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BSTRACT 
The dynamic model for links in most mechanisms has often 

ased on small deflection theory without considering 
eometrical nonlinearity. For applications like light-weight 
inks or high-precision elements, it is necessary to capture the 
arge deflection caused by bending forces. A complete dynamic 
odel is presented here to characterize the motion of a 

ompliant mechanism capable of large deflection with shear 
nd axial deformation. We derive the governing equations from 
amilton’s principle along with the essential geometric 

onstraints that relate deformation and coordinate variables, 
nd solve them using a semi-discrete method based on the 
ewmark scheme and shooting method. The dynamic model 
as been validated experimentally.  We also extend the model 
or analyzing compliant mechanisms. It is expected that the 
ynamic model will serve as a basis for analyzing a wide 
pectrum of compliant multi-link mechanisms.   

 
NTRODUCTION 

Dynamic analyses of compliant mechanisms have been a 
ubject of interest for simulation and control of flexible 
echanical systems. Examples include space robot arms and 

igh-speed robotic manipulators. These dynamic models are 
ften based on the assumption of linear elasticity without 
onsidering geometrical nonlinearity. This assumption is 
atisfactory provided that the link undergoes a small deflection 
uch that the theory of linear elasticity holds. However, for 
echanisms involving highly compliant links (such as rubber 

ingers in [1], light-weight arms, and high-precision elements), 
he effects of large deflection on the link motion cannot be 
gnored. In order to predict more accurately the deflected shape 
uring transient, there is a need to model the dynamics that 
apture the large deflection compliant link.  

In the last two decades, several approaches have been 
eveloped to analyze compliant links undergoing large 
eflection and overall rotation. Javier [2] has divided this 
ownloaded 28 Jun 2011 to 218.199.85.117. Redistribution subject to AS
research field into three groups. The first is the simplified 
elasto-dynamic method originally proposed by Winfrey [3]. 
This approach assumes that small deformation does not affect 
rigid body motion in order to decouple the rigid body motion 
from the link deformation. The second is the floating frame 
formulation based on defining the deformation relative to a 
floating frame which follows the rigid body motion of the link. 
For example, see [4] and [5]. This method makes use of linear 
finite element (FE) theory since reliable FE packages are 
widely available. Although this method can account for shear 
deformation, the deflection is assumed to be small in order for 
the linear theory of elasticity to hold. The third is the large 
rotation vector method [6~7] based on defining the overall 
motion plus deformation with respect to the inertial frame. 
Unlike the floating frame method, this method allows large 
deflection of compliant link. As a result, nonlinear FE method 
(FEM) has to be used. This method, when solved using FEM, 
can lead to excessive shear forces known as shear locking [9] as 
pointed out by Shabana [8]. 

We present here a dynamic model based on the 
generalization of classical beam theory so that it can capture the 
bending, shear, and axial deformation of a large-deflected 
compliant mechanism. The classical beam theory was 
originated by Daniel Bernoulli, which assumes that a straight 
line transverse to the axis of the beam before deformation 
remains straight, inextensible, and normal to the mid-plane 
after deformation. Another important but implicit assumption 
for classical beam theory is that the deflection must be small. 
Rayleigh [10] latter included the rotatory inertia in the equation 
of motion. Timoshenko [11] further revealed that the effect of 
rotatory inertia is small for low frequency vibration but at high 
frequency the shear stress deformation is comparable to 
rotatory inertia.  

