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ABSTRACT

This paper presents the dynamic modeling and the control strategy
of an interesting three degrees-of-freedom (DOF) variable-reluctance
(VR) spherical motor which offers some attractive features by
combining pitch, roll, and yaw motioa in a single joint. Both the
forward dynamics which determine the motion as a result of activating
the electromagnetic coils and the inverse model which determines the
coil excitations required to generate the desired torque are derived.
The model represents the first detailed study on the inverse dynamics,
and yet, permits a spectrum of design configurations to be analyzed.
The solution to the forward dynamics of the spherical motor is unique
but the inverse model may have muitiple solutions and therefore an
optimal choice is required. The control strategy of a VR spherical
motor consists of two parts; namely, the control of the rotor dynamic in
terms of the actuating torque, and the determination of the optimal
inputs for the required torque. An optimal choice is determined from
an unconstrained optimization problem. The impiementation issues in
determining the optimal control inpat vector in real-time are also
addressed.

1. INTRODUCTION

An increasing need for high pesformance in robotic applications has
motivated several researchers to direct their investigation efforts to
new actuator concepts to improve the dexterity of robotic wrists.
Examination of the existing mechanical joints reveals that the ball-
joint-like spherical actuator is an attractive alternative to the three
consecutive-rotational joint configuration. The interest in spherical
motor as a robot wrist is triggered because of its ability in providing
the roll, yaw, and pitch motion i a single joint, isotropic property in
kinematics and kinctics, and its relatively simple structore. Also, if has
no singularity in the middle of workspace except at the boundary. The
climination of gears and linkages cnables both high positioning
peecision and fast dymamic response to be achieved. These attractive
features have potential applications sach as high-speed plasma and
laser cutting where the orientation must be achicved rapidly and
contingously with isotropic resolution in all directions.

Recently, several design coacepts of spherical motor were proposed.
A spherical induction motor was conceptualized in [1] for robotic
applications and the detailed analysis was given in [2). However, itis
difficnlt to realize a prototype of its kind becanse of its complexity in
mechanical and winding design and manufacturing, which requires
inlaying all three transversing windings on the inner spherical surface
of the stator. Laminations are required to prevent movement of
unwanted eddy curreats. Complicased three phase windings must be
mounied in recessed grooves in addition to the rolling supports for the
rokor in a static configuration. These and other considerations have led
Lee et al. [3] to investigate an aliemative spherical actuator based on
the concept of variable-reluctance (VR) stepper motor which is easier
to manufacture. Hollis er al. [4] have developed a six DOF direct-
current (DC) "magic wrist" as part of a coarse-fine robotic
manipulator. An alternative DC spherical motor design with three
DOF in rotation was demoastrated by Kanedo ef al. [5], which can
spin continuously and has a maximuam inclination of 15°. Although
the control of a DC spherical motor is relatively simple, the range of
inclination and the torque constant are rather limited. Foggia et al. [6]
demonstrated an induction type spherical motor of different structure,
which has a range of motion characterized by a cone of 60°. Since the
control strategy of the induction motor [6] has not been reported, no
results were given on the ability of the motor to realize any arbitrary
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As compared with its DC counterpart, a VR spherical motor has a
relatively large range of motion, possesses isotropic property in
motion, and is relatively simplec and compact in design. The trade-off,
however, is that sophisticated control scheme is require d. In this
paper we discuss both the dynamic model and the control strategy of a
VR spherical motor. The contributions of this paper may be briefly
summarized as follows: (1) An analytical dynamic model of an unique,
potentially useful design of a three DOF ball-joint-like VR spherical
motor has been described. The model represents the first detailed
study on both the forward and the inverse dynamics of 2 VR spherical
motor., Yet, the model permits a spectrum of design configurations to
be analyzed; (2) The analysis offers some interesting insights to the
design and control of VR spherical motors. For motion control of the
VR spherical motor, both the forward dynamics which determine the
motion as a result of activating the motor coils and the inverse model
which determines the coil excitations required to obtain the desired
torques are needed. The solution to the inverse model has multiple
solutions and allows an optimal control vector to be chosen to
minimize a specificd cost function. This characteristic significantly
differs from that of a popular three-consecutive-rotational-joint wrist
based on the traditional single-axis motor or spherical motors of other
types which typically have unique solutions to both the forward and
inverse dynamics and therefore limited the flexibility of coatroller
designs; (3) The paper also represents the first atiempt to address the
control strategy of the VR spherical motor. The formulation of an
unconstrained optimization problem from a standard problem of
constraint cxtrema is intcresting. The implementation issues are
discussed.

