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Abstract –This paper presents an analytical investigation on the design method and modeling of an air bearing system for ball-joint-
like actuators. It addresses the method of regulating the three DOF translations of the rotor introduced by the air bearing system and
thereby improving the dynamic performance of the orientation motion manipulation.  The kinematics, which relates the rotor
displacement and the air gaps, are essential for design optimization, dynamic simulation and motion control, are derived in closed-
form. With a detailed modeling of the pressure-flow relationship as a function of the rotor position, the forces and dynamics of the
system are formulated, and design methods of regulating the rotor displacement have been explored analytically. Simulation results
suggest that the fluid forces could be generated to passively stabilize the otherwise open loop unstable electromagnetic system. It is
expected that this research will be a basis for designing and evaluating an improved VR spherical motor with enhanced torque
capability by eliminating mechanical friction.

1. INTRODUCTION

Many applications in the industry require the use of fluid
bearings to overcome friction, provide more precise location and
alignment of components, and enable smooth movement of large
components from one point to another point. In other
applications, precision alignment of parts is very critical to the
quality and specifications of the product. As advances in
technology continue to demand more accurate and precision
devices, there are opportunities to utilize the unique attractive
features of air bearing systems to meet these challenges.

We explore the use of a non-contact, spherical air
bearing system for multi-DOF spherical actuators [1] which
operates on the principles of variable reluctance (VR). The
motor combines the roll, pitch, yaw motion in one joint making
it attractive for many applications. Besides the capability of
three degree-of-freedom (DOF) motions in one joint, the
motor has large range of motion, isotropic properties and
no singularities within the workspace. These flexible
design features make the VR spherical motor suitable for a
wide range of applications such as water-jet cutting, laser
cutting, painting, welding, material handling, coordinate
measurement etc., where smooth uniform manipulation of
the end-effector is required.

Three basic techniques used in non-contact bearing
designs; namely, fluid bearing, magnetic levitation, and
the Meissner effect. Non-contact air bearing is considered here
since it has the potential to enhance the motor performance
for more advanced applications, has cooling effect on
interacting components and does not interfere with
actuator electromagnetic system.  Many researchers [2] [3]
have investigated bearing designs and characteristics.
Other authors [4] [5] [6] have contributed to improving
bearing stability of fixed orifices and. Recently, there has
been some work on control of air-bearing devices [8].
These works have concentrated on single axis bearing
devices.   In this paper we are interested in the control of
multi-DOF spherical devices.

The reminder of this paper is organized as follows:
The next section discusses the bearing design
configuration for a ball-joint-like spherical device.  This is
followed by the characterization of airflow through the
bearing in Section 3, which generates the forces on the
rotor. Then, the system dynamics is presented in Section 4
and followed by design methodology and simulations in
Section 5. Finally, a conclusion is presented.

2. BEARING FOR BALL-JOINT-LIKE DEVICES

Consider an arbitrary displacement of the two spherical

surfaces as shown in Figure 1, where or
v

is the rotor

displacement with respect to the center of the stator.
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Figure 1 Conceptual schematics illustrating spherical bearing

In Figure 1, the reference frame XYZ is defined at the center
of the stator, O, with the Z-axis pointing towards the
opening for the stator and xyz is fixed at the center of the
rotor, ’O , with its z-axis along the rotor output shaft. At
equilibrium, the coordinate frames XYZ and xyz have a
common origin at their centers. Thus, any position on the
rotor can be expressed with respect to the XYZ coordinate
system using a 4X4 homogeneous transformation matrix,
[T]:



xyzXYZ PTP ][][][ =         (1)

where XYZP][  and xyzP][  are the position of a point on the

rotor measured with respect to XYZ and xyz respectively.

2.1 Bearing Configurations

The design concept is to use pressurized air to regulate

the rotor such as the rotor displacement or
v

 is null regardless of

any "disturbances" caused by the electromagnetic actuation or an
external force.  Multiple independent spherical bearings are
strategically designed to support the rotor. In general, the
more the number of bearings, the larger the load the
system is capable of supporting. The challenge, however,
is to design a compact yet efficient air bearing system to
fit into the limited surface area of the rotor. In addition,
the bearings should be designed so that they do not
interfere with the electromagnetic poles of the spherical
motor, which are located following the pattern of a regular
polygon.

Theoretically, the minimum number of non-coplanar
forces required to achieve bi-directional position control of
the spherical rotor in a three-dimensional space is four.
One possible arrangement of a minimum number of
bearings is to place the bearings at locations corresponding
to the vertices of a regular tetrahedron.  The arrangement
of minimum number of bearings is not necessarily
attractive since four independent actuators are required,
and that the four point bearings can not be grouped in pairs
such that the couples exert equal and opposite forces along
their lines of action.