In order to characterize the dynamics of a compliant link, a 
geometrically exact curvature formula is necessary. The exact 
1 Copyright © 2005 by ASME 
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curvature equation that can describe dynamics of a large-
deflected link can be found in most calculus textbooks: 
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whereψ is the angle of rotation of the link; and s is the arc 
length from origin to point (x,y) of the link. When the 
deflection is small, i.e., dy/dx <<1, (1) reduces to (2).  
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Equation (1) has been used in several papers to formulate the 
dynamic equations of a link, such as Reddy et al. [12] and 
Monasa et al. [13]. However, as pointed out by Hodges [14], 
(1) defines the curvature along coordinate x, which is on the 
original undeflected position of the beam. It does not take into 
account the well-known shortening effect due to transverse 
deflections. This resulting error is often unacceptable in many 
applications when the beam experiences large deflection. In 
order to overcome this problem, we can parameterize x and y 
by the arc length s. This leads to another curvature equation;  

( )yxyx
ds
d ′′′−′′′=
ψ  (3)

where x=x(s), y=y(s), and the prime denotes derivative with 
respect to s.  Equation (3) has been used by Wagner [15] to 
derive the dynamics of a large-deflected beam, where the 
square of (3) is substituted into the strain energy function of the 
beam in deriving the governing equations based on Hamilton’s 
principle. However, the resulting equations are highly coupled 
and cannot account for shear deformation of the link. 

The difficulty to describe the motion of links undergoing 
large deflection lies on proper relations between angle of 
rotation ψ and coordinate variables (x, y). This is because the 
curvature dψ/ds is needed to describe the strain energy in 
addition to the coordinate variables needed to express the 
kinetic energy. Based on the above observations, we develop a 
geometrically accurate relation between the angle of rotation 
and coordinate variables that can be easily incorporated in the 
dynamic model of large-deflected links. While the previous 
angle of rotation is defined without considering shear effect 
(see (1), (2), and (3)), this paper provides two constraint 
equations in the derivation of dynamical equations so that 
angle of rotation induced by bending and shear can both be 
accommodated. Built upon our previous model [16] which 
focuses on the dynamics of a link, in this paper we extend the 
analysis to general mechanisms with highly compliant 
members. In addition, the formulation presented here requires 
no local coordinates.  

Specifically, this paper presents a distributed-parameter 
dynamic model to predict the dynamics of a mechanism with 
links capable of large deformation, along with a numerical 
method that uses Newmark algorithm and shooting method in 
the time and spatial domains respectively. We develop a 
systematic formulation for analyzing general compliant 
mechanisms and illustrate this with two application examples. 

1 DYNAMIC MODEL OF A COMPLIANT LINK 
The dynamic model of complaint link is formulated in two 

steps. First, we develop two geometric constraint functions to 
relate the deformation and coordinate variables. Second, we 
incorporate the constraint equations in the variational form and 
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apply Hamilton’s principle to derive the governing equations of 
the link.   
1.1 Geometric constraints 

Figure 1 shows a (initially straight) deflected link of length L 
in the reference frame x-y. In order to fully describe the 
deflected shape, we define ψ as the initial rotation of the link 
plus deflection angle induced by bending, and γ as the shear 
angle. Hence the total angle of rotation is ψ+γ. Fig. 2(b) shows 
an infinitesimal segment ds of the link, the coordinate of which 
can therefore be described by its geometric center (x, y) and the 
orientation ψ+γ. We also introduce the axial deformation 
variable e so that the distance between two adjacent 
infinitesimal segments is ds+de. The variables x, y, γ, ψ, and e 
are functions of arc length s and time t. They can be expressed 
explicitly as ),( tsx and ),( tsy , etc. 
 

Figure 1 Schematic of a compliant beam 
 

(a) Trigonometric relation (b)Infinitesimal segment 
Figure 2 Schematic of an infinitesimal segment 

Since the plane motion has only three degrees of freedom, 
three of the five variables (x, y, ψ, γ, e) are independent. The 
trigonometry relating the coordinates (x, y) to deformation 
variables (ψ, γ, e) in the x-y frame can be derived with the aid 
of Fig. 2(a) and are stated as two geometric constraints: 

0)cos()1(1 =++′−′= γψexg  (4a)
0)sin()1(2 =++′−′= γψeyg  (4b)

where prime denotes derivative w.r.t. arc length s. Compared 
with (2) and (3), the shear angle γ and shear deformation e can 
be embedded in the two geometric constraints in (4) easily. 
Note that Rao et al. [17] have similar constraint equations but 
again their model cannot capture shear and axial deformation.  