2. DYNAMIC MODEL
The VR spherical motor referred to in this paper is a ball-joint-like
device similar to that conceptualized by Lee and Kwan [7).

2.1 Structure of a VR Spherical Motor

The structure of the VR spherical motor is shown in Fig. 1 and an
exploded assembly view is given in Fig. 2. The VR spherical motor
consists of basically three mechanical assembiies; namely, a spherical
rotor, a hollow spherical stator, and an orientation measuring system.
The spherical rotor is coastrained but allowed to rolt on the bearing
gimbals which are mounted on the inner surface of the stator.

The coils with ferromagnetic cores are evealy located on the rotor
and the stator, and cach coil can be energized individually. In order 10
maintain geometrical symmetry for simplicity in control, the stator
poles and the rotor poles are of circular shape. The rotor poles meet at
the center of the rotor, and the stator cores are connected by the
magnetic conductor layer in the stator shell to form a magnetic circuit
with the airgap. The poles are evenly spaced on the stator and the rotor
following the pattern of regular polyhedrons. Each vertex of the
polyhedron corresponds to the location of one pole. It can be shown
that the maximum number of coils which can be evenly spaced on a
sphere is 20, the figure corresponding to the number of complex angles
of a dodecahedron.

In the operation of the VR spherical motor, the stator coils are
energized individually using the control circuitry. A magnetic field is
established which creates magnetic energy in the airgap. The created
energy is a function of the relative position of the rotor and the stator.
The motion of the spherical VR motor is thus generated as the rotor
tends to move to a position such that the energy in the airgap is
minimized. The detailed kinematic relationship which describes the
orientation of the rotor as a function of the three encoder readings can
be found in reference [8].
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2.2 Reter Dynamics 3
As shown in Fig. 1, a base Cartesian coordinate frame XYZ is fixed
at the center of the spherical stator with the X and Y axes pointing
towards the x- and y- eacoders and the Z sxis pointing toward the
open-ead of the spherical socket. Similarly, & toordinate frame 123 is
assigned 10 the center of the spherical rotor with the 3 axis pointing
along the rotor shaft. As it will be discussed latet, the structare of the
spherical motor has certain symmeric propesties with respect 10 Z-Y-Z
Ealer angles, which are greatty exploited in solving the optisal control
input for a specified torque. Thus, the orieatation of the spherical
motor is specificd wxing the Z-Y-Z Euler angles. Given an actuating
torque T = [Tj, Ty; T3]T, the rotor dynssaic equationss described ia Rotor —f
mal&zb&imﬁttﬂ + is given as follows:

MoV Mo =T, ®
My =l-BE, I, 0,
L
Tl sl and 1, are the smoments of incrtia sbout the principies axes,

Sliding Block z—encoder

y~-encoder

ms(‘,ﬂqb,muwﬂumm
of te anngle (), reapectivedy.

Terame Gea

The actasting torque of the spherical motor is derived by using a
flowing through the reluciance of airgaps 1o be considered separately,
and yet permits & wide varicly of design configarstions 10 be inatyzed.

