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Abstract 
Faber dzameter nonuniformities in optical fiber drawing 
processes can have adverse effects on system performance. 
In thas paper we develop a method for obtaining models of 
the drawing process that lend themselves to the application 
of optimal control of fiber diameter nonunijormities. The 
method presented here consists of using the basic conser- 
vation laws of mass, momentum, and energy to construct 
state space models of the drawing process that incorpo- 
rate all the relevant variables of the system an a multaple- 
input/multiple-output framework. An  LQG optimal con- 
troller is synthesized to illvstrate the applacabalaty of the 
state space model. 

1 INTRODUCTION 
Fiber optic technology experienced a phenomenal rate of 
progress in the second half of the twentieth century. For 
the past decades, optical fibers have become an efficient 
and elegant way to transmit signals in many applications. 
The US. military uses fiber optics for improved commu- 
nications and tactical systems. Computers, information 
networks, and data communications embraced fiber tech- 
nology for a transmission system that has lighter weight 
cable, resists lightning strikes, and carries more informa, 
tion faster and over longer distances. The broadcast in- 
dustry uses fiber optic video transmission system for dig- 
ital video signals. 

Optical fibers are manufactured by means of the draw 
process, which refers to the formation of an optical fiber 
from a cylindrical glass rod called preform. As shown in 
Figure 1, a preform of initial radius, Rp, is gradually fed 
at a rate, up, into a cylindrical furnace and peripherally 
heated to its softening temperature. At that temperature 
the preform becomes soft and a tension force is applied at 
its lower tip to pull the glass downward resulting in a neck- 
ing shape on the preform. As the glass is drawn downward 
at a relatively high speed, uf, a glass fiber is formed at 
some location downstream. When the fiber exits the fur- 
nace, it enters the cooling stage where it is cooled by the 
surrounding gas. The fiber is then coated with an organic 
material to protect its surface from moisture and direct 
mechanical abrasion. Finally, the coated fiber is wound 
on spools through a precision winding mechanism. Dur- 
ing the drawing process, the fiber diameter may exhibit 
significant fluctuations due to unsteady variations of the 
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Figure 1: Longitudinal section of a typical draw process 
configuration 

preform feed rate, fiber draw speed, furnace temperature, 
and/or mechanical vibration of the drawing machine. 

Several researchers have attempted to model the draw- 
ing process in an effort to devise better diameter con- 
trollers. Tchikanda [l] used two-dimensional fluid dy- 
namic models to obtain the free surface shape, velocities, 
and temperature profiles of the glass during the draw- 
ing process. These models incorporate thousands of dy- 
namic states and can provide accurate representations of 
the flow field. However, they necessitate large amount, of 
computational time and thus, are unsuitable for both real- 
time simulations and control design. Mulpur and Thomp 
son [2, 31 developed fiber diameter controllers using one- 
dimensional models of the draw process. Although these 
models require a lot less computational time than the two- 
dimensional ones, they are based on isothermal approxi- 
mations of the full two-dimensional models and cannot 
be used to predict fiber diameter nonuniformities due to 
temperature fluctuations in the draw process. Smithgall 
[4] and Zhu et. al. [5] designed fiber diameter controllers 
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based on experimentally determined frequency response 
models of the fiber drawing process. These frequency re- 
sponse models are constructed using parameter lumping 
methods based on the information at the boundary. Al- 
though they can accurately characterize the input/output 
relationship of the system, they do not reveal any informa- 
tion about internal states and thus, cannot predict large 
perturbations in the flow field like fluid dynamic mod- 
els do. Furthermore, they are singleinput/single-output 
(SISO) systems in which the draw speed is the only con- 
trol input to the system. Controlling the fiber diameter 
using these SISO models puts a burden on the draw speed, 
which in turn results in large variations in draw speeds 
that adversely affect subsequent process operations such 
as the application of the coating material. 