At this point, rather than deriving the explicit expressions for 
ψ and γ from (4), we show in Subsection 1.2 that these two 
equations can be appended in the variational form by 
multiplying two Lagrange multipliers (h and v), which result 
from using more variables (five) than enough (three).  

γ
ψ

h+dh

v+dv

v 

h (x,y) 

ds+de 

M+dM

M 

x 

y 

(x+dx,y+dy)
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1.2 Formulation using Hamilton’s principle 
With (4), the equation of motion of the link can be 

systematically derived using Hamilton’s principle, where the 
following variational form holds: 

( ) 0
2

1
21 =−−+−∫ dtgvghWVK

t

t

nc δδδδδ  (5)

where K and V are the kinetic and potential energy of the link 
respectively; δWnc is the virtual work done by nonconservative 
forces; and t1 and t2 are two arbitrary instant of time. Note that 
we can append hδg1 and vδg2 in (5) since g1 and g2 are 
identically zero. With With h and v, we have enough 
independent variables (five) for the variational procedure. 

Following the standard procedure of Hamilton’s principle, 
we first form the total kinetic energy of the link as  

[ ]∫ ++=
L

dsyxAIK
0

222
2
1 )( &&& ρρψ  (6)

where ρI is moment of inertia of the link;ψ is the angle of 
rotation induced by bending moment; ρA is mass per unit 
length; and the dot over the variable denotes the time derivative 
of the variable.  

Similarly, the potential (strain) energy of the beam can also 
be expressed as  

[ ]∫ ′++′=
L

dseEAGAEIV
0

222
2
1 )()( γκψ  (7)

where A is cross-section area and I is the moment of area; 
E and G are the modulus of elasticity and the modulus of shear 
respectively; κ is the shear correction factor; γ is the shear 
angle; and e is the axial elongation. The 1st, 2nd, and 3rd term of 
(7) represent the strain energy due to bending, shear, and axial 
deformation respectively.  

Equations (6) and (7) express the kinetic and potential energy 
functions in standard quadratic forms. The nonconservative 
forces applied at the link include a prescribed rotationφ and an 
external force F at the origin Of. Dissipative forces proportional 
to the angular velocity can also be accommodated. As an 
illustration, we use mass proportional damping model to 
formulate the virtual work as follows:   

∫ ++−=
Lnc dsyyAxxAIW

0
)( δδδψψσδ ρρρ &&&  (8)

where σ is the damping coefficient.  
The resulting system of partial differential equations that 

governs the dynamics of the large-deflected link can be 
obtained using standard manipulations of variational calculus 
[18]. We further introduce non-dimensional independent 
variable ]1,0[/ ∈= Lsu to replace s so that x(s,t) = x(u,t). The 
equations can be written as follows after normalization. 

0)sin()1()cos()1()(2 =++
′

−++
′

++−′′ γψγψψσψψ ρ L
eh

L
evI

L
EI

&&& (9a)

0)( =′−+ hxxLA &&& σρ ; 0)( =′−+ vyyLA &&& σρ  (9b,c)
0)cos()( =+′+−′ γψeLx ; 0)sin()( =+′+−′ γψeLy  (9d,e)

[ ] 0)sin()cos( =′+++−′′ γψγψ vhLeEA   (9f)
[ ] 0)sin()()cos()( =−++′−++′ γκγψγψ GALLehLev (9g)
It is clear from (9b,c) that the Lagrange multipliers h and v 

turn out to be the reaction forces of an infinitesimal segment in 
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the +x and +y direction as shown in Fig. 2(b).  The physical 
interpretations of each equation in (13) are stated as follows. 
1. Equation (9a) is the moment balance equation. The rotational 

inertia in the term is often small, and can be neglected in 
structural applications. Without deformation, this equation 
can be reduced to the one that governs rigid-body rotation. 

