomotion, mechatronics, sensing.

I. INTRODUCTION

IOLOGICAL systems have evolved to find just-good-
B enough solutions to survive in complex, dynamically
changing, and uncertain environments. Understanding and
adapting the underlying principles of these solutions to engi-
neering systems have the promise of enabling many new mecha-
tronic systems that can operate in unstructured and uncertain
environments robustly and efficiently [1].

Biologically inspired (bio-inspired) design is one of the
promising methods of solving complex engineering problems
where we have limited knowledge. It is not about blindly copy-
ing biological systems, but more on understanding the physi-
cal principles of their operation and adapting such principles
to engineering systems with the available synthetic materials,
manufacturing methods, computation, power source, etc. These
biological principles are one of the starting points in solving
such complex engineering problems where engineering systems
can go beyond nature since they could focus on only specific
functions and environmental conditions and do not need to have
many extra requirements and limitations that biological systems
have. In fact, biological systems have evolutionary constraints
(e.g., no rotating pin joints can exist in animals except the ro-
tational biomotor of a rotating flagellum of a bacterium at the
nanoscale) from their ancestors and they require many vital
functions (e.g., mating, respiration, feeding, catching prey, and
escaping from predators), which mechatronic systems do not
require.

While biological systems inspire new mechatronic systems
that can operate in complex and uncertain environments, bio-
inspired mechatronic systems could also be used to improve our
scientific understanding of their biological counterparts and to
validate hypothesis on such biological systems.
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II. RECENT WORKS ON BIO-INSPIRED MECHATRONICS

Biological inspiration studies in mechatronic systems can be
grouped in respects of locomotion and mechanisms, actuation,
sensing, and control. This distinction has been used also for
organizing the papers of this “Focused Section on Bio-Inspired
Mechatronics” of the IEEE/ASME TRANSACTIONS ON MECHA-
TRONICS, as detailed in Section III.

A. Bio-Inspired Locomotion and Mechanisms

Animals have evolved to develop very agile, maneuverable,
power efficient, and robust locomotion on ground, vertical sur-
faces and water surface, and in air and water. As ground loco-
motion dynamics, animals can crawl, walk, run, roll, burrow,
jump, and hop. Crawling locomotion is very stable on a wide
range of complex terrains while its cost of transport is relatively
high due to high frictional cost of transport in addition to the in-
ertial cost of transport, which is proportional to the square of the
motion speed, in high-speed crawling. The first crawling robotic
platform was inspired by snakes [2] by studying their locomo-
tion biomechanics in 1974 since snakes can traverse on a wide
range of terrains in a stable manner with large contact area with
surfaces, pass through holes or tight spaces, are very redundant,
and can be robust against hostile environments with their sealed
skin. However, they have drawbacks in respects of high cost of
transport due to lost energy to lateral acceleration and friction,
difficulty of attaching payloads, and heating issues and limited
speeds due to friction. They use lateral undulation, sidewind-
ing, rectilinear, concertina, and some other gaits on different
speed, surface type, animal size, and space tightness conditions.
They can even swim, jump, and climb using surface friction,
and glide. Such advantages and diversity of snake locomotion
have attracted researchers to design and build snake-inspired
robots [3]-[6]. Such modular robotic snakes are shown to crawl
on complex terrains, under water, on ice, and climb where such
robots can be used in inspection, exploration, medical surgery,
and manufacturing.

