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ABSTRACT

This paper presents the effects of fixture dynarnics on the
control of a variable-reluctance spherical motor (VRSM). The
cascaded VRSM dynamics has the appropriate structure for the
so-called  back-stepping  controller  design  method.
Implementation of the back-stepping controller, however,
requires the computation of the exact motor dynamics at each
sampling time. This computational burden has an cffect on the
performance of the control algorithm and imposes constraints on
the hardware/software architecture of the control systern. By
only computing the dominant parts of the motor dynamics, this
computational burden can be reduced. We have developed a
robust back-stepping conirolier to compensate for uncertainties
account for imperfect modeling and intentional computational
simplification. The performance of the robust back-stepping
controller has been evaluated experimentally against a classical
PD controller and a standard back-stepping controller, which
serve as bases for comparison.

1. INTRODUCTION

Multi-degree-of-freedom (DOF) actuators are finding wide
uses n a number of industries. For high precession trajectory
planning and control, it is desired to replace the actuator system
made up of several single-DOF motors connected in series
and/or parallel with a dexterous spherical multi-DOF actuator.
The need for such systems has motivated years of research in
the development of unusual, yet high performance actuators that
have the potential to realize multi-DOF motien in a single joint.
COne such actuator is the spherical motor. Compared to
conventional robotic manipulators that offer the same motion
capabilities, the spherical motor possesses several advantages
much simpler and more compact in design.

A brief review of prior rescarch efforts on the spherical
motors can be found in [1]. Of particular interest here is the
development of a VRSM, where earlier works have been largely
focused on the understanding of the operating principies,
deriving the torque model, and developing the design/control
methodology. Most of these studies have larpely ignored the
loading effects on the performance. The dynamics of fixtures
and tooling that are mounted on the multi-DOF actuator may not
be neglected for high-precision applications. For this reason, we
have developed a robust back-stepping controller and examined
the effects of the fixture or tooling dynamics on the VRSM
contrelled system using an existing setup.

The cascaded VRSM dynamics has the appropriate
structure for the so-called back-stepping controller design
method. Kokotovic [2] published one of the pioneering works
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on the back-siepping control lechmique and Qu er al [3]
extended this technique and developed a robust back-stepping-
type controller for a one-link robot with the motor dynamics
taken into consideration. Carroll er al. [4] also extended the
work of Kokotovic (2] to design an embedded computed torque
and output feedback controller for permanent magnet brush dc
(BDC) motors. Hemati er al. [5] developed a robust feedback
linearizing controller for a single-link robot actuated by a
brushless dc motor (BLDC). In [6]}, Carroll er 4l also
developed a rebust tracking controller for a BLDC, which
achicved globally bounded results for rotor position tracking
error despite parametric uncertainties and additive bounded’
disturbances.  Unlike prior works that the back-stepping
controllers have been applied to the control of numerous single-
axis machines and serial or parallel robotic mechanisms, we
investigate the back-stepping control design in the context of a
VRSM with the ability to compensate for model imperfections.

The remainder of this paper is organized as follows.
Section 2 begins with the presentation of the system dynamics
and the toque model of a VR spherical motor, along with
constraints imposed by a fixture. The formulation of the control
problem is given in Section 3, where the design of the back-
stepping-type controller using Lyapunov-type stability
arpuments is presented. The performances of the two back-
stepping controllers, with and without a robust term, are
compared in Section 4. Finally, the conclusions are given in
Section 5.

2. SYSTEM MODEL

The VRSM referred to in this paper has a similar structare
as balljoint-like device in [7). Clearly, this specific structure is
chosen here for the purpose of illustrating the effects of toolmg
dynarnics on the control of a VR spherical motor and because a
prototype of such a structure has been available for experimental
verification. Extension of the techniques for other forms of
fixtures, tooling or payload dynamics is expected to be
relatively straight-forward.

As shown in Figure 1, the structure is made up of four
basic assemblies, a spherical rotor, a hollow spherical stator, a
bearing system, and an orientation measurement system. The
stator houses a number of electromagnets strategically
distributed on the inside of its surface. Similarly, the rotor
consists of a number of poles made up of ferromagnetic
materials or permanent magnets.  Feedback control of the
spherical motor requires an orientition measurement System.
When off-the-shelf single-axis encoders are used, a typical
orientation measurement system requires a mechanism that
consists of the two arc-shaped guides and a sliding block. The
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two guides are mounted orthogonally on bearing pins attached
to the outside of the stator for measuring the rotation of their
comresponding guides. The Z encoder measures the spin of the
rotor shaft about its axis. Detailed derivations of the kinematics

that relate the encoder readings (8y,8y,8z) to the rotor
orientation or the ZYZ Euler angles (,8,¢) can be found in

[8]. The measuring system contributes to two-thirds of the total
systermn inertia and can not be neglected.
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Figure 1 Explored view of a VRSM CAD model