2. Equations (9b,c) are the results of applying Newton’s 2nd law 
to each infinitesimal segment directly. 

3. Equations (9d,e) are the normalization of (4). They must be 
solved simultaneously with the rest of (9). 

4. Equation (9f) is the force balance equation in the deformed 
axial direction. Without the angle of rotation, it reduces to 
the familiar 2nd order differential equation that governs the 
axial deformation of a link. 

5. Equation (9g) states the shear stress-strain relation where the 
shear stress comes from the reaction forces h and v. 
When the compliant link governed by (9) is subject to a 

prescribed rotationφ  at one end and free at the other end, the 
geometric boundary conditions can be given as follows. 

φψ =),0( t , 0),0( =te  
with ),0( tx and ),0( ty prescribed 

(10a)

From calculus of variation, we can deduce the natural boundary 
conditions of the link from (12a).  

0),1( =tv , 0),1( =th , 0),1( =′ tψ
[ ] 0)sin()cos( =+++−′ γψγψ vheEA  at u=1 

(10b)

Hence we now have enough (eight) boundary conditions in 
order to solve (9). 

2 NUMERICAL APPROXIMATIONS 
Equation (9) with the boundary conditions (10) is a system of 

nonlinear hyperbolic equations with differential constraint 
equations. We present here a semi-discrete method to solve (9) 
and (10) numerically. Specifically, the spatial domain u is 
solved using shooting method while the temporal domain t is 
solved with Newmark family of integration schemes. For 
clarity of illustration with limited space, we focus on the model 
of a free-vibrating link with the following assumptions: 
(a) The link is clamped at O with x pointing to the 

undeflected link direction.  
(b) The link is inextensible and has no damping, e=0 and σ=0.  

The governing equations of a free-vibrating link then reduce 
from (9) to (11): 

[ ] 0)sin()cos(2 =+−++−′′ γψγψψψ ρ hvI
L
EI

&&  (11a)

0=′− hxLA &&ρ ; 0=′− vyLA &&ρ  (11b,c)
0)cos( =+−′ γψLx ; 0)sin( =+−′ γψLy  (11d,e)

[ ] 0)sin()cos( =−+−+ γκγψγψ GAhv  (11f)
While developed for a vibrating link, the extension of the 
numerical scheme to the general mechanisms is rather 
straightforward.  
2.1 Temporal approximation 

Motivated by stability considerations, we use the Newmark 
family of time integration schemes [19] for temporal 
discretization. Let the position kZ , its velocity kZ& , and 
acceleration kZ&& denote the approximate solution to 
z(tk,u), ),( utz k& ,and ),( utz k&& at time level tk and 

]1,0[∈u respectively. Assume the solutions of kZ , kZ& , 
3 Copyright © 2005 by ASME 
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and kZ&& have been obtained, the Newmark method is an implicit 
scheme that finds the approximate solution at next time level 
tk+1 according to the following formulae 

 kkkkk Z
a

Z
ta

ZZ
ta

Z &&&&& )11(2)(
)(

2

22
12

2
1 −−

∆
−−

∆
= ++ (12a)

1111 )1( ++ ∆+∆−+= kkkk ZtaZtaZZ &&&&&&  (12b)
where ∆t= tk+1 - tk denotes the time step size and (a1, a2) are 
Newmark parameters that determine the stability and accuracy 
of the scheme. By applying (12a), the terms involving time 
derivatives in (11) can be discretized in the time domain. 
Following the same convention as above, we use capital letters 
to represent the approximate solutions, for example, Ψk ≈ ψ(tk, 
u). The discretized differential equations at tk+1 can be written 
as follows. 
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(13c)

( )111 cos +++ Γ+Ψ=′ kkk LX ; ( )111 sin +++ Γ+Ψ=′ kkk LY   ( 13d,e)
( ) 0)sin(cos 1111111 =Γ−Γ+Ψ−Γ+Ψ +++++++ kkkkkkk GAHV κ (13f)

