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Abstract—Motivated by the applications of flexible fingers
(capable of offering large deflections to accommodate object
variations) in grasping, we present several computational
models that characterize the large deflection of a flexible finger
(beam). Specifically, we develop analytical methods for
analyzing the design of cantilever-like fingers or elements of a
machine that is designed primarily to support forces acting
perpendicular to the axis of the member. Both uniform and
non-uniform beams are considered.  The methods were
numerically validated by comparing the computed results
against those obtained using the closed-form solutions, where
exact solutions are available for fingers with a uniform cross-
section. To extend the closed-form solution for predicting the
shape of a non-uniform finger, we compute numerically an
effective Ef that approximates the non-uniform finger as a
uniform finger at the point of contact. The approximate model
has been examined experimentally. The results show excellent
agreement. We expect that the methods presented here will
have other engineering applications.

Index terms— grasping, flexible fingers, beam theory, handling

I. INTRODUCTION

Traditionally, designers of mechanical components are
used to the assumption of rigid bodies and rigid joints. As a
result, elastic deformation is often seen as something that would
lower the performance of a machine. However, many real life
examples demonstrate that flexible-beam-like compliance can
be an advantage in many applications,

Beam theory has played an important role in the
development of flexible fingers, flexural joints, compliant
mechanisms, p-motion manipulator, and nano-positioning-
stages. Most of these devices have been designed upon the
concept of the English clockmaker John Harrison (1759), who
replaced the revolute joints with flexural pivots to remove joint
friction for his chronometer. Another good application of
cantilevers is its use in the atomic force microscope (AFM)
[Tortenese, 1991; Baselt, 1993; Minne et al, 1998; Harley
{2000]. Recently, cantilevers are widely used in the Micro-
Electro-Mechanical System (MEMS) technology, which takes
advantage of the state-of-art integrated circuit (IC) fabrication
techniques from the semiconductor industry. Some of these
examples include the electrostatic-MEM switch [De Los
Santos, 1997], the p-mirror/u-laser arrays proposed by Cheng
e al. [1997] for replacing conventional laser printing
mechanisms to print faster and eliminate synchronization
problems that improve image quality while lower production
costs, and the micro-machined resonant magnetic field sensor
[Thierry et al.,, 2001]. More recently, p-cantilevers have also
found their uses in fast growing bio-medical research. Wu et af.
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{20011 developed a cantilevered microscopic chip, no bigger
than a hair and coated with antibodies, for detecting prostate
specific antigen {PSA) in human blood. The cantilevered chip
bends like a diving board as PSA sticks to the antibodies, but
does not bend when it exposes to different proteins found in
human blood serum (human plasminogen (HP) and human
serum albumin {HSA) because these molecules do not bind to
the antibody to PSA. Most of these studies, however, were
based on a linearized form of the beam equation (or the Euler-
Bernoulli equation) to simplify analyses and thus, are hrmted ta
small-deflection applications.

Flexible fingers have also been widely used in poultry
industry. Primary applications of flexible fingers (or beams) are
for removing feathers from bird carcasses, for singulating birds
into a single file to facilitate electronic counting and
transportation from farms to the processing plants, and more
recently for high-speed repetitive grasping of live objects [Lee,
2000], where impacts on objects are intolerable. Flexible beam
undergoing large deflections also finds its usage in sports field
for vaulting simulation [Ganslen, 1979; Linthorne, 2000],
where the flexible pole acts as an energy transformer that
converts the kinetic energy of the vaulter into the potential
entrgy in the vaulting process, The advantages of flexible
fingers are under-exploited (particularly for grasping),
however, because their design involves comp]:cated analysis.

The geometrical sclution to the 2™ order, nonfinear
differential equation that characterizes the large deflection of
flexible beams can be found in (Frisch-Fay, 1962] but the
derivation of this closed-form solution is rather cumbersome
and is valid for beams with a uniform cross-section. Numerical
methods, such as finite element (FE) method, are capable of
solving more general problems [Yang, 1973]. An alternative
solution approach is to replace the flexible beam by two rigid
links connected by a “characteristic pivot” with a torsion-
spring. Howell and Midha {1995] used this pseudo-rigid-body
(PRB) model to analyze compliant mechanisms with small-
length flexural pivots, Since the effective stiffness of the
flexible beam is dependent on the location at which the force
acts, the PRB model is limited to analyses where a known force
applies at a specified point. To explore the use of flexible
fingers for grasping live objects, Lee [1999] [Lee e al. 2001}
extended the solution of Frisch-Fay [1962] to predict the
contact point between a flexible finger and an ellipsoid.
However, most of the techniques available to date are limited to
beams with a uniform cross-section.