In legged animals on ground, walking, jumping, hopping, and
running are the dominant locomotion modes. At slow speeds,
biped and quadruped vertebrates walk with an inertial cost of
transport as a function of the square of the walking speed. Many
passive walking machines have been proposed to use a given
downward surface slope to be able to walk with no energy
consumption [7]-[10]. As the record, a biped passive walker
could walk around 4000 steps on a treadmill [9]. However,
such passive walkers are not very robust against disturbances
and cannot be steered around. Therefore, animals mostly use
passive mechanisms in combination with muscle-actuated active
control to be energy efficient while having a controllable and
robust system.
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At higher speeds, running utilizes compliance on the legs that
enables elastic energy storage and recovery. Energetic study
on kangaroo running shows a surprisingly constant (or slightly
decreasing) metabolic energy between 7~20 km/h [1]. Other
running metabolic data (from gazelle, cheetah, and goat) show
that the metabolic energy consumption is linearly proportional to
speed [2]. Legged robotics has been one of the most studied areas
of bio-inspired locomotion systems where many researchers
proposed biped, quadruped, six-legged, and rotating tri-legged
robotic platforms [11]-[17] such as BigDog, RHex, Whegs,
and iSprawl. Although wheeled man-made robot designs could
be energetically more efficient and faster, legged robots could
be superior on traversing rough or uneven terrain and larger
obstacles.

Moving from flat terrain to vertical surfaces, many animals
can climb on surfaces using a wide range of diverse attachment
principles. Such principles could be mechanical interlocking as
in the case of human hands and insect or lizard claws, vacuum
suction in the case of octopus arms, wet adhesives using liquid
coated hairy or smooth feet of insects or tree frogs, and dry
micro/nano-fibrillar adhesives in the case of geckos and spiders.
Depending on the material type, roughness, porosity, wetness,
and contamination of climbed surfaces in a given environment,
climbing animals have evolved to have mostly couple of these
attachment principles to climb in a stable and robust manner on
a wide range of surfaces, e.g., many insects and geckos have
both claws in combination with hairy sticky footpads.

Pitch-back moment during climbing upward needs to be bal-
anced by the attachment peel strength of the fore feet of these
animals. Most animal attachment materials or mechanisms are
directional, which enables more controllability and stability in
a given climbing direction. However, due to this directional
property, animals need to be able to orient their legs in many
different directions when they climb in any given surface ori-
entation. For example, squirrels and geckos rotate their hind
feet backward when they climb downward on a vertical surface
such as a tree, while domestic cats mostly cannot rotate their
hind legs backward and therefore need to jump down instead of
climbing down. Many researchers used one of these attachment
principles to propose a new climbing robot platform. Related to
mechanical interlocking, Spinybot, RiSE, and ROCR are exam-
ple locomotion platforms using microspines to climb on very
rough surfaces [18]-[20]. Waalbot, Stickybot, and Tankbot type
of robots used nondirectional or directional elastomer microfiber
adhesives to climb on smooth or slightly rough surfaces energy
efficiently [21]-[26].

On water surface, many animals stay, walk, jump, or run
for different purposes. Insects, such as water striders or fishing
spiders, use repulsive surface tension forces to lift their body
weight and propel using form drag and surface tension so that
they could live on water to feed and survive. Basilisk lizards
use hydrostatic and form drag to lift and propel their body by
rotating their feet in a specific trajectory at very high speeds
(6-10 Hz) to be able to escape from predators or pass through a
river quickly. For several bird species such as Grebes and fishes
such as dolphins, water surface locomotion is more a mating cer-
emony or behavioral show. Several researchers proposed legged
water surface walking or running platforms toward water sur-
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face monitoring or cleaning, security, and nature exploration
applications [27]-[29].

In nonpowered flight, many animals use gliding and soaring
to lift their body weight with almost no energy consumption.
Even some unique animal species of squirrels, frogs, geckos,
lizards (Draco lizard), snakes, fishes (flying fish), and monkeys
(lemurs) can use gliding for energy efficient traveling among
tall and widely spaced rainforests or escaping from predators.
These legged animals mostly have a patagium type of a skin
membrane extending among their legs and tails that behave as
a flexible wing for efficient and stable gliding.

