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ABSTRACT 

This paper presents the effects of fixture dynamics on the 
control of a variable-reluctance spherical motor (VRSM). The 
cascaded VRSM dynamics has the appropriate structure for the 
so-called back-stepping controller design method. 
Implementation of the back-stepping controller, however, 
requires the computation of the exact motor dynamics at each 
sampling time. This computational burden has an effect on the 
performance of the control algorithm and imposes constraints on 
the hardwardsoftware architecture of the control system. By 
only computing the dominant parts of the mobr dynamics, this 
computational burden can be reduced. We have developed a 
robust back-stepping controller to compcnsate for uncertainties 
account for imperfect modeling and intentional computational 
simplification. The performance of the robust back-stepping 
controller has been evaluated experimentally against a classical 
PD controller and a standard back-stepping controller. which 
serve as bases for comparison. 

1. INTRODUCTION 

Multi-degree-of-freedom (DOF) actuators are fmding wide 
uses in a number of industries. For high precession trajectory 
planning and control, it is desired to replace the actuator system 
made up of several single-DOF motors connected in series 
and/or parallel with a dexterous spherical multi-DOF acbtor.  
The need for such systems has motivated years of research in 
the development of unusual, yet high performance actuators that 
have the potential to realize multi-DOF motion in a single joint. 
One such actuator is the spherical motor. Compared to 
conventional robotic manipulators that offer the same motion 
capabilities, the spherical motor possesses sevcral advantages 
much simpler and more compact in design. 

A brief review of prior research efforts on the spherical 
motors can be found in [I]. Of particular interest here is the 
development of a VRSM, where ,+her works have been largely 
focused on the understanding of the operating principles, 
deriving the torque model, and developing the desi~control 
methodology. Most of these studies have largely ignored the 
loading effects on the performance. The d+cs of fumes  
and tooling that are mounted on the multi-WF actuator may not 
be neglected for high-precision applications. For this reason, we 
have developed a robust hack-stepping co&roller and examined 
the effects of the fixture or tooling dynamics an the VRSM 
controlled system using an existing setup. 

The cascaded VKSM dynamics has the appropriate 
structure for the socalled back-stepping controller design 
method. Kokotonc [Z] published one of the pioneaing works 
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on the back-stepping control techniquc and Qu et al. [3] 
extended this technique and developed a robust back-stepping- 
type controller for a one-link robot with the motor dynamics 
taken into consideration Carroll el 01. [4] also extended the 
work of Kokotovic [Z] to design an embedded computed torque 
and output feedback controller for permanent magnet brush dc 
(BDC) motors Hemati et 01. [5 ]  developed a robust feedback 
linearizing controller for a single-link robot actuated by a 
brushless dc motor PLDC). In [a, Carroll et al. also 
developed a robust m k i n g  controller for a BLDC, which 
achicved globally bounded results for rotor position tracking 
error despite paramebic uncertainties and additive bounded 
disturbances. Unlike prior works that the hack-stepping 
controllers have been applied to the control of numerous single- 
axis machines and serial or parallel robotic mechanisms, we 
investigate the back-stepping control design in the context of a 
VRSM with the ability to compensate for model imperfections. 

The remainder of this paper is organized as follows. 
Section 2 begins with the presentation of the system dynamics 
and the toque model of a VR spherical motor, along with 
consttaints imposcd by a future. The formulation of the control 
problem is given in Section 3, where the design of the back- 
stepping-type controller using Lyapunov-ty~ stability 
arguments is presented. The performances of the two back- 
stepping controllers, with and without a robust t e n  are 
compared in Section 4. Finally, the conclusions are given in 
Section 5 .  

2. SYSTEM MODEL 

The VRSM referred to in this paper has a similar structure 
as ball-joint-like device in [q. Clearly, this specific struchue Is 
chosen here for the purpose of illustrating the effects of tooling 
dynamics on the control of a VR spherical motor and because a 
prototype of such a strucme has been available for experimental 
verification. Extension of the techniques for ,other forms of 
fixtures, tooling or’ payload dynamics is expected to be 
relatively straight-forward. 