Electro-magnetic system: In the derivation of the analytical
model, the reluctance of the iron core is assumed to be megligible as
compared 10 that of the airgap and thus the eaergy storage occurs
solely in the air gap. The eror introduced by fhis assuimption depesds
on the geotetrical dimensions of the structure and the peniseability of
the material. This error, in general; can be significantly reduced with
adjacent rotor poles aad that between any adjaceat stator poles is
assumed 1 be inuch larger compared 0 the sirgap. This assemption
implies that 8o leakage flex occurs between adjacent stalor (or rotor)
poles,

The electro-magnetic sysiem of the VR apherical molor is modedied
as shown in Fig. 3 for the derivation of the lorgué geacration. The VR
sphuie;lmcouiasbrnacﬁvemwihndnmm
coils. In Fig. 3, M,; and M. d¢note the magaeto-motive-forces
(mrs),ym“ﬁaa;&m»ui‘mwhﬂm?
fotor coil respectively; R;; denotes the retuctance of the airgap
between the ith stator coil and the jAR rotor coil; and #;; is the
stator shell with respect to that of the Center of the rotor is denoted as

i

VinPFig. 3.

‘ w?mm&ﬁg.a,mwmeqmumum _Lg.‘ _Lm _l_""

e T 71 T
S, =P, M, + M; - V], ¢2]

where the permeance P is the reciprocal of Ry Since

- e ® Jw we

the magnetic poteatial V can be derived by substituting "'ij from

Equation (2) into Eqaation (3), which leads to 'l' ‘]‘ T
TSkl «)
-
E,E, Py Fig. 3 Magnetic Circuit of the Spherical VR Motor
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Governing equations of energy corversion: The torque generated
by the electro-magnetic system is derived by using the principle of
conservation of energy.

B0 = B0 - TO » @ ®
where

i’._ = time rate of change of magnetic energy stored,

E. = electrical power input,

T = resultant torque acting on the rotor, and

o = angular velocity of the roor.

Since Teo dt = Tdy, + T,08, + T4, , ()
where d¢,, d¢,, and d¢,, are the infinitesimal changes of angles with
respect io the stator frame. Using the result from Equations (5) and (6)
and noting that the differentials of ¢, oy.mdozueindependemof
each other, the torque generated by the magnetic system is given by
T=V(E -E), (©]

I R
and i; j, k are the unit vectors along the X, Y, Z axes of the stator
coordinate, respectively. The electrical power input to the system is
given by

where

é.:_EX.EI(Mi+M,i)&,- ®
mdmemta{mag’n‘eﬁcewgymedinmesymis
1 3 F &R
Bf EE R, ®

From Equation (8) and the time-derivative of Eg, obtained from
Equation (9):

h‘ﬁ-%zéﬂ"‘”‘v'wi’i‘ 10

Combining Equations (1), (6), and (10) and noting that ¢, ¢, and
#, acc independent, the torque T can be represented by Equation {11).

T=~}.E I M+ M- VPV B (an

=1 =l

2.4 Permeance Function

Both numerical computation {10] and experimental results {7] have
indicated that a typical permeance model P(x) where x is the relative
displacement between two poles hes the following properties: 1) P(x) is
even, positive, and morotonically decreasing to zero as the
displacement increases; 2) The derivative of P(x) has a maximumn and
minimum at x = +x,, where X is a constant for a givea geometry: 3)
The value of P(x) at the origin (i.c. when the poles are fully
overlapped) can be reasonably well-determined by

P@) = "‘Ts("’ a2)

where u, is the permeanability of air; 1 is the shoriest path length
between two parallel pole-faces; and S(x) is the overlapping area
between the stator and the rotor poles.
For a given geometry, a typical permeance curve which satisfies the
above conditions is given as follows:
o __1 13
Px=0 T+ >
where x = x/x,, and x,, is a constant to be determined. By noting that
the corresponding maximum permeance occurs at X, = X,/{3, the
value of x, can be determined experimentally or from numerical
computation such as finite element method. However, the following
additional condition must be satisfied in modeling the permeance
function for the spherical motor: P(x) must be periodic with a period
2x. Thus, using Fourier series expansion on [-¥, x] and retain the first
N terms, the following periodic permeance function can be obtained.

