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Abstract —This paper presents an analytical investigation on the design method and modeling of an air bearing system for ball-jo
like actuators. It addresses the method of regulating the three DOF translations of the rotor introduced by the air tesararglsys
thereby improving the dynamic performance of the orientation motion manipulation. The kinematics, which relates the rot
displacement and the air gaps, are essential for design optimization, dynamic simulation and motion control, are desedd in clo
form. With a detailed modeling of the pressure-flow relationship as a function of the rotor position, the forces and dfnaeics o
system are formulated, and design methods of regulating the rotor displacement have been explored analytically. Simitdation re:
suggest that the fluid forces could be generated to passively stabilize the otherwise open loop unstable electromagnétiis system
expected that this research will be a basis for designing and evaluating an improved VR spherical motor with enhanced tor
capability by eliminating mechanical friction.

1. INTRODUCTION . . . . .
The reminder of this paper is organized as follows:

Many applications in the industry require the use of fluidThe next section discusses the bearing design

bearings to overcome friction, provide more precise location anconfiguration for a ball-joint-like spherical device. This is

alignment of components, and enable smooth movement of larfellowed by the characterization of airflow through the

components from one point to another point. In othebearing in Section 3, which generates the forces on the

applications, precision alignment of parts is very critical to theotor. Then, the system dynamics is presented in Section 4

quality and specifications of the product. As advances iand followed by design methodology and simulations in

technology continue to demand more accurate and precisi@ection 5. Finally, a conclusion is presented.

devices, there are opportunities to utilize the unique attractive

features of air bearing systems to meet these challenges. 2. BEARING FOR BALL-JOINT-LIKE DEVICES

We explore the use of a non-contact, spherical air Consider an arbitrary displacement of the two spherical
bearing system for multi-DOF spherical actuators [1] whichsyrfaces as shown in Figure 1, wher® is the rotor
operates on the principles of variable reluctance (VR). Thta
motor combines the roll, pitch, yaw motion in one joint making
it attractive for many applications. Besides the capability of 2
three degree-of-freedom (DOF) motions in one joint, the
motor has large range of motion, isotropic properties and
no singularities within the workspace. These flexible
design features make the VR spherical motor suitable for a
wide range of applications such as water-jet cutting, laser
cutting, painting, welding, material handling, coordinate
measurement etc., where smooth uniform manipulation ofBearing e\
the end-effector is required. T

isplacement with respect to the center of the stator.

Three basic techniques used in non-contact bearing
designs; namely, fluid bearing, magnetic levitation, and Bear§
the Meissner effect. Non-contact air bearing is considered here i
since it has the potential to enhance the motor performance X
for more advanced applications, has cooling effect on Figure 1 Conceptual schematics illustrating spherical bearing
interacting components and does not interfere with
actuator electromagnetic system. Many researchers [2] [3f Figure 1, the reference framrZ is defined at the center
have investigated bearing designs and characteristicef the stator,O, with the Z-axis pointing towards the
Other authors [4] [5] [6] have contributed to improving opening for the stator andyz is fixed at the center of the
bearing stability of fixed orifices and. Recently, there hagotor, O’, with its z-axis along the rotor output shaft. At
been some work on control of air-bearing devices [8]equilibrium, the coordinate frameXYZ and xyz have a
These works have concentrated on single axis bearinfommon origin at their centers. Thus, any position on the
devices. In this paper we are interested in the control abtor can be expressed with respect to ¥¥Z coordinate
multi-DOF spherical devices. system using a 4X4 homogeneous transformation matrix,

[T]:



[Plxvz =[TI[Plxy, 1)

where [P]yy, and [P],, are the position of a point on the
rotor measured with respect to XY Z and xyz respectively.

2.1 Bearing Configurations

The design concept is to use pressurized air to regulate
the rotor such as the rotor displacement T isnull regardless of

any "disturbances" caused by the electromagnetic actuation or an
externa force. Multiple independent spherical bearings are
strategically designed to support the rotor. In general, the
more the number of bearings, the larger the load the
system is capable of supporting. The challenge, however,
is to design a compact yet efficient air bearing system to
fit into the limited surface area of the rotor. In addition,
the bearings should be designed so that they do not
interfere with the electromagnetic poles of the spherical
motor, which are located following the pattern of a regular

polygon.