Tchikanda and Lee [6] addressed the above issues by at- 
tempting to bridge the gap between the system theoretic 
modeling techniques of control engineers and the more 
physically motivated modeling methods of fluid dynami- 
cists. They developed a state space model that incorpe 
rates all the relevant inputs and outputs of the system 
in a multiplc+input/multipleoutput (MIMO) framework. 
Although their model is an improvement to the previous 
models, three issues are worth mentioning: 1) they do 
not take into account the transient behaviour of the in- 
flow temperature. During the drawing process, the glass 
temperature profile is significantly affected by the inflow 
temperature since the latter changes drastically as the pre- 
form is lowered into the furnace. 2) They use a very high 
order stencil to discretize the outflow boundary. This 
often causes numerical instabilities of the discretization 
scheme and thus leads to unstable systems. 3) They use 
the fiber cross sectional area as one of the states instead of 
the fiber diameter. This practice tends to introduce very 
small coefficients in the system matrices, which results in 
ill-conditioned problems. 

In this paper, the method developed in [6] is used to ob- 
tain an improved state space model that lends itself to the 
application of modern feedback control design techniques. 
Finally, a Linear Quadratic Gaussian (LQG) optimal con- 
troller is synthesized to illustrate the applicability of the 
state space model. 

2 DYNAMIC EQUATIONS 
At high temperatures, glasses used in optical fiber drawing 
processes are modeled as incompressible and highly vis- 
cous Newtonian liquid with temperature dependent ther- 
mophysical properties. In order to accurately capture the 
dynamics of such a process, the full two-dimensional con- 
servation equations (Navier Stokes equations) are often 
used [l]. However, the complexity and computational 
effort required to solve these equations make them un- 
suitable for control design. For this reason, quasi-one- 
dimensional equations are used to approximate the full 
two-dimensional equations. This approximation is based 
on the fact that the flow is predominantly in the axial 
direction for a large portion of the drawing process es- 
pecially in the draw-down region where most of the fiber 
formation occurs. The radial velocity component and the 

gradients of the velocity vector in the radial direction are 
small in that region. As a result, the radial momentum 
equation becomes negligible. The remaining equations are 
the continuity, axial momentum, and energy equations 
and describe the mean Aow of glass along the axial direc- 
tion. They can be obtained by applying the conservation 
laws of mass, momentum, and energy to an appropriate 
control volume. In cylindrical coordinates, a suitable con- 
trol volume is an infinitesimal cylinder of diameter d = 2R 
and length An as shown in Figure 1. The axial velocity 
and axial temperature at the center of the control volume 
are v and T ,  respectively. Hence, stated in the context of 
this differential control volume, the conservation of mass, 
momentum, and energy are given by 

a a 
at 
- (d2) + at (d2v) = 0, 

pcp [at d (d2T) + d (d2vT)] = 2 ( I . d 2 z )  m 
az 

where t is time and z is the axial distance; p, p, K ,  y, and 
g are the density, dynamic viscosity, surface curvature, 
surface tension coefficient, and gravitational acceleration, 
respectively; cp and k are the specific heat and thermal 
conductivity, respectively. The convective and radiative 
heat fluxes at the glass surface are given by 

q:o,,(z) = h(z)  [T(4 - 4 f (4) 

(5) Q:ad(zi t )  = 0€T4 - q(t)iiu,(z), 

where h is the heat transfer coefficient at the surface, 
T, is the surrounding gas temperature, E is the glass 
“effective” emissivity, U = 5.67051 x W m-2 K-4 is 
the Stefan - Boltzmunn constant, and q(t)qi,,(z) repre- 
sents the heat flux leaving the furnace that is incident on 
the glass surface. The spatial distribution of the furnace 
heat flux, i i u r ( z ) ,  is obtained from [l] and its intensity is 
given by the following differential equation: 

rqi(t) + dt) = W q ( t h  (6) 

where Iq is the input current to the furnace, and rq and 
Kp are the furnace time constant and gain, respectively. 