In powered flight, birds, bats, and insects flap their wings at
frequencies varying from 1 Hzup to 1 kHz in a given specific one
or two degrees of freedom (DOFs) trajectory to create unsteady
aerodynamic airflow for active lift and propulsion generation.
Only hummingbirds and insects can hover for long durations
since they can produce sufficient flight power density required
for hovering, while larger flying animals like birds cannot cre-
ate enough flight power output for their given heavier weight.
Moreover, hummingbirds and insects can create positive lift in
both down and up strokes, while birds can produce lift mainly
during down stroke. Many researchers developed bird like flap-
ping robots, mainly called as ornithopters, to have controlled
forward flight [30]-[32]. As hovering platforms, recent hum-
mingbird or insect-inspired miniature flying robots have showed
a significant progress and promise [33]-[40]. Using tiny mo-
tors or piezoelectric bending actuators coupled with complex
transmission mechanisms and passively rotating wings (mainly
underactuated designs), these flappers could create controllable
torques on the robot body to enable controlled forward flight
and hovering.

In swimming, fish swimming has been studied widely. Meth-
ods of slender body theory [41], elongated body theory [42], [43]
and waving plate theory [44] have been used to model fish
swimming. Till now, the mechanism of momentum transferring
between fish and water cannot be clearly described by theory.
However, it is commonly accepted that the propulsive force of
swimming is highly related to this interaction [42], [43]. Recent
experimental work on fish robots and real fish show that fish can
enhance its thrust and effectively reduce its drag by manipulating
the flow vortex in the wake, which is well explained by the vor-
ticity control theory [45]-[47]. One effective way to understand
the mechanism of vorticity control is to examine the vortex by
using computational fluid dynamics simulation [48] or by ob-
serving it in experiments through particle image velocimetry
(PIV) technology [49]-[51]. Given the data obtained from the
PIV technology, Anderson argued that the high efficiency of fish
benefits from the control of wake vorticity. By using the similar
technology, Lauder and his coinvestigators [49], [52], [53] con-
ducted extensive research to explain the function of fish fins and
function of biomimetic propellers as an alternative of real fins.

There have been many fish-inspired robotic platforms. Early
realization of robotic fish can be traced to the year of 1978
when the small-scaled automatic mechanical fish was developed
in Japan. The birth of RoboTuna in 1994 triggered the exten-
sive research interests in bio-inspired swimming robots [54].
Many different fish robots have since been developed over the
past 20 years [55]-[70]. Most of them obtain propulsion by
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simulating the major swimming modes of fish: oscillating, undu-
lating, and flapping. Representative fish robots with oscillating
mode include RoboTuna, a body-caudal-fin type robot devel-
oped by Hu er al. [59], and a robot dolphin by Yu et al. [57].
Low and Willy [58] proposed an undulating fins mechanism
constructed with rigid sliders and developed several fish robots
propelled by these fins [56]. Toda et al. proposed a long undu-
lating fin design with flexible fin materials and achieved flexible
3-D locomotion in a robotic squid [70]. While these bio-inspired
swimming robots can be used in marine sourcing, seabed chart-
ing, surveillance, environmental assessments, sea exploring, and
scientific research, etc., they could also help to test and verify
the assumptions in biology and hydrodynamics.

In almost all of the aforementioned animals with a tail, the
tail dynamics is very crucial for stability and steering during es-
pecially highly dynamic and maneuverable locomotion such as
high-speed running, flying, and swimming. For example, chee-
tahs use their tail for high-speed steering, and basilisk lizards
use their tail for pitch stability and possibly for steering on water
by using it as a rudder. Bio-inspired climbing and water running
robotic platforms also used an active or passive tail to stabilize
their locomotion in the pitch direction [71], [72]. Next, during
climbing or falling from a high surface, it is recently shown that
geckos can use their tails to create counterclockwise moment to
balance the pitch back moment on a slippery climbing surface
by pressing the tail to the surface actively, and to stabilize their
body roll and pitch direction in air when they fall [72].