2.1 Rotor and Tooling Dynamics

The effects of the X- and Y-guides on the rotor dy'na.rmcs
can be described by the constraint equations in the following
form:

/1@T;8y,6,)=0 .(1a)
J2007;8x.6r)=0 (1b)
where qis a 3xl vector of the ZYZ Euler angles; and
(8, 8y ) are angular displacement measured about x-axis and y-

axis respectively. In order to include the constraints imposed by
the X- and Y-guides, we use a Lagrange formulation to derive
the dynamic model for the combined rotor and encoder
mechanism.

d| oL aL

2= = + 2
O @
where j=1,---,5; Lis Lagrangian; O, represents the applied
torque' A;and A, are comstrained Lagrange multipliers; and the

termz ay A; represents the contribution of the reaction forces

(from the measurement guides) to the generalized motnents. In

Equation {2), a;are the -eclements of the Jacobian

matrix[a]= [, ] [12]] of the angular velocity constraints,

which can be derived by differentiating Equations (1a) and (1b),
in the following form:
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where [a,]is a 3x2 matrix the elements of which are functions
of the ZYZ Euler angles; and [/,]is a 2x2 identity matrix. It

can be shown that the dynamic medel of the combined
rotor/sensor mechanism can be writlen in the following compact
form: '

[H (q)}i+ C(q. q) = [B(a)]E(q) : )
where [H@]=1J,1+[a] T/, ]{a,] (a)
[C(q,&)] = T+[a] 1/, 1{a,] (3b)
- SgCg SgS’ Ca
Bal=| s, ¢ o (3¢)
0 0 1
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I, cos8 0 I
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V1= [ i P ] (3e)
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o] "¢ 8 M e €3]

SeCeC\ C, 0

S5CL+C3  S3C, +C§
21, —1,)S,Coy6+ 1,86
and T=| (I 1308 Cow® — 158,y (3g)
1,8q46
2.2 Torque Model

The torque generated by the spherical motor is typically
quadratic and has the following form:
[L,] ALy, , g7 L]y
T-u-lT 2 b — IT mly + 17 I,
28, 27 08 a8, @

where l,and I, are the stator and roter current input vectors

respectively; [L,] and [L,lare the self-inductance sub-
matrices of the stator and rotor respectively; and
[L,]=[L,] is the mutual inductance sub-matrix. The specific
form of the torque depends on the structure of the motor. For a
configuration where coils are wound on non-ferromagnetic
cores and permanent magnets are used as rotor poles, the third
term in Equation (4) is eliminated. In addition, the self-
inductance term is small compared to the second term due fo
mutual-inductance term. Thus, the torque can be approximated
by a linear combination of stator input currents:

a[af;’;'] 1, =[k(@]u (5)

where K,(x,) € R>" is the torque constant matrix; ue R" is the
control vector of stator coil currents; n is the number of stator

T, =17
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colls; and q=[w,6,¢] is 2 vector of ZYZ Euler angles

describing the rotor orientation w. r. t. the stator reference
frame.

For a specified torque, the current input vector is found by
minimizing the control input energy consumption

J=4u [ (©)

where [Wle R'%® is a positive definite weighting matrix,
subject to the desired torque constraint given by Equation (12).
‘Provided that the control currents are kept within limits, the
optimal solution to this problem can be solved using Lagrange
multipliers. The optimal sclution can be written in closed form:

w= 1 KT KT T ©

2. FORMULATION OF VRSM CONTROL

The control objective for the spherical motor is to move the
rotor from an initial state to a specified final state, while
minimizing the system energy. consurnption. -The spherical
motor control objective can therefore be stated as follows:
Given the constraint Lagrange equations:

X, =X, tJ]

[H{x )]k, =T(x,,u)-C(x,,x,) )}
where x, =q is a 3x1 vector of the ZYZ Euler angles (¥,8,¢) ,
X, is the corresponding angular velocities,
[H(x,)] is a symmetric, positive-definite inertia matrix,
C(z,,x,) represents the vector of coriolis terms,
the control problem is to determine the sub-optimal control
vector u that will drive the rotor from its initial state to a

specified final state while minimizing the cost function given by
Equation (6).