To simplify the presentation and utilization of the solu- 
tions, the conservation equations are rewritten in dimen- 
sionless form and cast into the vector form. The nondi- 
mensionalizing procedure may be done by normalizing the 
relevant variables with appropriate scales and arranging 
them into suitable dimensionless groups. 

d - D p ,  v - ~ j ,  z - L, t - Llvj,  
T - Tm,  II N Pmr k - km1 cp - cp,m, Y N ~ n r  

857 

Authorized licensed use limited to: IEEE Editors in Chief. Downloaded on February 5, 2010 at 15:23 from IEEE Xplore.  Restrictions apply. 



where the subscript “m” denotes value at  the melting 
point and L is the length of the drawing region. Using 
the above scales, the conservation equations are rewritten 
as 

(7) 

where Q, F ,  and S, are the state vector, convective flux 
vector, and source vector, respectively, given by 

Q = [ d  v T I T ,  

F = [ d2v  d2v2 d 2 v T  ]’, 

where 

as, 1 3pEc 
dz Fr 

+--, s 3 = -  , s4 = s ~ E c ,  K-r s, = - 
Re neCa’ 32 = - 

The matrices E ,  G, and are given by 

E = diag (1,1, cp), G = 
2dT 0 d2 

r =  diag ( 0,- 3;:7;:) - 

The dimensionless groups Re, Pe, Fr,  Ec, and Ca are 
the Reynolds ,  Peclet, Froude, Eckert, and Capi l lary  
numbers, respectively, defined by 

3 BOUNDARY CONDITIONS 
The preform diameter is constant at the inflow boundary 
and is equal to D p  = 2Rp. At the outflow, the equation 
for the fiber diameter is obtained by spatially discretizing 
the continuity equation given by Eq. (1) using one-sided 
differences. 

The axial velocity at the inflow is equal to the preform 
feed rate, vp(t) ,  which is obtained from a motor described 
bY 

TPWP ( t )  + V P  ( t )  = KPVP(t), (8) 

where Vp is the input voltage to the motor, and T P  and 
K p  are the motor time constant and gain, respectively. 

~ 
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Similarly, the outflow velocity is equal to the fiber draw 
speed, vp(t), obtained from a motor described by 

where V f  is the input voltage to the motor, and r f  and 
K f  are the motor time constant and gain, respectively. 

For high speed drawing of long fibers, conduction heat 
transfer is negligible at the inflow and outflow boundaries. 
As a result, only the advection, convection, and radiation 
t e r m  are retained in the energy equation. Thus, at the 
inflow and outflow boundaries the first and last terms on 
the right in Eq. (3) can be dropped leading to the follow- 
ing dimensionless equation 

[” ( d 2 T )  + a (d’vT)] = 
cp at 

Eq. (10) will be spatially discretized using one-sided dif- 
ferences to obtain equations for the i d o w  and outflow 
temperatures. 

4 STATE SPACE MODEL 
The conservation equations developed in the previous sec- 
tions emphasized the fact that instabilities in the draw 
process are due to unsteady dynamics of the diameter, 
velocity, and temperature profiles. The framework for an- 
alyzing these instabilities is based on the conservation of 
mass, momentum, and energy. In this section, a state 
space form suitable for the application of modern control 
design techniques is introduced. This is achieved by lin- 
earizing and spatially discretizing the conservation qua- 
tions, which are rewritten here as 

where the residual vector, R, is defined as 

and the matrix N = EG. 
In order to discretize the conservation equations, a on+ 

dimensional grid along the axial coordinate is constructed 
on the solution domain. The grid points are numbered 
using the index i with 1 5 i _< I, where I is the maximum 
number of grid points. The inflow boundary is located at 
i = 1 whereas the outflow is at i = I .  The residual vector 
is discretized using a third order upwind flux difference 
method [7] for the convective flux vector, and the second 
order central difference method [8] for the diffusion term 
and source term vector. Thus, 
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where R = aF/aQ is the Jacobian matrix of the convec- 
tive flux vector. The discrete residual vector in Eq. (13) 
can be linearized using a truncated Taylor series about 
some steady state vector, Q ,  and heat flux, q, to give 