Theoretically, the minimum number of non-coplanar
forces required to achieve bi-directional position control of
the spherical rotor in a three-dimensional space is four.
One possible arrangement of a minimum number of
bearings is to place the bearings at locations corresponding
to the vertices of a regular tetrahedron. The arrangement
of minimum number of bearings is not necessarily
attractive since four independent actuators are required,
and that the four point bearings can not be grouped in pairs
such that the couples exert equal and opposite forces along
their lines of action.

An attractive alternative is to design so that
pressurized air passes through its center enabling the unit
to serve as a bearing. The advantages of joint magnetic-
pole/bearing units are twofold: (1) The air jet will provide
cooling effect to the coil windings. (2) It will optimize the
stator surface by maximizing the size of a bearing, thereby
enhancing load-bearing capacity. In the following
discussion, we shall consider the case where six or more
bearing points are evenly spaced on the spherical bearing
such that bearing forces can always be grouped in pairs.

As illustrated in Figure 1, the pair of bearing forces Ifi
and Ifj exert equal but opposite forces through the center

of the stator.

2.2 Forward Kinematics

The gap between the stator and rotor along a pair of
forces, F, and Ifj, can be determined with the aid of

Figure 2. The net force, F; = F; + F;, can be described by:

'Eij =F;&; (2

where F; and &; are the magnitude and the unit vector

(known) of the resultant force. As shown graphically in
Figure 2b, the minimum air gap between the rotor and the
stator is in the direction of r,. Thus, the included angle

between F; and F,is

L= 1a = ‘1MH
6;; =cos " (g; (&) = cos EF” roH 3

where r, isthe magnitude and &, is the unit vector of .

For a given rotor displacement, the air gaps, h;, and h; are
given by Equations (4a) and (4b):

h, :rs—@rr2 —r¢ sin” @} +r, cosé; (4a)
h, :rs—@rf—ro2 sin®@;; -, cosé; % (4b)

where rgand r, are the radii of the stator and rotor at the
interface respectively.

and

Y ,A/Fi
//// =Y
Fa/r """"""" Z = r.cosB

raSing
(a) Rotor displacement

(b) Bearing force line of action
Figure 2 Schematics for gap determination

2.3 Inverse Kinematics

Since direct sensing of the rotor displacement 1, is
difficult, the inverse kinematics provides a practical means
of computing the rotor position from the air gaps
measurements. With three independent pairs of gap



measurements, the three orthogonal components of the
rotor displacement can be determined as follows.

Subtracting Equation (4a) from Equation (4b), we have

] h =h
ro cos@; =7, [&;; = >
Two other similar equations can be obtained from two
other pairs of bearing forces.

(5a)

~ hjg—hia
ro @J 1i4 :; (5b)
2
hj+1_hi+1
2
Equations (5a), (5b), and (5c) can be written in matrix
form:

Fo Bjagin = (5¢)

1%11 h'lg
D
]+1|+1]%y —ED O (6)
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wherer,, ry and r, are the components of 1, in the direction of
X, Y and Z respectively.

[éj—l,i—l &ji

3. AIR BEARING DYNAMIC MODEL

Figure 3 shows a schematic of a simple, pocketed,
orifice compensated bearing. Air enters from a pressure
source, passes through an orifice restriction of diameter d,,
then expands isentropically into the pocket of diameter R,
and recess d,, and finally exhausts to the atmosphere
through the annulus which consists of two parallel surfaces
of spacing h.

3.1 Flow characteristics

The following assumptions are made in deriving the
dynamic model: (1) The pressure in the pocket is uniform. (2)
The air is isothermal. (3) Changes in air density are
attributed mainly to variations in pressure and the ideal gas
law, p=pRT wherep, Rand T are the pressure, gas constant

and temperature of the air respectively, is assumed to hold

throughout. Thus, the force acting on the rotor is given by
integrating the pressure over the bearing surface as follows:
Re Ry O
=270 O
f er%([ pprdr +;[ prdrE (7

where p, and p are the pressures in the pocket and the
annulus respectively. The mass m contained in the bearing
is a function of the rotor displacement along the direction
of the actuating force as well as the air density and the
state of the air. The time rate of change of the air is the
difference between the inflow and the outflow, or

dm

== 8

dt qR qo ()
where m is the mass of the air contained between the

bearing surfaces; and gr and g, are the mass flow rate

through the orifice restriction and the exhaust respectively.
The mass mis given by