The controller developed is designed in two parts. The
desired torque required to stabilize the system is first derived.
In the second part, the current inputs required to penerate the
desired torque is determined from the selution of a static
optimization given by Equation (7).

and

3.2 Back-stepping Controller

The cascaded spherical motor dynamics in Equations (8) and
(9) have the appropriate structure for the back-stepping
controller design method.© The desired torque for a back-
stepping controller has the following form:

T, =[Hly +C(x,,x,) (10
Eguation (10) is a nonlinear compensator since it depends on the
dynamics of the spherical motor, where y is derived such that
the rotor will track the desired specified state x,, if the position
error dynamics are given as follows:

z, +[K, ]z, =0 {11)
where z =x,—x, ;and
[X,] is a positive definite gain matrix,
Equation (11) can be rewritten as
x, =%, +[K, 1z, (1la)

Substituting the fictitious control input x,, forx, in Equation
{11a) yieids
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X = iu +[Kp](x1a —xl)

1
The fictitious control mput x,,4is selected as the specified
velocity trajectory leading to the velocity error:
z, =X, —X,
The error dynamnics in Equation {13) ensures the velocity error
approaches zero asymptotically, which will eventually lead to
the asymptotic convergence of the rotor position error,
z,+[K,Jz, =0 (13)
where [K ;] is a positive-definite gain matrix. Equation (13)
canbe rewrittenas
X, =x,, +(K, ]z, (13a)
Substituting Equation (13a) into Equation (9) leads to the
stabilizing torque:
T, =[H])(x, +[K,]2,)+ ((x,.x,)
Comparing Equation (14) and Equation (10) leads to
¥y 1K Wk — %) +K g Mie 1K X0 30k %0}
or . . .
y =i, + (K, 1+ K, DG, <&, +HEK KI5, - %)

4

(13)

3.3 Robust Back-Stepping Controller
To account for the uncertainties in the spherical motor
dynamics, the controller takes the following form:
T,=[Hly+C (16)
Y =Xy + (K 1+ Ky D2y + (K K D + o an
where [I;!' ] and C are the estimated inertia and coriolis terms in
the VRSM dynamics; and the proper choice of robust term w

will ensure the stability of the system even in the presence of
uncertainties.

Error Dynamics in the Presence of Uncertainties
Application of the robust controller in Equations (16} to the
spherical tnoter dynamics in Equations (8) and (9) leads to the
following closed loop dynamics:
[HI, +C=[Hly+C (18)
Since the inertia matrix [H] is symmetric and positive definite,
the closed loop dynamics in Equation (9) can be rewtilten as
%, =y-n (19)
n=(U1-[HT (ADy ~[HTHC-O) (193)
Substitution of Equation {17) for y into Equation (19) results in
the following expression for the closed loop error dynamics:
Xy (K, IHIK DX +IK, KT =n—w
which can be rewritten as

where

E=[FE+[DIn-w) (20)
where g= [i‘ ] = [f““ ".“J ; (202)
X, XXy
[ﬁ;:[_[[ggl] _{21] is a block matrix of dimension R*“; and
[0] (&1 [K1K.] . .
D}= d = = 4 1
(D] [[I:Jan {K] [{Kz]:l I:[Kp]+LKd]:| are of dimension
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R™ . Since m is a nonlinear function of the position and

velocity state vectors, the system error dynamics in Equation
{20) are nonlinear and coupied.

Stability Considerations and Robust Confrel Law

The robust controllers are designed with the following
assumptions on the uncertainty vector n [9],

sup[,,| < Q, <= Vi, (21a)
ﬁq— [H"(x,)]{f;((x‘ﬁ(l sxxl Vi, (21b)
Je-|<e<- Vi, &, @le)

The robust control problem therefore reduces to finding a
control signal y that stabilizes the nonlinear and time-varying
error dynamics in Equation (20). The robust control law y
should guarantee the stability of the error dynamics as long as
the uncertainty in n is bounded.

The stability considerations and the design for the robust
controller are determined using Lyapunov methods. Selecting
the following positive-definite quadratic functicn

v=¢'[0k>0 22)
as a Lyapunov function, where [(]e R® is positive definite.
The time derivative of the Lyapunov function along the
trajectories of the error dynamics is given by

¥ =87 ([FT [Q1+{QIF DE + 287 [QI[DT(m—w) 23
For a negative-definite [f] )
(FYIOI+IQNF)=—17] (24)

where [P] is a symmetric, positive-definite matrix. Equation
{23) can be rewritten as

V=—£T[PE+ 26T [Q1D)n-w) 25)
which is strictly negative-definite if the 2™ term is either
negative or zero, The error dynamics converge to zero when ¥
is negative definite. Selecting the robust control term w as

W= iz >0 26
2] £>0 e
where z = [D]" [Q . Equation (25) becomes
V=-tT[PEE+ 2z7{ -Hsan @n
Stiee 2" (=) < o] - plel o8

P
the term z —
[ ]
Iz“(!lﬂﬂ—P)- Therefore, selecting p such that

P2

results in ¥ being negative definateness.

z] is always bounded from above by

Vx,,%,,%,, (29)

With the definition of n given in Equation (28a) and the
system bounds from Equations (31a), (31b) and (3ic), the
following bound can be put on the uncertainty term 1):
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ol = 7 -t ol + e il + o)+ o
or in] < %0y, + K K Tel+ o+ [H 116 (30)
Using the inequalities in Equations (39) and (40), p is solved
to give the following relationship:
Pz T%?(KQ“ + ]+ 15, 10) (31
The choice of p from Equation (41) ensures that the time
derivative of the Lyapunov function is negative definite and

results in the stability of the error dynamics.