An attractive alternative is to design so that
pressurized air passes through its center enabling the unit
to serve as a bearing.  The advantages of joint magnetic-
pole/bearing units are twofold:  (1) The air jet will provide
cooling effect to the coil windings. (2) It will optimize the
stator surface by maximizing the size of a bearing, thereby
enhancing load-bearing capacity. In the following
discussion, we shall consider the case where six or more
bearing points are evenly spaced on the spherical bearing
such that bearing forces can always be grouped in pairs.

As illustrated in Figure 1, the pair of bearing forces iF
v

and jF
v

 exert equal but opposite forces through the  center

of the stator.

2.2 Forward Kinematics

The gap between the stator and rotor along a pair of
forces, iF

v
 and jF

v
, can be determined with the aid of

Figure 2. The net force, jiij FFF
vvv

+= , can be described by:

ijijij eFF
vv

=         (2)

where ijF  and ije
v

 are the magnitude and the unit vector

(known) of the resultant force. As shown graphically in
Figure 2b, the minimum air gap between the rotor and the
stator is in the direction of or

v
. Thus, the included angle

between ijF
v

 and or
v

is
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where or  is the magnitude and roe
v

 is the unit vector of or
v

.

For a given rotor displacement, the air gaps, hi, and hj are
given by Equations (4a) and (4b):





 +−−= jiojiorsi rrrrh θθ cossin 222         (4a)

and
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where sr and rr  are the radii of the stator and rotor at the

interface respectively.

α

θj,i
O

O′

z

x

y
ro

z = rocosβ

rosinβ

Fi

Fj

Z

X

Y

β

(a) Rotor displacement

O

O′ rr

B

 Ai

ro θj,

i

hi

hj

iFv

jF
v

(b) Bearing force line of action

Figure 2 Schematics for gap determination

2.3 Inverse Kinematics

Since direct sensing of the rotor displacement or
v

 is

difficult, the inverse kinematics provides a practical means
of computing the rotor position from the air gaps
measurements. With three independent pairs of gap



measurements, the three orthogonal components of the
rotor displacement can be determined as follows.

Subtracting Equation (4a) from Equation (4b), we have

2
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Two other similar equations can be obtained from two
other pairs of bearing forces.
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Equations (5a), (5b), and (5c) can be written in matrix
form:
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where rx, ry and rz are the components of or
v

in the direction of

X, Y and Z respectively.

3. AIR BEARING DYNAMIC MODEL

Figure 3 shows a schematic of a simple, pocketed,
orifice compensated bearing.  Air enters from a pressure
source, passes through an orifice restriction of diameter do,
then expands isentropically into the pocket of diameter Rp

and recess dp, and finally exhausts to the atmosphere
through the annulus which consists of two parallel surfaces
of spacing h.

3.1 Flow characteristics

The following assumptions are made in deriving the
dynamic model: (1) The pressure in the pocket is uniform. (2)
The air is isothermal. (3) Changes in air density are
attributed mainly to variations in pressure and the ideal gas
law, RTp ρ=  where p, R and T are the pressure, gas constant

and temperature of the air respectively, is assumed to hold
throughout.  Thus, the force acting on the rotor is given by
integrating the pressure over the bearing surface as follows:
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where pp and p are the pressures in the pocket and the
annulus respectively.  The mass m contained in the bearing
is a function of the rotor displacement along the direction
of the actuating force as well as the air density and the
state of the air.  The time rate of change of the air is the
difference between the inflow and the outflow, or

oR qq
dt

dm −= (8)

where m is the mass of the air contained between the
bearing surfaces; and Rq  and qo are the mass flow rate

through the orifice restriction and the exhaust respectively.
The mass m is given by
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Figure 3 Orifice compensated air bearing

Since the gap in the annulus is very small and the pressure
variation in the z-direction is negligible, the flow between the
surfaces is laminar.  Thus, the flow-pressure relationship
through the annulus, which is essentially laminar flow
between two parallel surfaces, can be shown to be
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which can be re-arranged for the flow rate as a function of
pressure and the air gap follows:












−
=

p

b

ap
o

R

R
RT

hpp
q

ln12

)( 322

µ

π
(10)

The flow through an orifice has been modeled by several
authors [8]. A particular form known as Fliegner’s
approximation [9] has been chosen for this analysis due to
its convenience for analytical and computational purposes.
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3.2 Perturbation model

Note that the flow-pressure relationships given by
Equations (10) and (11) are highly non-linear. For the
study of the dynamics due to a small deviation of the rotor
displacement about the equilibrium as shown in Figure 2b,
a perturbation model about an equilibrium operating
condition (where the rotor is concentric with the stator), is
derived.   For this purpose, the pressure in the annulus is
approximated by a linear relationship as follows:
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where the subscript ’e’ denotes the variables are evaluated
at the steady state. The total force acting on the rotor is
obtained by integrating the pressure over the bearing
surfaces.
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where the first integrand is at the pocket and the second is
from the bearing annulus; the ~ sign denotes variation
from equilibrium values.
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In Equation (14), the deviation of the pocket pressure pp depends
on the flow-pressure characteristics of the bearing.  Since there
is no contact between the surfaces and frictional effect of air is
negligible, the equation of motion for the rotor along the
direction of the actuating force is

peqir pAhm ~~
=&& . (15)