We present here three computational methods for
predicting the deflected shape of a general finger with a non-
uniform flexural rigidity to allow for broader applications. The
remainder of this paper is organized as follows:; In Section I,
models for predicting the shape of a deflected finper are
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presented. The models are compared in Section III. Section TV
offers a method to compute an effective EI, which prov1des a
means to extend the closed-form solution for solving thie shape
of a non-uniform finger. Conclusions are given in Section V.

‘H. FLEXIBLE BEAMMODEL
Consider a beam (which has a small y and z dimensions as
compared to the x dimension) with one end clamped as shown
in Figure 1, where the force F acts at an angle a at C (xa ¥o;
Q(x, ¥} is an arbitrary point on the deflected finger; s and L are

* the arc lengths from the finger base to Q(x, ¥} and C (x, ¥.)

-

respectively; and y,, is the slope of the finger at the contact.
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Figure 1 Schematics illustrating the parameters of the beam

The bending moment M at Q{x, y) ¢an be shown to be
M=E1(s)%i’-=Fsiu alx, ~x)+ Feosaly, - ¥) 1))

whete w is the angular deflection; E is the Young’s n;oduk of

the material;  is the 2™ order moment of area of the beam.
Eguation (1) can be written as [Yin, 2003]

1 d% diw) 1 48 F

inf=90 2

()I}d'2 du L2 du 'ESm L @

- .where -- u=s/Le[0]] (2a)
and . | O=a+y ela,a+y,) (2b)

To solve for 0.(bencey/) in Equation {(2), X(x) must be in closed
form (or by means of a lookup table), and that the 1%-order
derivative of I(u) exists and is a continuous function of w.

I1.1 Small Deflection of a Uniform Beam
. The curvature at the point considered is given by

dy  ~(d yidx®)

0 3
ds ]1+(ay/d P @
For a small deflection such that (dy/dx)’ <<l, the curvature in
Equation (1) can be approximated by the 2™ derivative of y.
This assumption also implies that the 2™ term on the right-
hand-side of Equation (1) is negligible, which leads to

)
EI(x)%:Fsina(L—x), Vx=0)=y(x=0)=0

~For a uniform beam, the solution to the above classical, linear

moment-curvatute equation is given by

=£3‘°’i£a_.(ijz(1_ij -_ (4
2E1 L L

I1.2 Large Deflection of a Uniform Beam

Equation (4) is not valid for large-deflection apphcatmus
For a beam with a uniform' cross-section, Equation (2) reduces
to a form of Newton’s equation:

Ou=0)=a and 6'(u=1)=[d0/dul,, =0
where k= m
&I (6)
where ET is known as the flexural rigidity. The closed-form
solution for Equation (5} and its boundary conditions has been
derived by Frisch-Fay [1962] as follows:

x= %[2;; sin ax{cos 4 —cos &) - h(y)cos a] (7a)
y= % [2p cosafcos ¢ —cos £)+ h(y)sina] (7b)
where p=sinf(y, +)/2]; (3a)
_ ] singz /2)} ) b
- sm*,[sm[(wﬁ—a).’Z]:l (¢)
P
) =F(p,&Y-F(p,5)-2E(p,§)+2E(p,{)] (8)

- and where F(p,{) and E(p,{) are the Legendre’s standard

form of the first and second kinds respectively. The modulus p,
which governs the deflected shape of the finger, is related to the
property of the finger by

i =F(p,7)-F(p,0)] )

The deflected shape of the finger under a known point force (F,
) can be computed as follows:

1. Calculate k from Equation (6) for a giver flexural rigidity.
2. Solve for the module p from Equation (9) implicitly:

&lp)= [F(p,"y) F(p,&)|-kL =0, where0 < p <1
3. Calculate y, from Equation (8a), and then ¢ and £(y = yy)

from Equations (8b) and (8¢) respectively.
4. The deflected shape of the finger can then be obtained from
Equations (7a) and (7b) respectively.