B. Scaling Laws in Locomotion

In biological and robotic locomotion systems, it is crucial
to understand how the structure of animals or robots and their
patterns of movement depend on body size, to make general-
izations about the movements of animals or robots of different
sizes, and to study the animal locomotion dynamics in a scaled
up or scaled down dynamically similar robotic systems. There-
fore, scale-independent nondimensional parameters are crucial
to define for different locomotion systems. Using the Newton’s
second law, one can derive three major nondimensional param-
eters [73]: Froude number ( = v%/gh where v is the body speed,
g is the gravitational acceleration, and & is the hip height from
ground) for ground locomotion, Reynolds number (ratio of
inertial forces to viscous forces) for motion in air and fluids, and
Strauhal number for any oscillatory movement. Such numbers
can be used to compare different size scale animals to see if they
are dynamically similar or not, and to quantify when gaits or
fluidic flow behavior change. Robofly used same Reynolds and
Strauhal numbers with flies to study insect flight with a scaled
up actuated wing system in a large oil tank [74]. Weber (ratio of
inertial forces to surface tension) and Bond (ratio of buoyancy to
surface tension) numbers are other nondimensional parameters
for water surface locomotion [75]. Nature of physics favors
small animals such that insects are very well adapted [76]: they
can walk on water using very skinny and wax-coated hairy legs
that repel water, be very fast relative to their body length, can
carry much heavier weights relative to their body weight, can
jump very high relative to their body size, and can cool down and
heat up very fast. Finally, we need to understand which physical
forces become dominant in different length scales to be able to
design robots and understand animals correctly. For example,
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at large scales, volumetric (bulk) forces such as inertial and
gravitational forces and buoyancy dominate surface forces such
as friction, drag, and adhesion and circumferential forces such
as surface tension. Inversely, surface area and circumference-
based forces dominate the animal and robot locomotion physics
at very small length scales down to micro/nanoscale.

C. Bio-Inspired Actuation

Skeletal muscles as the soft contractile actuators (motors) of
vertebrates have advanced properties such as high power density
(up to 100 W/kg), high strain (up to 40%), high stresses (up to
0.35 N/mm?), high efficiency (up to 35%), stiffness tuning capa-
bility (up to five times stiffness change), high strain rates (up to 5
lengths/s), multifunctionality (e.g., can be used also as a brake),
high durability (up to billions of cycles), self-sensing capability,
and self-repairing capability [1]. Muscles are highly hierarchi-
cal fibrillar structures with parallel and distributed actuation
architecture. Developing soft muscle-like actuators with similar
properties has been a dream for many researchers. Electroac-
tive polymer actuators, conductive or ionic polymer actuators,
shape memory alloys (SMAS), and piezoelectric actuator-based
systems have been proposed as muscle-inspired actuator sys-
tems [77]-[80].

D. Bio-Inspired Sensing

Animals use a large number of distributed and diverse sensors
on or inside their body for their vital functions such as locomo-
tion control, catching a prey, escaping from a predator, mating,
etc. As an example, a fly has around 30 different types of sen-
sors on their body. Visual sensing is enabled by single-lens eyes
(vertebrates, reptiles, etc.) or compound eyes (insects) consist-
ing of hundreds or thousands of lenslets. While the former eyes
enable actively focused and high-resolution (in human: around
60 pm linear resolution and 37 cycles per degree angular res-
olution) images, their speed is limited to around 30 frames/s
and their field of view is limited to up to 180°. On the other
hand, compound eyes that are much smaller in size and simpler
can only give unfocused and low-resolution images while they
are optimized for high-speed imaging up to 200 frames/s, high
motion sensitivity, and wide field of view up to 360° imaging.
Even many insects (and snails) have a third eye called ocelli,
which is just a photoreceptor to detect light intensity (no direc-
tion information) with very high speed and high sensitivity for
flight stabilization or other sun light or horizon detection related
functions. There have been some studies to create bio-inspired
single-lens spherical eyes [81], compound eyes [82], [83], and
ocelli [84]. Moreover, many groups have been studying the opti-
cal flow-based visual motion sensing of flying insects [85]-[87],
and implementing such sensors and their image processing to
flying robots [88].

Jewel beetles’ pit organs can also sense IR light very sensi-
tively so that they can detect fires up to 50 km away because
burned trees provide the environment for their larvae to develop
and hatch into adults. Several groups investigated the reversible
conformational change in the IR sensitive protein of these pit
organs and proposed a bio-inspired miniature and low-cost IR
sensor that does not need any cooling [89].