N
P(x) = a, + kElakooskx, (14)

where the coefficients (ao, ay, ..., ayy) can be determined from
experimental data or from numerical computation. Note that P(x) is an
even function and therefore the sine terms vanished.
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2.5 Torque Prediction Model )
The torque prediction model determines the torque generated by the

spherical motor for a given set of input currents applied to the
clectromagnetic coils. Fora specified geometry, the permeance

between any pairs of adjacent stator and rotor poles is a function of the
angle between the position vectors characterizing of i stator and the
jmmtu‘polﬁ,ﬁj. Hence,

P; =P (). (15)

Let C (X, Yei» Zg) and C_+(X5, ¥.i, Z.:) be the position vectors of

the ith st§|t111'51a|:t13ltlN:zs;th mwr?oxige r?spzclzively. The angle between
any pairs of stator and rotor poles can be determined from the dot
(inna')prodnctot‘thenositionveduscﬁmdcrj;ﬂmis

cos (#) = C“;, (16)
where R is the mean radius of a spherical surface separating the pole
faces of the stator and rotor. The position vector of the jth rotor coil
with respect to the stator coordinate frame is defined by

=], -l

where [T] is 2 homogeneous transformation describing the rotor frame
with respect (o stator frame, and c,.; describe the position vectors of j
rotor pole with respect to the rotor frame. From Equations (7) and
(11), it can be shown by using differential geometry that the torque is
given by
| dP
ThE v Bl .
whemeijisamitvecurperpudixhnomeposiﬁonvmscs-and
Cpjand caa be written as
_GxG
T R dn &
Wwhere Cgj x Cpy denotes the vector cross-product of Cy; and Cyj.
Thus, Equation (18), along with Equations (2) and (19) and 2
permeance model givea by Equation (14), defines the torque geserated
by the spherical motor for a given set of inputs in terms of the
magneto-motive-forces (mmf’s) of the coils.

1s)

a9

3. MOTION CONTROL STRATEGY

The motion control of the VR sphesical motor coasists of two parts.
The first part is to determine the actuating torgues of the VR spherical
motor so that the motor follows the desired trajectory. The second part
determines the optimal electrical inputs to generate the required
actuating torque determined by using the control law for tracking the
desired trajectory.
3.1 Control of Rotor Dymamics

The control task is to determine the actuating torque so that g will
track the desired trajectary qg. The spherical mosor is controlled using
the computed torque method [11]. The feedback law is chosen in the
form

T=MOV+h@d, 20)
where V= [V, Vo, V 1T is the control vector. Using the feedback

law given in Equation (20), the closed-loop dynamic equation becomes
Mq =MV,

Since M(Q) > 0 V 8 # 0 and therefore M™] (q) exists V 8 # o, we have
g=V. (1)

Equation (21) represents a linear system with three decoupled
second-order subsystems under the control vector V and hence linear
control theory can be applied to each of the coordinates separately. As
an example, the control vector V may be chosen as

)

Vad-K G-3W-K (g-q )

where K, = diag [Ky Kjp Ki] and K, = diag {Ky Ky Ky,
The tracking errore = q - qq is guaranteed to approach to zero
asympiotically if the elements in K and K are all positive.

The inertia matrix M(q) given in Equation (1) is not invertible at ¢
= 0, which is, in fact, a singular point for the Z-Y-Z Euler angles. At
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this singutar point, Equation (21) caneot be obtaincd from Equations
{1) and (20). We shail cxamine the validity of the control Law at the
singular point, the Esler Equations are rewrilicn is stale-space
seprcsoatation.

%=1
where T is known as the M&H-WWM
2.
As St wehmeX=(r005. 0

¥
]
H
LN = g é0C +PH-BHC-T,C,+ T, 83 i;
-uiic.d)s.-ik.*r,s,'ft,cq.
iﬁ"ﬁ»é-;“gwhﬁm&-nwaﬁ+-:'—_
As 9 =0, Equation (1) becomes @0
X = [F+, 23497
2
fhadid | B PR ¥E |
E
If the control torgue T is determined by Equation (20), thea the
right-hand side of Equation (23) is contisuons on D xR, aclosed,

connected and boended regica, Furthermore, it also satisfics a Jocal

Lipschitz coadition on D. Then for sy (x,, i) ¢D, wheve x, = x(t,),
1, is the initial time, there exists 2 unique solution x(-, defmed
over some interval a < 1, < b with (z,, [a, b]) D. , the

solation depeads continuously on §, aad x,,. Ths.;-euuhul
on the Picard’s Existence and Usiqueacss Theomem {12).