11.3 General Solution to the Flexible Beam Model

Since a closed-form solution for the general Equation (1) is
not available, Equation (2) that governs the shape of the
deflected finger is solved numericaily, For this purpose, we
rewrite Equation (2) in a standard form:

=f(,6,8"), 0zusi a0
9(0)=a,and 8'(1) = 0 ]

where n_ g Ful) -_.E_ i

. f(u,@,ﬂ ) - L I(HL) 0 E](UL) Slng

Once the solution of Equation (2} that is essentially a standard
boundary value problem (BVP) is obtained, the finger shape
can be computed from the following pair of equations:

iy
[x(uo)}=L c?sw]du
»(up) Jisiny
where uy is any value between 0 and 1. Three numerical

methods, the Shooting, the finite-difference (FD), and the
finite-element (FE) are discussed as follows.

Shooting Method

(11)

40 . - ) Equation (10) is solved numerically using the Shooting
—+ (L)’ sin6=0 . - method [Burden, 1997]. The basic idea of the Shooting method
du ’ is to treat the BVP as an initial value problem:
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6y = f(u,6,,6;) (12)
B(0)=a,and 63 (0)=¢
where ¢ is a guessed slope at one end of the boundary. The
guessed value of z can be adjusted by using the
difference m(s) = 84 (1, £}~ 84 (1) . The recursive algorithm is to
find the ¢orrect value & with m()y=0 as follows:
Step I: Use &,(0) = c, 65 (0) = (1) to calculate m(l).
Step 2: Use ) (0) = a, 5 (0) = £(2) to calculate m(2).
Step 3:  Use the secant method to obtain the new estimate:
2= - - S D,
m(i—1)~m(i-2)
Step 4: Tterate until|s(})—&(i—1)|<tol, where fol is the
numerical tolerance (or a small positive value governing the
accuracy of the numerical calculation).
As shown in the above steps, the Shooting method requires
two initial guesses of the derivatives at one end to iteratively
estimate the boundary condition at the other end.

Finite Difference Model

The continuous domain u (0,11 is discretized into (N+1])
equal intervals with endpoints at #; = ik (where i=0,1,.., N+1);
each has a lengthh=1/(N +1). The derivatives in Equation

(10) are then approximated by the central finite difference
formula, where the exact solution is assumed to have a bounded
4" derivative to allow for replacing 8"(x,) and 8'(x;):

m(i —1) where i=3, 4, ...

. 1 h*

4 (“f)=h_2[AWi+l _Awi]'_'ag(ﬂ(gi) (13a)
&'(u) = -L[Aw. +AW; ]-ﬁe(” 1)

i 24 i+ i 6 i

wherew; =6(u;}, Aw; =w; —w;_, . Substituting the above

central difference approximations into Equation (10), the

following set of N x N finite-difference equations is obtained:
GW)=[G(#) - G; ) Gy ()] =0 (14)
where

(13b)

wyl”
G,(W) =—w;_y+dw, + ] (“:, wﬂv;lz%ﬂ]

N; and the boundary conditions are

W=lw w, Wy

wherei= 1, 2 ..,
1
wy =a and wy, :'3'(4WN =Wy )

Newton’s method can be used to generate a sequence of
k
T

iterations {(w,("),.. wﬁf))r} converging to the solution
of Equation (14). Newton's method solves for v|,v,,...,vy in
each of the iterations from the N x N linear system:

¥ oy Wy Yoy vy ) = =G () {15)
where J is a tri-diagonal Jacobian matrix with the ™ entry for
the first (N-1) rows:

2 2 2
and for the N* row: Ty na =-;~;hfy-(uw,w,,,;4w~)

2 9 2Awy 2 2AwN
J == i, Wy, hf oy, w
NN T y( woWy T b S A T

In each of the iterations, the approxmanon is updated with
wit =ty 16)
Since J is n-i-diagonal, Crout factorization algorithm [Burden,

1997] can be applied. The convergence is possible provided
that the following conditions are matched:

1. The initial guess [w,w) wd ..., w®

is sufficiently close
to the solution.
2. The Jacobian matrix J{w;, -, w,,..., wy ) is nonsingnlar.