Ry R 0
— o O
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Figure 3 Orifice compensated air bearing

Since the gap in the annulus is very small and the pressure
variation in the z-direction is negligible, the flow between the
surfaces is laminar. Thus, the flow-pressure relationship
through the annulus, which is essentially laminar flow
between two parallel surfaces, can be shown to be

02 p? s 12,uq0RT Efé

which can be re-arranged for the flow rate as a function of
pressure and the air gap follows:

2y+43
q = (pp Pa)7h (10)

12URT |nELE

The flow through an orifice has been modeled by several

authors [8]. A particular form known as Fliegner’s

approximation [9] has been chosen for this analysis due to

its convenience for analytical and computational purposes.
1

+1 EE
zﬁ ) e
e =280 A1V H gl(pspp-p%)g

Ha4 %QTHyﬂ .

3.2 Perturbation model

(11)

Note that the flow-pressure relationships given by
Equations (10) and (11) are highly non-linear. For the
study of the dynamics due to a small deviation of the rotor
displacement about the equilibrium as shown in Figure 2b,
a perturbation model about an equilibrium operating
condition (where the rotor is concentric with the stator), is
derived. For this purpose, the pressure in the annulus is
approximated by a linear relationship as follows:



r-Ry
pp_(pp_pa) (12)

Ry = Rp
where the subscript 'e’ denotes the variables are evaluated

at the steady state. The total force acting on the rotor is
obtained by integrating the pressure over the bearing

surfaces.
=2 g{(ppl Py rr - j(pp. Po) rer (13)
:

where the first integrand is at the pocket and the second is
from the bearing annulus; the ~ sign denotes variation
from equilibrium values.

f =PpAy (14)

O

ﬁp = 5pi - 5pj

where

and Ay =R :]—;(sz+RbRp+R§).

In Equation (14), the deviation of the pocket pressure p, depends
on the flow-pressure characteristics of the bearing. Since there
is no contact between the surfaces and frictional effect of air is
negligible, the equation of motion for the rotor along the
direction of the actuating forceis

m by = AP, (15)

At equilibrium, since the gap h is equal to h, and there is no

change of air stored in the bearing, the flow through the orifice is

equal to that through the annulus, g.. To the first degree of

Taylor series approximation, the small deviation of the

flow rate through the restrictor about the equilibrium can
be written as

Or =-a;Pp +8,Ps (16)

~By; k=G —Cg; and

b- P
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where 55 = 59
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a, = Or - %
0Ps [Mhr=0e Ps ~ Ppe

Pp=Ppe
The corresponding linear approximation of the flow rate
through the annulus about the equilibrium condition can be
derived from Equation (10b), which y|eld

Pp=Ppe
0r=Ce

do = 3Py +ah, (17)
2y = GIC) _ 29ePpe
op |a=a  (p5-p2)
pp_ppe

L@ 3%
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where @, =0, —C; and notethat hy =—1.

As shown in Equation (8), the difference between the flow
through the restriction and the annulus is stored in the bearing.
Substituting p from Equation (12) into Equation (9), we have

NP Ay +dy PR PR “ Ao
RT
the linear approximation of which is given as follows:
dm
pral Spp+a6h (19)
he +d 7R2
where aszqam _ Aale * 7Ry
p, T
a =:|am Aeq ppe pa)"'er Pa
6 RT '
Hence,

a-5-5p+a~6ﬁi :(_a15p+a255)_(a35p+a4ﬁ) (20)

To obtain a dynamic equation in term of h; explicitly, we
eliminate the pressure p, by substituting it and its time
derivative from Equation (15) into Equation (20). The
resulting equation of the rotor motion is given by

ﬁ. SRt Ei +EAeqa6 @i +EAeqa4E;i = [ %s (21)
E as asm, asm, asm,

Using Routh Hurwitz stability criteria, the condition for an

asymptotically stable system implies (a, +a3)ag 51,
a,as
138 ps — Ppe 0 , N
which yields = [—)27D> lor pp >3 ps. Inaddition,
SEHPs ™ Ppe

all the coefficients must be positive for stability implies
that p,, < ps. Hence,