For motion sensing, flying insects use halteres, a tiny oscil-
lating beam under the wing with a spherical and larger tip end,
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or their antennae. Their working principle is the same: linearly
driven oscillating structures bend due to coriolis force when
the animal’s body rotates with a given rotational speed, and by
detecting such bending stresses, rotational speeds can be in-
duced in roll, pitch, and yaw directions. A synthetic haltere was
proposed by Wu et al. [90] for insect-inspired flying robots.

Some electric fishes produce weak (less than 1 V) electric
fields around their body using their electric organs discharges
(EOD) to detect objects in dark or blurred waters. Objects within
this field alter the EOD-induced current at epidermal electrore-
ceptor organs distributed over their entire body surface. These
electroreceptor cells are voltage sensors. Using such sensing
modality, they can detect, localize, and analyze object types
(living or dead) by monitoring self-produced electric signals.
Similar electrical sensing function was implemented and inte-
grated to an electric fish-inspired swimming robot [91]. Also,
sharks and some other marine fishes use their Lorenzini am-
pullae on their head to have very high sensitivity electrical
sensing down to 1 nV/cm to detect their prey fast when they
are in very close vicinity and understand the stress level of their
prey. Such detection is enabled by the induced voltages due to
angular swimming movements of their prey in earth’s geomag-
netic field; so, there is no active electric field generation in this
case.

For force or air/fluid flow sensing, insects use many
mechanoreceptors such as hairs for flow and contact detection
throughout their body, flex receptors called campaniform sen-
silla as strain sensors on their articulated joints, stretch recep-
tors for muscle position sensing, and chortodonal organs for
vibration detection. Rodents and seals use whiskers for contact,
surface texture, or turbulent fluid flow detection. Many bio-
inspired whisker sensors have been proposed for beating heart
position detection and mobile robot obstacle avoidance and sur-
face texture recognition [92]-[94]. Flying insect antennae are
used both as odor and gyroscopic sensing. Cockroach antennae
can detect and help tracking walls dynamically with their seg-
mented strain sensors providing distributed contact detection.
Cockroach-inspired six-legged robots used synthetic flexible
antennae with distributed strain gage sensors for wall following
applications [95]. Such tactile sensors become crucial under low
light or high air-particle content conditions where visual sensors
cannot be used. Moreover, tactile sensing provides much faster
feedback for dynamic motion control while visual sensors are
computationally more expensive and slower.

Additionally, sonar is used as an ecolocation sensor under
water or in air by dolphins and bats, which inspired current
sonars and radars.

E. Bio-Inspired Control

Animals are capable of dealing with complex unstructured
outdoor environments, noisy sensors, and highly redundant me-
chanical systems to exhibit motor skills that are impressive in
terms of agility and efficiency. These skills are still far better
than those observed in robots. One simply has to observe a cat
jumping, hunting, running, and climbing trees, to see that we
are yet far to replicate these impressive motor control abilities
in robots.

Experiments on decerebrated and spinalized animals have
shown that many of those motor behaviors are implemented at
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a low level in the vertebrate central nervous system, namely in
the brainstem and the spinal cord [96]-[98]. The (vertebrate)
locomotor system is organized such that the spinal circuits are
responsible for producing the basic rhythmic patterns, and that
higher level centers (the motor cortex, cerebellum, and basal
ganglia) are responsible for modulating these patterns according
to environmental conditions [99]. A key element in the locomo-
tor system is the central pattern generators (CPGs) located in
the spinal cord. CPGs are neural networks that 1) are capable of
producing coordinated patterns of rhythmic activity without any
rhythmic inputs from sensory feedback and (2) can be activated
and modulated by relative simple signals from higher control
centers [98], [100]. These circuits represent the basic building
blocks, the motor primitives, out of which movements are cre-
ated (i.e., the “vocabulary” of movement generation). A nice
conceptual image of these spinal cord circuits is that of a mar-
ionette puppet on strings as proposed by [101] where a pulling
a few strings (i.e., activating a few descending pathways) can
generate complex coordinated movements of whole limbs.