Finite Element Method

To construct an approximate solution by a finite-element
method based on the Rayleigh-Ritz formulation, we recast
Equation (2} into a weighted-integral form: o

u 2
j-“{]( 14’ die 1 do ;sina}aﬂ:o a7

L2 du Wi du L2 du
Using the product rule of differentiation, the first term in the

.integral can be written as

L] o)

As a result, Equation (17) is simplified to
2 d
[ ( I(u) dw 6+w§sm0]du+w(u,,)QA +wlug)Ps =0 (18)

L1 a‘u du
I{u) d8 [I(u) d&]
whereQ, =~ ——— and =
e 24 I? du]u s I du

A
Consider a beam made up of N two-node elemeuts each of
which has a length i The slope & of the e element (e'= 1,
2..., N} is approximated as follows:

azza;’w,-(m

as
= :

=1 and =T
where; # =u-wu, , €[0, h]is the local coordinate; and 6 and
;7 are the values of & at the two end nodes. Upon substituting
& from Equation (19) and y; for winto Equation (I8}, we
obtain the following t;vo algebraic equations for each element:

DK =-0r 20)

i=l

e P_I@dy | < . dy, ev'
W}‘e"’(ﬂ‘f{_?ﬁ{;gjﬁ "S““ze )

A Awy g + Aw; . To solve for the shape of the beam, we note 1he following:
= foaujowg,—————— |, i=j-landj=2,. N rae N
27) 2k 1. The boundary conditions ;' =0and ¥4, = .
o= 2+h2fy["i,w,-,i“i+_l+_"“‘i} i jandj=1.,N-1 2. The continuity at the nodes requires that#5 =67 =4, .
2” 3. The balance of the secondary variable requires that
Awjyg +Aw;
—1~~’1f).-[u,~,w;~.—'”'—*'—i—'i], f= eyl 2 0f +0f =0
2 2k
2965

Authorized licensed use limited to: IEEE Editors in Chief. Downloaded on February 5, 2010 at 14:52 from |IEEE Xplore. Restrictions apply.



For a beam of N elements, the following system of N+ I

nonlinear equation can be obtained from Equation (20):‘

K -0 -0
1 2 1 2
Ky + Ky - -0 0
: = : =| 1)
Kk | -0t -gl ) | o -
Ky -g7 |l o

where 0,(e=2,..,N+1) andQ] are the N+/ unknowns to be

solved. Note that the 1" equation K| =-Q} is independent of
the other N equations that can be solved separately. Once 6, is

obtained, Q,' ‘can thén be solved from the 1% equation. -

III. SIMULATION RESULTS :

The objectives of the simulation are (i) to validate the:

numetical model and (2) to examine the effect of non-uniform
cross-section on the defected shape of the finger.

Numerical Validation (Uniform Finger

Since exact solution is only available for a uniform beam.

under a point load at a location, we validate the numerical
models by comparing the deflected shape of a uniform beam
against the published solution. The simulation parameters are
listed in Table 1. ~

Table 1 Simulation parameters (uniform beam)
EI'=0.08 Nm® ’ F=15N -~ N=20
L 101.6 mm (4 inches) a= 90>

- The predicted shape of a deflected ﬁnger under a pomt load
has been computed using. the three numerical methods
(Shooting, FD and. FE) discussed above.' The results are
" compared in Figure 2 against those calculated using the small--
. deflection approximation or Equation (4), and the closed-form

. solution given by Frisch and Fay [1962] or Equaticns (7)-(9).

a e?
S : :
_ AQE - B R

o x |
{ . .
] E T T T T
E | ,
R e b e R -- b
! L | i
A)----- - -| -*+ Shooting R -
o | = FrischFay | | .
t FE B -
Y i 4 FDM Lol liXo s _
I P ; :
- H-GO ___ . | == Linear -1_1! ______ oo L
R R
0 20 44 60 30 100
© x{mm)

Flgure 2 Numencal vahdatlons (uniform beam)
The %errors are compared in Figure 3, which is deﬁned as
% error = 100[8 — Hexact))/ B(exarr)
The following observations can be made from Figures 2 and 3:
-1, The small deflection approximation fails to predict the shape
of the finger, especially at the free end of the beam. )
2. The Shooting method requires two initial guesses of £(0) at
one end (between 0 and 1) and its accuracy depénds on the
scheme solving the ODE generalized in the Shooting

process; it is relatively easy to achieve higher-order
accuracy. The calculated shape using the Shooting method
(with 4" order Runge-Kutta or “oded45” in MATLAB)
perfectly match those calculated using the Frisch-Fay
solution. The algonthm converges after 6 iterations.