The block diagram showing the implementation of the
robust back-stepping controller is given in Figure 2.

Rk |

Robust coatrol law

Back:

Figure 2 Block diagram of robust back-stepping controller

4. SIMULATION AND EXPERIMENTAL RESULTS

The objectives of the simulation and experiment are (1) to
validate the dynamic model and control method and (2) to
examine the robustness of the control algorithm.

Figure 3 shows the VRSM control system test bed. Twe
KPCI-3130 Keithley data acquisition cards, each of which have
eight analog oulput channels, are used to control the
electromagnets. Since the prototype has ten stator coils, five of
the eight analog channels of each board are connected through
the cuwrrent amplifier to the motor. The rotor has six poles of
permanent magnets. The detail of the prototype design can be
found in [1]. Results of two test cases are discussed in this
paper; namely, point-to-peint contrel (Case #1) and tracking
control {Case #2). The desired spherical motor trajectories are
specified in terms of the encoder readings { 8y, 8y, 67 ).

interface/encoder circuit

Figure 3 VRSM control system test bed
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To avoid the singularity that results from the simulation of
the robust controller given by Equations (17) and (26), the
following modification to the robust term,

P2
w=1lH
L

£

BEL
ol <=

Test Case 1

The spherical motor is commanded to move from its initial
state (0°, 0°, 0°) to a final state (0°, 10°, 60%), which
cofresponds to a 10° inclination of the Y-encoder guide and a
60° spin of the rotor shaft. The simulation and experimental
results for the robust back-stepping control of the spherical
motor are compared in Figure 4. The controller gains are
[£ ,]= diag{10,30,40) and[ K, ] = diag(12,45,12.5) .

Figure 4: Robust Back-stepping Control (Test case 1)

As a basis for comparison, the performance of the robust
back-stepping controller is evaluated against a PD controiler,
where the controller gains are tuned with the aid of simulation.
As compared in Figure 5, a properly tuned PD controlier
performs as well as the back-stepping-type controller for point
to point control.

Figure 5: Comparison against PD Controller

Figure 6 compares the performance of the back-stepping
controi with and without the robust term. The performances,
with and without the robust terms, are close. The dynamic
model] of the back-siepping controller is apparently reasonably
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good. The robust back-stepping controller, however, has a
shightly faster response time. The primary advantage of the
back-stepping controller over the PD controller is the ability to
track time varying inputs.

Figure 6: Effect of the Robust Term

Test Case2

Two consecutive motions are involved. The spherical
motor is first commanded to move from its initial position (0°,
0°, 0°) to an intermediate state that is essentially a 107
inclination of the Y-encoder guide or (0°, 10°, 80°%), while
maintaining a shaft spin rate of 80°. In the sccond stage, while
maintaining the same spin rate as in the first stage, the spherical
motor is commanded to move to a final state of (0°, 2°, 60°1),.
Figure 6 shows the responsc of the spherical motor with the
robust back-stepping-type controller. As shown in Figure 7, the
back-stepping-type controller has performed very satisfactoriy.
Experimental results have shown that a PD controller would

The desired and applied current inputs are shown in Figures
8(a) and (b) respectively. The corresponding torque components
are shown in Figure 9. It is also observed that the currents in
stator coils 6 through 10 are equal but opposite in direction to
the currents in coils 1 through 5. This cwrent input
configuration results directly from the solution of the torque-to-
current optimization problem. The current excitation pattern is
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due to the symmetric arrangement of the spherical motor coils.
The desired currents were within the current limit for most part
of the response. The desired and applied torque components
were therefore equivalent.

5. CONCLUSIONS

A detailed dynamic mode] of a VR spherical motor, along
. with the method of incorporating the constraints imposed by the
fixtures, tooling or payload in the derivation of the VRSM
dynamics, has been presented. The robust back-stepping
controller presented here provides an effective means to
compensate for uncertaintics accountable for imperfect

modeling and intentional computational simplification.

The performmances of two back-stepping controllers, with
and without a robust term, have been evaluated experimentally
against a PD controller that serves as a basis for comparison.
The performances of the back-stepping controller, with and
without the robust terms, are close, which implies that the’
dynamic model incorporating the constraints imposed by the
fixture is apparently good. The robust back-stepping controller,
however, has a slightly faster response time. The primary
advantage of a back-stepping controller over the PD controlleris
its ability to track time varying inputs.

Preliminary results in this paper are promising. The
techmques can be extended to account for other forms of
fixtures, tooling or payload dynamics.
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