The concept of CPGs is interesting for robotics [102]. CPGs
implemented as coupled nonlinear oscillators can exhibit limit
cycle behavior, i.e., stable rhythmic patterns that can recover
from transient perturbations, e.g., from the environment. When
coupled to a robot (e.g., a dynamic walker), this can lead to
robust mutual entrainment between the CPG and the mechanical
body [103]-[105]. Also, CPGs are well suited for distributed
implementation, which might be interesting for modular robots,
such as snake robots and reconfigurable robots. Finally, because
CPG models typically have only a few control parameters (e.g.,
drive signals) to modulate locomotion, they facilitate control and
learning by reducing the dimensionality of the control problem.

III. HIGHLIGHTS OF THIS FOCUSED SECTION

We had around 100 papers submitted to the Focused Section
while we could accept only 20 papers due to the given page
length limit. After a rigorous review process, the following pa-
pers were accepted for publication while we could not accept
many solid papers unfortunately.

The Focused Section is organized to group the publications
in areas of bio-inspired locomotion dynamics and mechanisms,
sensing, actuation, and control, respectively.

In bio-inspired locomotion dynamics and mechanisms topics,
first, Koh and Cho propose an omega-shaped inchworm-inspired
crawling robot with large-index-and-pitch SMA spring actua-
tors. The distinguishing features of the robot are mainly related
to the compact design, thus not requiring difficult assembly
steps, and to a novel concept for using SMAs, thus allowing to
increase the efficiency and the frequency which the actuator can
reach. The experimental tests show the potential of the system
in terms of locomotion performance, thus providing hints for
developing miniature robots with similar technologies.

An approach close to the aforementioned one is proposed by
Onal et al., who report a worm-type compliant crawling robot
manufactured by laser machining of origami patterns and al-
lowing us to obtain in an easy, cheap, and fast way, 3-D robotic
systems from 2-D microfabricated foils. By combining this
fabrication technology with SMA-actuated hinges, the authors
present a working worm-like robot whose performances make
visible the potentials of “printable robotics,” especially for
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applications where large payloads are not requested, but haz-
ardous operations are frequent.

A powerful approach to simple control in bio-inspired robots
is presented by Boyle et al. The authors contribute to the field of
snake-like robots for rescue applications by developing a novel
robot design based on the mechanisms and neural control of
locomotion of a tiny nematode worm. Thanks to the simple yet
high-performance decentralized control system, the robot is able
to find a path without any form of external sensory capability.

As the legged ground locomotion example, Hutter et al.
demonstrate an efficient and versatile locomotion platform with
highly compliant legs. They report the design and control of a
couple of leg prototypes able to perform precise joint torque and
position control, adaptation in a passive way to the environment,
and exploitation of dynamic motions. These intriguing results
are achieved by an integrated design incorporating novel
hardware and active damping control. Both legs are intended to
be included in robust and highly versatile quadruped robots.

Related to underground locomotion, Omori et al. propose a
bio-inspired planetary subsurface explorer where they showed
preliminary experimental results of a prototype excavator
with propulsion and excavation units. The propulsion unit of
the system is based on peristaltic crawling and it is able to
maintain the body position and orientation during excavation,
which is normally extremely challenging. In addition, the
excavation performance is really good: they range between 430
and 650 mm, without any slowing, thus opening interesting
opportunities for the exploitation of the proposed technology
in planetary applications.

As aquatic locomotion systems, a fish-inspired robotic plat-
form is presented by Kopman and Porfiri for research and educa-
tion in bio-inspired swimming locomotion studies. The robotic
fish takes advantages of widely available, low-cost, and resilient
off-the-shelf components, thus making the system ideal for ed-
ucation purposes and even for a limited production. The very
low fabrication cost (less than 100 USD) allows an easy cus-
tomization of the device, which can be used also as a basis for
further investigations.