As shown in Figure 1, the structure is made up of four 
basic assemblies, a spherical rotor, a hollow spherical stator, a 
bearing system, and an orientation measurement system. The 
stator houses a number of electromagnets strategically 
distributed on the inside of its surface. Similarly, the rotor 
consists of a numher of poles made up of ferromagnetic 
materials or permanent magnets. Feedback control of the 
spherical motor requires an orientition measurement systw. 
When off-the-shelf single-axis encoders are used, a typical 
orientation measurement system requires a mechanism that 
consists of the two arc-shaped guides and a sliding block. The 
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two guides are mounted orthogonally on bearing pins attached 
to the outside of the stator for meas-g the rotation of their 
corresponding guides. The 2 encoder measures the spin of the 
rotor shafl about its axis. Detailed derivations of the kinematics 
that relate the encoder readings (e,,S,.S,) to the rotor 
orientation or the ZYZ Euler angles (y,e,))can be found in 
[SI. The measuring system contributes to two-thirds of the total 
system inertia and can not be neglected. 

. .  

,,. 
. . , ... 

~. 

J 

Figure 1 Explored view o f a  VRSM CAD model 

2.1 Rotor and Tooling Dynamics 

The effects of the X- and Y-guides on the rotor dynamics 
can be described by the constraint equations in the following 
form: 

f i  (qT; O x ,  8, ) = 0 (la) 

f2(qT;BX,By)=0 (Ib) 
where qis a 3x1 vector of the ZYZ Euler angles; and 
(e,, By) are angular displacement measured about x-axis and y- 
axis respectively. In order to include the constraints imposed by 
the X- and Y-guides, we use a Lagrange formulation to derive 
the dynamic model for the combined rotor and encoder 
mechanism 

where j = 1,. . . J ; L is Lagrangian; Qj  represents the applied 

torque: A, a n d 4  are constrained Lagrange multipliers; and the 

term 2 as A, represents the contribution of the reaction forces 

(60m the measurement guides) to the generalized moments. In 
Equation (2), a# are the elements of the Jacobian 

mauix[a]=I[o,] [flu of the angular velocity constraints, 
which can be derived by differentiating Equations (la) and (Ib), 
in the following form: 

,=I  

- -  
where [ ~ , ] i s  a 3x2 matrix the elements of which are functions 
of the ZYZ Euler angles; and [/2]is a 2x2 identity matrix It 
can be shown that the dynamic model of the combined 
rotodsensor mechanism can be w i t l a  in the following compact 
form: 

[n(¶)lij+cts,i)=[5(¶)JT(¶) (3) 
where [ff(¶)l =rJ,I+rdrrJ,lr.,l (3a) 

[C(q,P)l= ~+[dIJ, l lo , l  (3b) 

(34  

2(12 -I,)secop8+1 
and 

2.2 Torque Model 

ouadratic and has the followina form: 
The toque generated by the spherical motor is typically 

where 1,and 1, are the stator and rotor current input vatom 
respectively; and [L,] are the self-indwtance sub- 
matrices of the stator and rotor respectively; and 
[L..,] = [ & I r  is the mutual inductance sub-matrix. The specific 
form of the torque depends on the sbuchxe of the motor. For a 
configuration where cods are wound on non-fenomapetic 
cores and permanent magnets are used as rotor poles, the third 
term in Equation (4) is eliminated. In addition, the self- 
inductance term is small compared to the second term due to 
mutual-inductance term. Thus, the torque can be approximated 
by a linear combination of stator input currents: 

where K,(x,) E R*" is the torque constant matrix; U E R" is the 

control vector of stator coil currents; n is the number nf stator 
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coils; and q = [ ~ , e , # ] ~ i s  a vector of ZYZ Euler angles 
describing the rotor orientation w. I. t. the stator reference 
frame. 