0005’7
¢ : — f"_ —
0.008 l l ! l i {
:
.01 ; 3
E -0.015
o
P -0.02
-0.025 B
N ST
H Shocting 2" order
0035 l_ 8 9 th T
' ¥ R FE:Ungl onder
.038 g ¥ ] P FEM 1 &
-0.04 — - . L . p— .
0 41 02 03 04 05 068 07 08 09 1

u
Figure 3 %Error (N=20 for both FD and FE methods)

3) The FD and FE methods (often-referred to as a global
method) interpolate between nodes, but are difficult to have
higher than 2™ order accuracy. However, these methods
satisfy the boundary condition (BC) automatically and thus,
do not need a recursive algorithm to estimate for the BC,
which is the basis of the Shooting method.- The accuracy of
these two methods depend on the mesh number N. The
etrors for both the FD and FE methods are less than 0. 05%
when N=20 as shown in Figure 3.

4) The use of Rayleigh-Ritz formulation in FE method results

in Equation (20) containing terms:

Koo _EI6,-8,.) _ FRE(sing,, +6,c086,— 6, cosa,_.ﬂ sing,)

! . ' Llhz 7 . LzheE(ge ¢+1) ’

where i=1,2. The factor (6, -6,,)" in the denominator

makes it ill-conditioned with a large N as u approaches 1 (i.e.
the free end of the cantilever). As illustrated in Figure 4
where %error is computed at N=100, the error in the FE
solution is less than 0.002% for 0<u <0.8, and increases -
monotomcally to 0:01% at the end of the cantilever.

10

. u
Figure 4 %Error (N=100 for both FD and FE methods)
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Non-uniform Finger
We consider here a finger (F=4.8MPa) made up of three

different cross-sections. The first part is a cone of 13mm long
to provide a relatively rigid base, which is followed by the
tapering 2™ part over a length of 101.76mm (4 inches). The
last part is elliptical. The exponential function that
approximates /(x) of the bearn as given as follows:

I(x)=Ae™ + Be® + C (22)
where 4 =7.3x10%; B=36551x10%; C=3.2102 x 10%; a=-0.07087;
and =-0.14173. In Equation (22), x is m; and [ is in m®. The
three numerical methods were used to solve for @subjectto a
normal force F=15N at L=76.2mm (3 inches).

Figure 5 shows the computed & and the deflected finger
shape calculated from Equatien (11). Figure 6 compares the
deflected shape of the non-uniform finger (using the Shooting,
the FD, and the FE methods) against that of a uniform finger of
Er=0.08Nm’, The latter has the same slope w, at which the
force exerts. As shown in Figure 6, the non-uniform finger
offers the same deflection as the wniform finger at the contact
point without sacrificing the rigidity near the base.

2.3’—r !

e
L e
S L S oY I

SR T e
P} SR S
k-

Yoo I 1 Shooting
1.5 : : | =5 FEM
L 0.2 0.4 4 0.6 LR 1

Figure 5 Comparison of computed &

| : X
A-wL—w' --------- SR
E 1
E . . :
>.20 Shooting = L.___ e R '~ - -

=== Uniform El=0.08 Nm? | : -
| -~ FEM J ? : =
30 et
0 10 20 30 40 50 60 T¢
x{mm)
Figure 6 Finger deflection

IV. APPROXIMATION AND EXPERIMENTAL VALIDATION

Far dynamic analysis and real-time control of a multiple-
finger grasper, it is desired that the deflected shape of a non-
uniform beam can be computed from a closed-form solution.
For this reason, attempts were made to find an appropriate
effective (flexural rigidity) E7 such that the closed-form
solution of Frisch and Fay [1962] can be applied.

Calculation of an Effective E7
The steps for finding an effective ET of a non-uniforin
beam under the loading (F, ; L) are given as follows:

Step 1: Calculate y, (the slope of the finger at the contact

point) from Equation (2b), where #is solved numerically,

Step 2: Calculate p from Equation (8a).
Step 3: Calculate £ from Equation (9).
Step 4. From Equation (6) calculate the effective EI, (Elg).
Step 5. The effective EI is given by

El g = Cg (ED (23)
where Cg; a correction factor. In general, the El.s (computed
from Step 4) is a function of L, o and F.