At equilibrium, since the gap h is equal to he and there is no
change of air stored in the bearing, the flow through the orifice is
equal to that through the annulus, qe. To the first degree of
Taylor series approximation, the small deviation of the
flow rate through the restrictor about the equilibrium can
be written as
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The corresponding linear approximation of the flow rate
through the annulus about the equilibrium condition can be
derived from Equation (10b), which yield
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As shown in Equation (8), the difference between the flow
through the restriction and the annulus is stored in the bearing.
Substituting p from Equation (12) into Equation (9), we have
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the linear approximation of which is given as follows:
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To obtain a dynamic equation in term of hi explicitly, we
eliminate the pressure pp by substituting it and its time
derivative from Equation (15) into Equation (20). The
resulting equation of the rotor motion is given by
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Using Routh Hurwitz stability criteria, the condition for an

asymptotically stable system implies 1
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4. DESIGN METHODOLOGY

Consider the case where the supply pressure is
constant ( 0~ =sp ).  In order words, the air bearing system

is essentially a passive regulator.

4.1 Design Tradeoff’s

Note that the system is third-order and thus at least
one of the characteristic roots is real which implies that
Equation (21) can be written in the following form:
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By expanding Equation (23) and equating its coefficients that the
corresponding terms in Equation (21), the design parameters (σ,
ξ and ωn ) can be related to the system parameters as follows:
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Note that Aeq is generally constrained by the spherical
actuator geometry.  Thus, Equations (23a), (23b) and (23c)
represent the design trade-off’s among the three design
variables, qe, he, and dp for a specified dynamic response,
which can be expressed as
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where 
σ

ξω nn
2

= . The effect of the third pole could be

reduced if σ is large compared to nξω  (or n>>1).

However, for a practical air bearing system, the pocket
depth must be real, finite and positive and thus imposes a
constraint on the choice of ωn, σ, and ξ.

4.2 Design Example

Table 1 lists the parameters determined for the
spherical motor [1] where the stator poles are located
following the pattern of an Icosahedron.

Table 1: Parameters
Parameters Value
Mass mr, (kg) 0.2
Outer radius Rb, (mm) 12.7
Rb/Rp 16
Supply pressure, ps (KN/m2) 420
Ppe/ps 0.92

Figures 4(a) and (b) show the pocket depth plotted as a
function of natural frequency and damping ratio
respectively.  As he, and dp are inversely proportional to

2
nω , we chose ωn=240 Hz (or 1,508rad/sec), nξωσ 2= (or

n=1) and ξ=0.5 to provide a reasonable physical size for
the pocket depth and the air gap and acceptable dynamic
response. The corresponding calculated parameters are
qe = 1.281e-5 Kg/s, he = 0.069mm and dp = 0.019mm.

The air bearing and electromagnetic system are simulated
using MATLAB for two cases.  The first case is one degree-of-
freedom with only a pair of bearings. Figures 5(a) and (b) shows
the rotor displacement in the direction of actuating force for an
initial displacement of 5.8µm respectively. Although the
electromagnetic system is open-loop unstable, the air bearing
system is shown to dominate the magnetic system and stabilizes
the combined system.

The second case is a three degree-of-freedom with five pairs
of bearings located on ten of the stator poles without the top and
bottom vertices of the Icosahedron. The 3-D simulation
discussed below computes the displacement, velocity and
acceleration vectors for multiple bearings (5 pairs) and
decomposes them into the orthogonal directions. Since each air
bearing system is linear, we compute the resultant forces on the
rotor dynamics in 3-D by using vectors to sum the individual
contributions.

5. CONCLUSIONS

We have presented the method for design of a practical air
bearing system for a VR spherical motor.  Specifically, this
paper addresses the following fundamental issues of the bearing
system design:
(1) The method of generating the necessary rotor support forces

with externally pressurized air and the strategic arrangement
of point bearings is discussed.

(2) The forward and inverse kinematics between the rotor
displacement and the individual air gaps at positions round
the stator are developed in closed-forms, which are essential
for design, dynamic simulation and control purposes.

(3) Along with the pressure-flow relationship as a function of the
rotor position, the paper presents a detailed dynamic model
of the air bearing. Trade-off’s between the design
parameters and the dynamic performance of the air
bearing regulator system have been discussed with
using a design example.

The studies have led to the design of a potentially useful air-
bearing system capable of eliminating frictions in ball-joint-like
actuators. The dynamic performance of the air bearing system
has been evaluated analytically by simulation.



(a) Pocket depth Vs natural frequency (n = 1)

(b) Pocket depth Vs damping ratio (ωn = 240 Hz)

Figure 4 Effect of ωn and ξ on the choice of pocket depth

(a) Rotor displcement (1-DOF)

(b) Rotor displcement (3-DOF)

Figure 5 Simultion results of rotor displacement
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