minimizkg the control input energy consumption 

where [WIG R""" is a positive definite weighting ma&, 
subject to the desired toque constraint given by Equation (12). 
Provided that the canlrol currents are kept within limits, the 
optimal solution to this probkm can be solved using Lagrange 
multipliers. The optimal solution can be Wntten in closed form: 

For a specified torque, the cment input vector is found by 

J = t u T [ W ] .  (6) 

U =[W]~'[K:]~K,][W]~'[K:]~T (7) 

2. FORMULATION OF VRSM CONTROL 

The control objective for the spherical motor is to move the 
rotor kom an initial state to a specified fmal state, while 
-g the system energy consmption. .The spherical 
motor control objective can therefore be stated as follows: 
Given the constraint Lagrange equations: 

x, = X I  (8) 
(9) IH(x .  )IX, E T(x, ,U)- C(x., x , )  

where r ,=q i sa3x l  vectoroftheZnEulerangles(yl.8,)). 
x 2  is the corresponding angular velocities, 
[H(r,)] is a symmetric, positive-defulite inertiamatrix, 
C(r, ,x,) represents the vector of conolis terms, and 

the control problem is to det-e the sub-optimal control 
vector U that will drive the rotor from its initial state to a 
specified final state while "z ing  the cost function given by 
Equation (6) .  

The 
desired toque required to stabilize the system is 6 n t  derived. 
In the second part, the current inputs required to generate the 
desired toque is determined kom the solution of a static 
optimization given by Equation (7). 

3.2 Back-stepping Controller 

The cascaded spherical motor dynamics in Equations (8) and 
(9) have the appropriate structure for the back-stepping 
controller design method. The'desired torque far a back- 
Stepping controller has the following form: 

Equation (10) is a nonlinear compensator since it depends on the 
dynamics of the spherical motor, where y is derived such that 
the rotor wil l  track the desired specified state x,, if the position 
emor dynamics are given as follows: 

where z j  = x  ,. - q ;and 
[Kn] is a positive d e f ~ t e  gain matrix: 

Equation (1 I )  can he rewritten as 

Substituting the fictitious control input xZd forr, in Equation 
(1 la) yields 

The controller developed is designned in two parts. 

T. = [ H b + C ( x , , x , )  (10) 

i, + [K,lz, = 0 (11) 

x, = x,. +IK91z, (1 la) 

xu = i,, +[KJx,, -x,) (12) 
The fictitious control input 
velocity trajectoly leading to the velocity error: 

z *  = x u  - x z  
The emor dynamics in Equation (13) ensures the velocity m o r  
approaches zero asymptotically, which will eventually lead to 
the asymptotic convergence of the rotor position error. 

i, +[K,]z, = 0 (13) 
where [ K d J  is a positivedefuute gain matrix. Equation (13) 
can be rewritten as 

Substituting Equation (13a) into Equation (9) leads to the 
stabilizing torque: 

Comparing Equation (14) and Equation (10) leads to 

selected as the specified 

x, = i, +[K,]z, (134 

T. = [ W ( i ,  +[K,Iz,)+C(x,.xJ (14) 

. Y = ~ M  +[Kpl(itd - ~ ~ ) + [ K J & I S  +[K,l(x~. -%)j-xlj  

' Y = 1,; + W,I+[K, 
Or 

- i, )+[K,I[K,l(r,, - s,) (15) 

3.3 'Robust Back-Stepping Controller 

dynamics, the controller takes the following form: 
To account for the uncertainties in the spherical motor 

Td = [ k ] y + C  (16) 
Y =Xid+( [Kpl+[Kdl )~~+( [K~IIKdl )~~  + W  (17) 

where [k]  and e are the estimated inertia and conolis terms in 
the VRSM dynamics; and the proper choice of robust term w 
will enswe the stability of the system even in the presence of 
uncertainties. 