NiSQi = Qi6Qi-I+ PiSQi + ~ i d Q i + l +  wi6ql (14) 

where SQ and 6q are small perturbations about some 
steady state, and the coefficient matrices are given by 

aRi dRa mi dSi 
aQi+1' ' - @q 

ai = - aQi' pa = - W '  - -. @QiW1 Pi = - 
As mentioned in the previous section, the diameter at 

the inflow is constant (dl = D p ) .  Therefore the inflow 
state vector, Q1, has only two components, u1 and TI 
given by Eqs. (8) and (lo), respectively. The outflow 
equation for the state vector QI = [ d I  V I   TI]^ is obtained 
using Eqs. (l), (9), and (10) for d r ,  V I ,  and TI,  respec- 
tively, with one-sided differences used when appropriate. 

Combining Eqs. (6), (8), (9) and (14) along with the 
discretized versions of Eqs. (1) and (10) at the inflow 
and outflow boundaries, the system state equation can be 
rewritten as 

M k ( t )  = A i ~ ( t )  + Blu(t), t E [0, a) , (15) 

where the state vector x and the input vector U are 

z =  [ 6q SQ1 6QT SQT SQT I T 1  
T u= [ vp v, Iq ] . 

The matrices M ,  AI, and BI are given by 

block-diag (rq,  N I ,  N2, * * , N,, . . . , N I )  , 

P1 91 
a2 P 2  P2 
z 3  Q3 Ps P3 

zi ai Pi Yi 

. . .  . . .  . . .  

QI-1 P I - l  YI-I 
Q I  P I  

B1 = [ aK 03x(I--6) I T >  
where i& = [wi 0sx2] and 

0 0 0  

0 0 0  

Eq. (15) is the linear statevariable form of the dynamic 
equations. To complete the state space representation of 
the system, an output equation must be developed. The 
outputs of the system are the fiber diameter and the fiber 
tension force. In dimensionless form, the fiber tension 
force is given by 

f = d 2  ( 3 p g  + 2). 

Using a second-order backward difference for the velocity 
gradient at the outflow boundary', Eq. (16) is discretized 
and linearized to give 

6.f1 = S ~ Q I  + cdQr-1 + ~ Q I - 2 ,  (17) 

where the vectors c1, c2, and c3 are obtained in an obvious 
manner. Denoting the output vector by 

Y = [ Jdl 6 f I  I T >  
the complete state space representation of the dynamic 
system is expressed as 

k ( t )  = Ax(t )  + Bu(t), t E [O,W) (18) 
y(t) = Cz(t)  + Du(t ) ,  (19) 

where 

A = A4-IAl, B = M-lB1, D = Ozx3 

1 -  01x3 ' ' ' 01x3 . . *  01x3 el 
'= [ 01x3 01x3 C3 C2 C I  

and II: E J R n x l ,  U E JR3'l, y E J R 2 x 1 ,  A E PXn, B E W X 2 ,  
C E gxn,  D E BZx3,  el = [ 1 0 0 3, and n = 31. 

5 CONTROL DESIGN 
In this section, an LQG optimal controller is synthesized 
to illustrate the applicability of the state space model de- 
veloped in the previous section. The control objective is to 
minimize the unsteady fluctuations in fiber diameter and 
tension force due to a disturbance input in furnace heat 
flux which may mise from furnace temperature fluctua- 
tions. For controller synthesis a disturbance noise source 
is introduce on the furnace and sensors noise are included 
in the model. The design plant model is hence given by 

k( t )  = A z ( t )  + Bu(t) + D l ~ ( t ) ,  t E [O, m) , (20) 

y ( t )  = Cx(t)  + Du(t) + Dzw(t), (21) 

where D1 is given by 

where a ~ ,  . . . , UI are weights that can be chosen as design 
parameters, 

0 0 D22 " 1  ' D2 [ D21 

is the weighting on the fiber diameter and tension force 
sensors noise, and w( t )  = [ wl(t)  w2(t) wg(t)  ] . The 
signals wl( t ) ,  wg(t), and w3(t) represent the furnace dis- 
turbance noise, fiber diameter sensor noise, and fiber ten- 
sion force sensor noise, respectively, and are assumed to 