Equation (13) is a system of time-independent differential and 
algebraic equations involving unknown functions Ψk+1, 1+Ψ′k , 
Hk+1, Vk+1, Xk+1, Yk+1, and Γk+1. The method to solve (13) will be 
presented in the next section. At the end of time step k+1, the 
approximate functions ),( 11 ++ ΨΨ kk

&&& , ),( 11 ++ kk XX &&& , 
and ),( 11 ++ kk YY &&& will be computed by using (14). Note that the 
calculation of (13) requires knowledge of the initial 
conditions ),,( 000 ΨΨΨ &&& , ),,( 000 XXX &&&  and ),,( 000 YYY &&& . The 
initial positions and velocities will be given and the initial 
accelerations can be obtained by assuming zero applied force at 
t=0 for free vibration of a compliant link. 

020 Ψ ′′=Ψ
ρIL

EI&& , 00 =X&& , 00 =Y&&  (14)

2.2 Spatial approximation 
After temporal discretization, the governing equation reduces 

to the nonlinear boundary value problem represented by (13). 
Nonlinear finite element method (NFEM) has often been 
adopted to solve the BVP numerically. However, the 
formulation of NFEM is often complicated. In addition, when 
using FEM to solve problems with shear deformation, there is a 
numerical problem known as shear locking [9] caused by 
inadmissible interpolation functions. While several procedures 
have been made to overcome this problem, we propose in this 
section an alternative numerical formulation called shooting 
method that does not suffer from the problem of shear locking.   

The basic idea of shooting method is to treat boundary value 
problems as initial value problems. Consider the following 
system of n differential equations 

),( qfq u=′  (15)
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where ]1,0[∈u ;  qk(0) is a (n-r)x1 vector of known initial 
values; qu(0) is a rx1 vector of unknown initial values; and 
qk(1) is a rx1 vector of known terminal values.  In order to 
integrate (15) as an initial value problem, we have to make r 
guesses for unknown initial values qu(0). The IVP can be 
integrated numerically using MATLAB ODE solver. After 
obtaining the trajectories of q, the r given terminal values qk(1) 
have to be matched in order for the solution q to be true. Hence 
the procedure is similar to solving r nonlinear algebraic 
equations except that the explicit forms of the algebraic 
equations are not known. Iterative procedures used for the 
shooting method can be found in [20~21].  

By setting T
kkkkkk YXVH ],,,,,[ 111111 ++++++ Ψ′Ψ=q , we can 

recast (13a)~(13e) in the form of a nonlinear ODE  coupled 
with an algebraic equation (13f). The known initial and 
terminal values of a vibrating link are 

[ ] [ ]TT
kkkk YX 000)0()0()0()0( 111 =Ψ= +++q

[ ] [ ]TT
kkkk VH 000)1()1()1()1( 111 =Ψ′= +++q

(16)

Hence we have to make initial guesses for qu(0) to match the 
given terminal values qk(1). The ODE’s from (13a)~(13e) can 
be integrated by Runge-Kutta methods. Note that (13f) is not a 
differential equation. Hence we cannot incorporate it into the 
ODE’s. However, we still need to know Γk+1 at each R-K step. 
Since (13f) is true for the entire spatial domain, we can solve it 
separately at every R-K step j. As shown in (17), the values 
Vk+1, j, Hk+1, j, Ψk+1, j are known at the jth step.  

( )
0)sin(

cos

,1,1,1,1

,1,1,1

=Γ−Γ+Ψ−

Γ+Ψ

++++

+++

jkjkjkjk

jkjkjk

GAH

V

κ
 (17)

Hence (17) is a nonlinear equation with one variable Γk+1, j. It 
can be easily solved by bisection method. After obtaining the 
value of Γk+1, j, we can then proceed the next R-K step j+1 from 
(13) and get the valuesVk+1, j+1, Hk+1, j+1, Ψk+1, j+1.  