As an illustration, we consider the same finger
characterized by Equation (22). Figure 7 shows the effective EJ
calculated (from Step 4 of the above computational procedure)
using the Shooting method for the flexible finger, E=4.8MPa
and I(x} given in Equation {22). Recall that the Shooting
method requires two initial guesses of °(0). When F < 30N
and L < 0.2032m, #°(1) falls between 0 and 1; hence the two
initial guesses were chosen between 0 and 1. When F > 30N,
the range of the initial guesses is extend to 0 and 2. The
computed EJ is given in Table 2, where a 2™ order least square
method was used to determine the correction factor.

0.08

0.07

0.06

El,, (Nm")

t.04

l:"0350 G‘D J’II) BID 9‘0 10.)0 1‘;0 1&0 1Z‘GD
L {mm) .
Figure 7 Computed £7 as a function of L and o (F=5N)

Table 2: Example Effective EI
00Mm<L<0.1lmand 50° <a< 90

For 25N <F <7.5N,

Cg=1.2618-36425L + 34, 58917 + 0,18541e- 0. 036961u
For 75N <F<12.5N

Cgr = 1.6305=18.275L + 151.43L + 0. 32098a- 0.0837740®
For 125N <F < 17.5N

Crr= 1.9609 — 28.833 L + 254.66L% + 0.272660- 0.090988¢*
For 17.5N <F <22 5N

Crr = 1.8934 — 27.123 L + 287.33L7 + 0.103540- 0.069778¢°
where L is in meters; and & is in radians.

Experimental Results
To illustrate the methods for determining an effective EJ

that would extend the closed-form solution given by Frisch and
Fay [1962] to a non-uniform beam, we evaluate the analytical
prediction experimentally as shown in Figure 8, where a known
force fis applied perpendicular to the x-axis (e, a=x/2)at
a known location on the finger. Two fingers (manufactured by
the Waukesha Rubber Company) with identical geometry but
different materials were used, which has three non-uniform
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Table 3: Finger ggogerties‘

cross-sections along its length; a circular base, a taper, an
elliptical section to provide rigidity in the z-direction and
flexibility in the x-y plane. The Young module of the fingers
were determined experimentally (Model 65¢M by DDL, Inc.)
Other property of the finger is given in Table 3. Figure 9
compares results of two loading conditions between the
predictions and the measured data, where two predictions were
made; the Shooting method with an approximate geometry
characterized by Equation (22), and the solution by Frisch and
Fay [1962] with an effective EI given in Table 2.

Parameters Valiles

Mass 0.079 kg 7
.. Density 1023.43 kg/m*

Major radins,a 12 mm

Minor radius, b 8.45.mm

" location “far from the base.

Eoop=4.8MPa; Ey,v=IMPa_~

1

71

*Ln203.2mm
_F=17793N ¢

..... w aao’

_L =101.6mm |
'F = 222418

2 a0 60 80
x(mm)
Figure 9 Comparisons against experimental data
~ As compared in Figure 9, the numerical solution offers a
very good prediction when the load is small and: acts at a

effective EI provides -a reasonable approximation of..the

_numerical solution around the contact point. The discrepancy

between the numerical prediction and the experimental shape
becomes significant as the load is closer to the base; where the
beam. assumption- {that the y and z dimensions are small as
compared to the x dimension) is no longer valld

- V. CQNCLUSIONS

Three computational methods and an approximate model
- for predicting the deflected shape of a flexible finger have been

 presented. Both umiform “and- non-uniform fingers were .

considered. The methods were numerically’ validated by
comparing the .computed results against those obtained using

. Closed-form solution with an .

the closed-form solutions derived by Frisch and Fay [1962]
where exact solutions are available for fingers with a uniform
cross-section. The results show excellent agreement. To extend
the closed-form solution for predicting the shape of a non-
uniform finger, we compute numerically an effective EI that
approximates the non-uniform finger as a uniform finger at the
point of contact. The approximate model has been examined
experimentally. Results of the approximate model well match
those obtained experimentally.
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