The mapping ficld f in Equation (23) is act continuocss as § = 0 and
hence, local Lipschitz cosdition is not satisfied. In fact, the rotor
motion can esseatially be dexcribed by the two independent varisbles ¢
and y+¢ at § = 0 where the procession and the spin axes arc aligned
and measured abost the same axig. The vector fiedd T degeaerates from
fu&m@)ml‘-w(zs} Thus, maltiple solutions
exist at the singalar point of the Z-Y-Z Esaler angles as there are two
indcpendent equations with theee variables.

By the physical nature of ball-joint-like spherical motor, the
solution to Equation (1) should be continuows. To casarc a2 smooth
molion at (& = 0), a generalized vector ficld mast be constructed at (¢
= 0) such that the vecior field of the closed-loop sysica is continpous
for the rotor dynamics given by Equations (24) and (25). Since the
possession and spin angles at (# = 0) can be arbitrarily chosen
provided that their sam is uniquely determined by the location of the
body. the control vector V in Equation (21) in state-space
representation can be treated as a geacralized vector field for the state
fcedback control Iaw defined by Equation (20). With Equation (25a)
replaced by Equation (21) at {6=0), the vector field is contingous over
the whole range of motion and satisfies Lipachitz conditions aad
hence. the unique solution is ensured. Typical simulation results for a
rotor of 76.2 mm djameter with design 1= 8.0538E-4 Kg-m? and
1,=5.3775E4 Kg-m? are shown in Fig. 4.

3.2 Control Input Optimization

The control input optimization is esscatially an inverse problem o
torque prediction model. The solution o the inverse problem is to
compute a set of coil excitations, which is denoted here as a control
input vector U, that is required to generate the desired torque T.
‘Unlike the forward torque prediction model which yiclds an unigue
sorgue vector for a specified set of coil excitations, there are gencrally
infinite solutions to the inverse problem of the sorque prediction model
of a spherical VR motor for a specified torque. For clarity in
illustrating the inverse torque model, the following additional
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d&eeoﬂumduwmmz)hmun
desised 30 have 8o wiring in fhe moving parts and thes, only simple
ut;mwd:).mm@u—dsmphﬁz.ﬂn
= ,.. —

Formasiation for Inverse Torgque Model: ia oder 10 choose 8
optimal solution among many alicreslives © the inverse torgue model,
the torgue cquation is preseated in guadratic form by ssing the
follows .

U=, ... M JF<k", 26)
a=fs ..n..a) on
i -
t#- » Iﬁtl m
HEED '
=l jm=l

Hence, using the notations defined by Equations (26) 10 (28), the
torgue can be written in saarix form as follows:

T,=§u‘(mu 1=123 @
l 39"0-’5(& --J a-ne- t;)’ 00
6=100...10...00 oy

ik B
where (g, I=1.2.3) is an wait vector along the axes of the rotor body
frame. The matrices [Ag). (1=1,2,3) vary with the oricatation of the
spherical smolor.

Givea the desired torgue, U may be detcrmvined from Equation (29)
by solving the algebraic equations. However, since U ¢ R™ where m
is the namber of stator coils and is designed larger than fheee, fhere are
generally infinite aumbers of solutions to the inverse problem. 1t is of
interest to determine an optimal solution by some gaidelines or a
criterion, such as one minimizing of the curreat amplitude or the
consumed power. In other words, the inverse modal is essentially an
ommmnmprobhmwhwhmayhefmmwasﬂhs:

- - 2
Minimize £(0) E; Huug:‘ («zU’IAJU ™ 62

where the weighting factor M > 0 is generally a factor very large real
number. The generalized reduced gradiate (GRG)method {11), is used
10 solve for the optimal solution. The minimization of the functional
Equation (32) is an aaconstrained problem. It has beea namerically
found that the GRG method works well in minimizing the fuactional
represeated by Equation (32).