Again on aquatic locomotion, Serchi et al. report a soft un-
derwater robot inspired by octopus and using vortex propulsion.
Although several authors developed underwater machines pro-
pelling thanks to streams of fluids ejected through a nozzle and
moving in the vortices, the main feature of the proposed device
is the true biomimesis, achieved by using silicone molds of a
real octopus and replicating all details of the animal. The ex-
perimental results demonstrate good potential of the system as
a soft unmanned underwater vehicle.

Related to multimodal locomotion mechanisms, Dickson and
Clark propose a design of a multimodal climbing and glid-
ing robotic platform called ICAROS. More specifically, the
ICAROS platform has demonstrated optimal performance in the
combination of these two locomotion modalities and an extraor-
dinary versatility, even if there are other robots able, separately,
to climb faster or to fly more agilely. Another relevant feature of
this platform is related to the size, which is the smallest available
in the state of the art to date.

Doyle et al. propose a new avian-inspired passive mechanism
for perching quadrotors. The design of the flying robot takes
inspiration from songbirds, able to sleep in trees without any
active muscle control, and it holds promises for innovative sys-
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tems for reconnaissance missions. Combination of compliant
and underactuated feet and collapsing leg mechanisms is the
distinguish feature of the robot. Tests demonstrate an effective
robot perching and a reliable stability also under disturbance.

Related to gecko-inspired climbing robots, Hawkes et al.
present scaling issues of directional adhesives for climbing
applications. Interestingly, the authors present a bio-inspired
mechanism allowing large patches of directional dry adhesives
to reach adhesion levels previously seen only for small sam-
ples in controlled conditions. The key considerations in scaling
climbing adhesives to large robots (and even humans) are to
maintain alignment and uniform load distribution as contact ar-
eas increase, despite imprecision in foot placement and loading.

Finally, Hatakeyama and Mochiyama present an original
chameleon tongue-inspired shooting mechanism to catch ob-
jects in a highly dynamic manner. Two systems are presented
with slightly different actuation mechanisms for shooting an
end-effector attached to a flexible string on relatively long dis-
tances. The system is even capable of catching objects that are
behind obstacles.

In bio-inspired actuation topics, Pierce and Mascaro propose
an interesting bio-inspired wet SMA-actuated robotic pump.
The purpose of such a pump is to manage the flow of a fluid for
heating and cooling a series of wet SMAs (i.e., SMAs that are
surrounded by fluids for faster actuation thanks to faster heat
transfer). The prototype is capable of pumping 2.1 times more
fluid than is required for its own actuation, and can therefore
provide a net positive thermofluidic output to a system of wet
SMAs, therefore paving the way for untethered robots actuated
solely by SMAs.

Chang and Kim use ionic polymer-metal composite (IPMC)
actuators to develop an insect-inspired aquatic legged robot. The
article explores the effect of different levels of wetness of the
anode surfaces on the bending properties of the IPMC strips. It
also investigates effects of the surface conductivity in an aquatic
environment using different types of input signals. Thanks to its
2 DOFs per leg, the hexapod robot can perform a tripod gait in
water.

As a new bio-inspired sensing demonstration, Duhamel et al.
report an innovative bio-inspired optical flow sensing system for
altitude control of insect-inspired flying microrobots. The sensor
is light enough to be mounted on a very light (68 mg) micro-
robot with flapping wings. The bio-inspired sensor and control
algorithm were successfully used to control altitude online.

In bio-inspired controls topics, we have six papers. Rom-
bokas et al. develop a reinforcement-based learning and con-
trol method for a tendon-driven hand robot, the ACT Hand.
Their control method is inspired by the biological concept of
muscle synergies which is a useful way of reducing the di-
mensionality of the control and learning problem. Using path-
integral reinforcement learning, they successfully manage to
learn movements such as sliding a switch and turning a knob
despite the complex physical properties of the tendon-driven
robot.