Error Dvnamics in the Presence of Uncertainties 

Application of the robust controller in Equations ( I  6) to the 
spherical motor dynamics in Equations (8) and (9) leads to the 
following closed loop dynamics: 

(18) 
Since the inertia matrix [HI is symmeIxic and positive defmite, 
the closed loop dynamics in Equation (9) can he rewritten as 

[HI& + c = [G]y +e 

i, = y - q  (19) 

where 1 = ([r]-[Hy'[fi])y -[HI-'(& C) (194 
Substitution of Equation (17) for yinto Equation (19) results in 
the following expression for the closed loop err01 dynamics: 

X I  +([K,,]+[KdD;, +[K,][Kd]?, = q-w 
which can be rewitten as 

I 

t=rFI%+[Dl(q-w) 

is a block matrix of dimension RM ; and 
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Rn'. Since q is a nonlinear function of the position and 
velocity state vectors, the system error dynamics in Equation 
(20) are nonlinear and coupled. . 

Stability Considerations and Rohust Control Law 

assumptions on the uncertainty vector q [91, 
The robust controllers arc designed with the following 

S;P[L[ < Q, < - vx,a (21a) 

([r]-[H-'(I,)][.ti(*,)lilS I C < ]  b (21b) 

~ ~ ? - C ~ ~  < 0 < - v&,% (21c) 
The robust control problem therefore reduces to linding a 
control signal y h t  stabilizes the nonlinear 'and time-varying 
error dynamics in Equation (20). The robust control law y 

should guarantee the stability of the error dynamics as long as 
thc uncertainty in q is hounded. - 

The stability considerations and the design for the robust 
controller are determined using Lyapunov methods. Selecting 
the following positive-definite quadratic function 

as a Lyapunov function, where [Qls RM is positive d e f ~ t e .  
The lime derivative of the Lyapunov function along the 
trajectories of the emor dynamics is given by 

For a negativedefinite [F ] ,  

Y = Sr[QIS > 0 (22) 

r'= G' ([Fir [Ql+lQl[FD< + 25' [QI[Dl(q- W) (23) 

[Fl'[Ql+[Ql[FI= <PI (24) 

= -<'[PI<+ 25'[Ql[~l(tl- W) (25) 

where [PI is a symmebic, positivedefinite mabix. Equation 
(23) can be rewritten as 

which is strictly negativedefinite if the 2" term is either 
negative or zero. The error dynamics converge to zero when V 
is negative definite. Selecting the robust control term w as 

P ,=m2 P ' 0  

where z = [D]'[Q]5. Equation (25) hecomes 

Since 

(27) 

(28) 

the term z' q - p z  

izl\(llqi- p)  . Therefore, se lechg  p such that 

is always hounded 60m above by [ cn 1 
p I14 vx, ,x, A d  (29) 

results in i being negative definiteness. 

With the definition of q given in Equation (28a) and the 
sygtem bounds 60m Equations (31a), (3Ih) and ( 3 1 ~ ) .  the 
following bound can be put on the uncertainty term q: 

~ ~ - [ W 1 [ ~ l [ k ~ ~ ~ ~  +bK1114]+ I [wl!)+lkffJ '~~ 
or 5 ~ Q M  + xI[Kfi + xp + [ f f ~  IQ (30) 
Using the inequalities in Equations (39) and (40), p is solved 
to givc the following relationship: 

(31) 
1 

P*=kQ, +4K1[1Sn+[HUP) 
The choice of p 60m Equation (41) ensures that the time 

derivative of the Lyapunov function is negative definite and 
results in the stability of the error dynamics. 

The block diagram showing the implementation of the 
robust hack-stepping controller is given in Figure 2. 

Figure 2 Block diagram of robust hack-stepping conholler 

4. SlMULATlON AND EXF'ERlMENTAL RESULTS 

The objectives of the simulation and experiment are (1) to 
validate the dynamic model and control method and (2) to 
examine the robustness of tbe control algorithm. 