In summary, the steps for solving the vibrating link problem 
are outlined as follows. 
Computational Steps: 
1. Given (a1,a2) with initial conditions ),,( 000 ΨΨΨ &&& , 

),,( 000 XXX &&&  and ),,( 000 YYY &&& ,  
2. For k=0~# of time steps 

(I) Given initial guesses qu, solve for q by an iterative 
method. At each Runge-Kutta step j, solve (17) to obtain 
Γk+1,j by bisection method. The valueΓk+1,j will be used 
for the next step j+1. 

(II) After obtaining q, calculate ),( kk ΨΨ &&& , ),( kk XX &&& , 

and ),( kk YY &&& from (12). 
End 

3 SIMULATIONS AND EXPERIMENT VALIDATION 
By using the numerical schemes described in the previous 

section, we simulate the free vibration of a flexible steel rod 
whose governing equations are expressed in (11). The 
simulation parameters are listed in Table 1. The Newmark 
parameters (a1, a2) are (0.5, 0.5), which is known as the 
constant-average acceleration method and can be proved to be 
unconditionally stable for any time step. Fig. 3 shows the tip 
displacement and Fig. 4 shows the snapshots of the vibrating 
beam, which has a period approximately equal to 0.49 seconds. 
4 Copyright © 2005 by ASME 
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Table 1 Simulation parameters and values for a steel rod 

Simulation Parameters Values 
Density ρ 7850 kg/m3 

Dimension (LxWxT) 1.11x0.0127x0.0032 m 
Young’s Modulus E 200GPa 
Shear Modulus G 80GPa 
(a1, a2) (1/2, 1/2) 
Time step size ∆t 0.01 sec 
Initial tip location (x,y) = (1.0177m, 0.4061m) 
Initial velocity ),,( 000 YX &&&Ψ  (0,0,0) 
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Figure 3 Beam tip displacement in one cycle 
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Figure 4 Snapshot of a free-vibrating beam 

Figure 5 shows the kinetic energy distribution in one cycle. 
Clearly, the kinetic energy is dominated by the translational 
energy in the y direction, which is much larger than the 
rotational energy. Thus the effect of rotational inertia has 
always been neglected in structural mechanic problems. Figure 
6 shows the energy distribution between kinetic and potential. 
It is worth noting that there is no energy loss during the 
temporal integration. 
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Figure 5 Kinetic energy of the vibrating beam 
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Figure 6 Energy balance of the beam 

An experiment has also been conducted to measure the 
natural frequency of the steel rod whose material properties are 
listed in Table 1. The x direction of the rod is parallel to the 
direction of gravity so that the effect of weight is minimized. 
As shown in Fig. 7, a proximity sensor (Keyence EZ18T) is 
placed at the undeflected tip position such that it is ON if the tip 
of the rod approaches and OFF if not. The period of vibration 
can be recorded by adding two adjacent OFF time intervals. 
The measured period is approximated 0.485 second which is 
very close to that predicted by the previous simulation result 
(0.49 second).  

 
Figure 7 Experiment setup 

4 DYNAMIC ANALYSES OF COMPLIANT MECHANISMS 
The dynamical model for a compliant link presented in 

Section 1 can be further extended to analyze mechanisms with 
compliant members. Since the dynamic model of the link has 
already based on inertia frame, we can derive the governing 
equations of links and their associated constraints without 
introducing intermediate or local frames. We present the 
dynamic formulation of compliant mechanisms in Subsection 
4.1 and illustration examples in Subsection 4.2.  
4.1 Formulation of compliant mechanisms  

Consider a generic compliant mechanism shown in Fig. 8. 
The n links are connected in series by n+1 joints where the 0th 

and (n+1)th joint are ground joints. Each link is governed by six 
equations from (11). They are rewritten as 