Brunete et al. propose an offline genetic algorithm-based opti-
mization method for heterogeneous modular multiconfigurable
chained microrobots. The method is used for determining opti-
mal heterogeneous multiunit structures as well as for designing
gaits that can handle different situations such as pipes and un-
even terrain.
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Bliss et al. present a swimmer robot prototype that is con-
structed as a tensegrity structure composed of bars, cables,
springs, and motors that provides a first approximation of
the musculoskeletal structure of fish. The control is based on
the concept of CPGs, which are bidirectionally coupled to the
tensegrity structure such as to obtain mutual entrainment and
robust limit cycle behavior. The robustness of the periodic be-
havior is tested by applying perturbations to the mechanical sys-
tem as well as variations in the controller parameter selection
and observing that the closed-loop system can handle significant
perturbations and variations compared to open-loop control.

Huang et al. report their study on step length and veloc-
ity control of a dynamic bipedal walking robot with adaptable
compliant joints. The robot uses the MACCEPA actuator that al-
lows one to control compliance and set position independently.
The control scheme leads to energy efficient locomotion with
controllable speed and stride length.

Karnati et al. propose a novel method of motion planning
for an anthropomorphic arm based on movement primitives.
They address the complex task of unscrewing and screwing
objects with a dexterous anthropomorphic robotic hand in two
cases: with the first finger and thumb and also with the lit-
tle finger and thumb. The sinusoidal trajectories are imple-
mented using a proportional-integral-derivative sliding mode
controller for a dexterous artificial hand to ensure overall system
stability.

Finally, Ding and Fang present a novel three-level motion-
planning framework “joint space-movement primitive space—
task space” for an anthropomorphic arm by introducing move-
ment primitives as the bridge connecting the task space and joint
space. The proposed method does not only control the motion
process of an anthropomorphic arm, but also simplifies the mo-
tion planning of complicated operation tasks. The validation and
feasibility of the proposed method are verified by simulations
and experiments.

IV. FUTURE TRENDS OF BIO-INSPIRED MECHATRONICS

Although there have been many progresses on bio-inspired
mechatronic systems, many major research challenges still
remain unsolved. First, design, actuation, and control of
bio-inspired robotic mechanisms for high-speed locomotion
with high maneuverability are very challenging such as in the
case of flapping wing-based flight, high-speed legged running
on ground or on water, and high-speed climbing. Exploiting
the passive dynamics of compliant motion mechanisms and
soft materials is a crucial aspect of dynamic and soft robots
where modeling, design, manufacturing, and control of such
underactuated soft/compliant systems remain as a significant
challenge. Many groups are investigating these challenges as
one of the exciting future trends.

Most of the current works have focused on single locomotion
systems while animals could have multimodal locomotion to
operate in uncertain environments. Therefore, design, actuation,
and control of multimodal locomotion systems with multifunc-
tional or highly integrated mechanisms, actuators, and sensors
are promising research directions.

Animals can operate on a wide range of terrains, and bio-
inspired robotic counterparts are not that multiterrain yet. By
understanding the multiterrain locomotion dynamics, actuation,
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and transitioning control methods in detail, we could have mul-
titerrain robots that could operate on solid ground, sand, mud,
water, and rocks.

Automated high- and low-level control of dynamic bio-
inspired robotic platforms is still an important challenge, and
many people are studying such control methods coupled with
the given robot’s mechanical, actuation, and sensing design.
On the other hand, computational modeling and experimen-
tal characterization of fluid—structure interactions in compliant
systems are essential for our detailed understanding of animal
and robotic locomotion systems, and more advanced and fast
computational methods, which could be also used in design
of robotic platforms, are a significant trend in theoretical and
experimental mechanics studies.

Finally, it is important to have advanced new bio-inspired
or other man-made materials, which enable high performance
and robust locomotion functions of animals, with limited power
consumption. Such materials include high strength-to-weight
ratio composite materials as in the case of bones, shells, tooth
enamel, and silk, repeatable adhesives as in the case of geckos
and insects, stiffness tunable materials and structures as in the
case of muscles and sea cucumbers, reduced drag surfaces as in
the case of shark, dolphin and other fish skin, superhydrophobic
and mechanically robust self-cleaning coatings for wet envi-
ronment operation and easy cleaning, new robotic soft skins
and actuators with embedded and distributed sensing, and self-
healing materials that are robust against mechanical failure in
robot mechanisms.
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