2 Ps < Ppe < Ps- (22)

4. DESIGN METHODOLOGY

Consider the case where the supply pressure is
constant ( ps =0). In order words, the air bearing system

is essentially a passive regul ator.
4.1 Design Tradeoff’s

Note that the system is third-order and thus at |east
one of the characteristic roots is real which implies that
Equation (21) can be written in the following form:



(s+0)(S% + 28,5+ W) =0 23)

By expanding Equation (23) and equating its coefficients that the
corresponding terms in Equation (21), the design parameters (¢,
&and wy ) can berelated to the system parameters as follows:

o+ 28w, -G G (23a)
bl
+C, —
he
2 _ C
W +28w,0 = g (23b)
he+C, h:H
ow? = C"d 2_‘; (23c)
+C pH €
ey
where
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Aeq gppe(ps_ ppe) Ppe ~ paH
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C1: Aeq(ppe mpa) b Pa (24b)
r
c, =3RT (24c)
mr
R2
C, :Ef’ (24d)

Note that A is generally constrained by the spherical
actuator geometry. Thus, Equations (23a), (23b) and (23c)
represent the design trade-off’'s among the three design
variables, ge, he, and d, for a specified dynamic response,
which can be expressed as

1+n C;

Qe =— (26)
© 1+4n&? Cyw,
he :1+_n CO 5 (27)
n Cow;
C C
dy=——o G 1 _n*tlp g
C,Cow; 0 Co 1+4né n

where n= 250n . The effect of the third pole could be
o

reduced if o is large compared to éa, (or n>>1).
However, for a practical air bearing system, the pocket
depth must be real, finite and positive and thus imposes a
constraint on the choice of w,, o, and ¢&.

4.2 Design Example

Table 1 lists the parameters determined for the
spherical motor [1] where the stator poles are located
following the pattern of an Icosahedron.

Table 1. Parameters

Parameters Value
Mass m;, (kg) 0.2
Outer radius Ry, (mm) 12.7
Ry/R, 16
Supply pressure, ps (KN/m?) 420
Poe/Ps 0.92

Figures 4(a) and (b) show the pocket depth plotted as a
function of natural frequency and damping ratio
respectively. As he, and d, are inversely proportional to

a)ﬁ, we chose aw,=240 Hz (or 1,508rad/sec), o =2, (or

n=1) and £&=0.5 to provide a reasonable physical size for
the pocket depth and the air gap and acceptable dynamic
response. The corresponding calculated parameters are

ge = 1.281e-5 Kg/s, he = 0.069mm and d, = 0.019mm.

The air bearing and electromagnetic system are simulated
using MATLAB for two cases. The first case is one degree-of-
freedom with only a pair of bearings. Figures 5(a) and (b) shows
the rotor displacement in the direction of actuating force for an
initial displacement of 5.8um respectively. Although the
electromagnetic system is open-loop unstable, the air bearing
system is shown to dominate the magnetic system and stabilizes
the combined system.

The second case is a three degree-of-freedom with five pairs
of bearings located on ten of the stator poles without the top and
bottom vertices of the lcosahedron. The 3-D simulation
discussed below computes the displacement, velocity and
acceleration vectors for multiple bearings (5 pairs) and
decomposes them into the orthogonal directions. Since each air
bearing system is linear, we compute the resultant forces on the
rotor dynamics in 3-D by using vectors to sum the individual
contributions.

5. CONCLUSIONS

We have presented the method for design of a practical air
bearing system for a VR spherical motor. Specifically, this
paper addresses the following fundamental issues of the bearing
system design:

(1) The method of generating the necessary rotor support forces
with externally pressurized air and the strategic arrangement
of point bearings is discussed.

(2) The forward and inverse kinematics between the rotor
displacement and the individual air gaps at positions round
the stator are developed in closed-forms, which are essential
for design, dynamic simulation and control purposes.

(3) Along with the pressure-flow relationship as a function of the
rotor position, the paper presents a detailed dynamic model
of the ar bearing. Trade-off's between the design
parameters and the dynamic performance of the air
bearing regulator system have been discussed with
using a design example.

The studies have led to the design of a potentialy useful air-

bearing system capable of eiminating frictions in ball-joint-like

actuators. The dynamic performance of the air bearing system
has been evaluated analytically by simulation.



(a) Pocket depth Vs natural frequency (n = 1)

(b) Pocket depth Vs damping ratio (e, = 240 Hz)

Figure 4 Effect of w, and & on the choice of pocket depth
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