Figure 3 shows the VRSM control system test hed. Two 
KPCI-3130 Keithley data acquisition cards, each of which have 
eight analog output channels, M used to control the 
electromagnets. Since the prototype has ten stator coils, five of 
the eight analog channels of each board are connected through 
the current amplifier to the motor. The rotor has six poles of 
permanent magnets. The detail of the prototype design can be 
found in [I]. Results of WO test cases are discussed in this 
paper; namely, point-to-point control (Case #I)  and Uacking 
control (Case #2). The desired sphnical motor trajectories are 
specified in terms of the encoder readings ( 0,. 0,. 0, ). 

Figure 3 VRSM conuol system test bed 
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To avoid the singulanty that results kom the simulation of 
the robust controller given by Equations (17) and (26). the 
following modification to the robust term. 

= HZ 114'E (8. 114<€ 
Test Case 1 

The spherical motor is commanded to move from its initial 
state (O', O", 0") to a final state (Oo, IOo, 60'). which 
corresponds to a IO" inclination of the Y-encoder guide and a 
60' spin of the rotor shaft. Thc simulation and experimental 
results for the robust back-stepping control of the spherical 
motor M compared in Figure 4. The controller gains are 
[Kpl  = diug(10,30,40) and[Kd] = diag(12,45,12.5) . 

Figure 4: Robust Back-stepping Control (Test case 1) 

As a basis for comparison, the performance of the robust 
hack-stepping controller is evaluated against a PD controller, 
where the controller gains are tuned with the aid of simulation. 
AS compared in Figure 5 ,  a properly tuned PD controller 
performs as well as the back-stepping-m controller for point 
to point control. 

F i m e  6 compares the performance of the back-stepping 
control with and without the robust term. The performances, 
with and wthout the robust terms, are close. The dynamic 
model of the back-stepping controller is apparently reasonably 

good. The robust back-stepping controller, however, has a 
slightly ~ faster response time. The pnimary advantage of the 
bad-stepping controller over the PD controller is UK ability to 
track time varying inputs. 

Test Case 2 

Two consecutive motions are mvolved. The spherical 
motor is first commanded to move from its initial position (O", 
W, 07 to an intermediate state that is essentially a 1W 
inclination of the Yencoder guide or (W, IO", 8O"t), while 
maintaining a shaft spin rate of 80'. In the second stage, while 
maintaining the same spin rate as in the fmt stage, the spherical 
motor is cormnanded to move to a final state of (0". ZO, 60"r),. 
Figure 6 shows the response of the spherical motor with the 
robust hack-stepping-type controller. As shown in Figure 7, the 
hack-stepping-type controller has performed very satisfactorily. 
Experimental results have shown that a PD controller would 
exhibit unstable behaviors for time-varying trajectory following. 

Fig 

The desired and applied current inputs are shown in Figures 
8(a) and (b) respectively. The corresponding torque components 
are shown in Figure 9. It is also observed that the currents in 
stator coils 6 through IO are equal but opposite in direction to 
the currents in coils I through 5 .  This current input 
configuration results directly from the,solution of the torque-to- 
current optimization problem. The current excitation pattern is 
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due to the symmebic arrangement of the spherical motor coils. 
The desired currents were within the current limit for most part 
of the response. The desired and applied torque components 
were therefore equivalent. 

5. CONCLUSIONS 

A detailed dynamic model of a VR spherical motor, along 
with thc method of incorporating thc constraints imposed by the 
fixtures, tooling or payload in the derivation of the VRSM 
dynamics, has been presented. The robust back-stepping 
controller presented here provides an effective means to 
compensate for uncertainties accountable for imperfect 
modeling and intentional computational simplification. 

The performances of WO back-stepping controllers, with 
and without a robust term, have been evaluated experimentally 
against a PD controller that serves as a basis for comparison. 
The perfomances of the back-stepping controller, with and 
without the robust terms, are close, which implies that the 
dynamic model incorporating the conshaink imposed by the 
fixture is apparently good. The iobust back-stepping controller, 
however, has a slightly faster response time. The primary 
advantage of a back-stepping controller over the PD controller is 
its ability to track time varying inputs. 

Prehinary results in this paper are promising. The 
techniques can be extended to account for other forms of 
fixtures, tooling or payload dynamics. 
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