T 

'It is assumed that the final fiber diameter is attained at the 
outflow boundary and the tension force is measured there. 
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Figure 2: Fiber diameter closed-loop free response of LQG 
controller. 

be uncorrelated unit-intensity white noise processes. The 
performance variable 

t(t) = Eiz(t) + E2u(t), (22) 
consists of a weighted sum of the state variables and con- 
trol signals. Since the control objective is to minimize the 
unsteady fluctuations in fiber diameter and tension force, 
the performance state matrix El has the same form as the 
output matrix C and is thus given by 

1 [ 03x3 ' . *  03x3 * * * 03x3 03x3 

OlX3 OlX3 01x3 Ale1 
E1 = 01x3 " '  01x3 x2c3 x2c2 x2cl 

where A1 and A2 are weights that can be chosen as design 
parameters. The control weighting matrix is given by 

E2= [ : : E ;  0 0 0 E22 : 0 . 

The performance consideration of the LQG problem is 
to minimize the H2 norm of the closed-loop system from 
disturbance variable w(t) to performance variable <(t). 
Hence, using the framework presented in [9] we design 
a dynamic compensator of order nc = n of the form 

&(t) = +z,(t) + BCY(t),  t E 10, ..) I (23) 
4 t )  = Ccz(t), (24) 

such that the closed-loop system Eqs. (20), (21), (23), 
and (24) given by 

k(t) = x Z ( t )  + h ( t ) ,  t E [O,w), (25) 

E(t) = Eqt), (26) 
where 

I 
100 200 300 

-3.5 ' 
0 

Time (sec) 

Figure 3: Fiber tension force closed-loop free response of 
LQG controller. 

is asymptotically stable and the steady state performance 
criterion 

where E denotes expectation, is minimized. 
Using the above framework, an LQG controller was d o  

signed to control fiber diameter and tension force fluctu- 
ations in optical fiber drawing process. The number of 
grid points was I = 50 and all parameters such as pre- 
form shape, furnace configuration, thermophysical prop- 
erties, and dimensionless groups were all obtkned from 
[l] and will not be reproduced here due to lack of space. 
The steady state operating points used in the lineariza- 
tion procedure were obtained from nonlinear simulations 
[l]. Figures 2 and 3 show the LQG control free responses 
and Figures 4 to 6 show the LQG control input signals. 

6 CONCLUSION 
The objective of this paper has been to develop the dy- 
namic equations for optical fiber drawing in a form that 
is accessible to control systems designers requiring state 
space models for modern optimal control design. Using 
the preform feed rate, fiber draw speed, and furnace heat 
input, an LQC controller was designed to actively control 
the unsteady fluctuations in fiber diameter and tension 
force. The design example illustrates the applicability of 
state space models in optical fiber drawing for designing 
modern optimal controllers. 

The results of this paper can be readily extended in sev- 
eral directions. Specifically, since all nominal models are 
subject to uncertainties in the system due to unmodeled 
dynamics and/or inaccurate knowledge of the system pa- 
rameters, it is important that the model uncertainty struc- 
ture be accounted for in the control system design process. 
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Figure 4: Feed rate control signal of LQG controller. 
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Figure 5: Draw speed control signal of LQG controller. 

Particularly, in order to guarantee that the compensators 
designed on the basis of plant nominal dynamics or nom- 
inal models will result in stable feedback control system, 
the control engineer must be equipped with models that 
capture the uncertainty structure of the system. 
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Figure 6: Furnace control signal of LQG controller. 
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