Iustrative Example: An example is illastrated here by using a
design configuration where the stator and the rotor are arranged at the
vertices of an icosahedroa and a tetrahedron, respectively. However,
10 allow for the motion of the rotor shaft, only cleven stator poles are
used in the design. The characteristic dimensions of the VR spherical
motor using in the following example arc summawized as follows: The
mean radius of the spherical surface separating the stator and the rotor
pole faces are 38.1mm. The radius of the stator and the rotor poles is
12.7mm and the airgap scparating the stator and the rotor pole faces is
1mm. The permeance model as a function of the relative displacement
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between two circular poles was obtained experimentally. The value x,,
in Equation (13) was determined to be 18mm. With the permeance
model and the given pole coordinates, the matrices (A, I= 1,2, 3) are
formed. To compute for an optimal input mmf{’s for a specified torgue
at a given orientation. an initial input mmf’s vector is estimated and a
local optimal solution is computed by the GRG algorithm. The global
optimal solution is then searched by comparing the objective values of
local optimal solutions.

As a numerical exampie, the optimal input mmf’s which generate
the torque T = 1 u3 (N-m) at the rotor orientation at (0,0,0) are
computed for two cases. In both cases, p is set to be 2 so that the
clectric power is minimized and by choosing M = 10° the constraint
equations are satisfied with the relative accuracy of 105, In case ),
all the eleven input mmf’s are independently excited. The values of
the optimal input vector is tabulated in TABLE 1. The minimized
objective value is 17.8601 and that the absolute value of the maximum
input mmf is 3.7816x10° Amp-turns.

In case (2), the coil excitations are grouped in pairs so that the
number of power amplifiers are reduced. In each grouping, the coils
pointing towards each other along a diameter are connected in series,
i.e.uj=—u;,s,i=1,2,.,5 The oplimal solution of case (2) is
compared to that of case (1) in TABLE 1. The corresponding
objective value is 46.2825 and the absolute value of the maximum
mmf is 3.8087x10> Amp-turns. Clearly, the additional constraints
introduced in case (2) substantially increase the objective value as
compared to that in case (1). It is worth noting that the input mmf’s
can be effectively lowered by reduciag the airgap. If the airgap is
reduced to 0.01mm, the current amplitudes for the same coils are about
1/10 of the the about results.

Table 1 Simulation Results

pole case 1 case 2
(10°Amp-tumns) (10°*Amp-torns)

1 15797 03167

2 0.2390 -3.5868

3 -1.4074 0.6440

4 0.4429 -3.8087

5 -3.7816 3.6894

6 1.1861 03167

7 -15810 36894

8 0.1923 -0.6440

9 02322 3.8087

10 3.4789 -3.6894

11 0.7682 3.0930

Objective
Value 17.8601 46.2815

4. CONCLUSIONS

The dynamic model and the control strategy of an innovative three
degrees-of-freedom VR spherical motor have been given. The torgue
prediction mode! has been derived as a function of the electromagnetic
coil excitations and a permeance model as a function of the relative
position between the rotor and the stator. The inverse model of 2 VR
spherical motor, which determines the coil excitatioas for a specified
torque, is characterized by its infinite solutions. It has been shown that
for a curreat controlled spherical motor, the relationship betweea the
output torque and the input cuarents are algebraic and quadratic. The
torque prediction model of a current controlled VR spherical motor is
decoupled from the dynamic eguations of the system, and therefore
allows the determination of the optimal electrical inpats to be
separated from the motion control of the spherical rotor. Unlike the
conventional motor design where the solutions to the forward and
inverse models are unique, the multiple-coil excitation allows an
optimal control vector to be chosen to minimize a specified cost
function in the control of a VR spherical motor.
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