0)sin()cos(2 =+−++′′ iiiiiii
i

ii hv
L

IE γψγψψ  (18a)

0=′− iii hxAL
i
&&ρ ; 0=′− iii vyAL

i
&&ρ  (18b,c)

0)cos( =+−′ iiii Lx γψ ; 0)sin( =+−′ iiii Ly γψ  (18d,e)
[ ] 0)sin()cos( =−+−+ iiiiiiiiii AGhv γκγψγψ  (18f)

where the subscript i is w.r.t. the ith link. Note that no 
intermediate or local frames are required for each link since all 
of them share the same (inertia) frame x-y. For a mechanism 
with n links we have 6n equations referred to the same inertia 

Gravity Proximity 
sensor 
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frame. These equations are constrained by the n+1 joints 
connecting them. Those constraints can be expressed as 
algebraic equations that must be valid for all time. We list in 
Table 2 the constraint equations for a joint that connects two 
links together.  

Figure 8 A generic compliant mechanism 

Table 2 Constraint equations at the joint 

Pinned joint Clamped joint 
0)0()1( 1 =′=′ +ii ψψ  =− + )0()1( 1ii ψψ constant 

0)0()1( 1 =+ +ii hh  0)0()1( 1 =′+′ +ii ψψ  
0)0()1( 1 =+ +ii vv  0)0()1( 1 =+ +ii hh  
0)0()1( 1 =− +ii xx  0)0()1( 1 =+ +ii vv  
0)0()1( 1 =− +ii yy  0)0()1( 1 =− +ii xx  

 0)0()1( 1 =− +ii yy  

For the 0th joint that connects the 1st link to ground, the 
constraint equations for three types of connections are listed in 
Table 3. The constraint equations for the nth joint that connects 
the nth link to ground can be formulated similarly.  

Table 3 Constraint equations at the ground link 

Fixed Free Prismatic 





=
=′

clampedconstant)0(
revolute0)0(

1

1

ψ
ψ  0)0(1 =′ψ  





=
=′

clampedconstant)0(
revolute0)0(

1

1

ψ
ψ

0)0(1 =x  0)0(1 =h  0)0(1 =h or 0)0(1 =v  
0)0(1 =y  0)0(1 =v  0)0(1 =x or 0)0(1 =y  

Equation (18) and the constraint equations in Table 2 & 3 
form the necessary equations to solve a compliant mechanism. 
The temporal domain is discretized by Newmark scheme again. 
In the spatial domain we introduce the Generalized Shooting 
Method (GSM) [21] to solve the BVP that includes constraint 
equations as in Table 2 & 3. The basic procedures of GSM are 
(a) Identify unknown initial values for the BVP (b) Formulate 
constraint equations that must be satisfied after integrating the 
BVP as an IVP. The computational steps in Section 2 can be 
modified slightly to accommodate GSM. We presented in the 
next subsection two examples that will be solved by GSM in 
the spatial domain.  

4.2 Illustrative examples 
  Example I illustrates with an open chain mechanism where 
one link has a prismatic joint. Example II illustrates with a 
closed chain mechanism with two fixed joints. 
Example I A Slider Crank Mechanism 

We consider here a slider crank mechanism as shown in Fig. 
9. An input torque M drives the mechanism at the base of link 1 
that connects link 2 (connecting rod) by joint C. Link 2 is tied 
to another massless slider block through a revolute joint. 

ith joint 

(i+1)th link ith link 

nth joint0th joint x 

y 
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Figure 9 Compliant slider crank mechanism 

The input torque at link 1 for different time is given as 
follows and simulation parameters given in Table 4.  











≤
<≤−−
<≤
<≤

=

t
tt
t

tt

tM

2.10
2.17.0)7.0(02.001.0
7.05.001.0

5.0002.0

)(  

Table 4 Simulation parameters and values for the compliant slider crank 

Simulation Parameters Values 
Length of link (L1, L2) (0.152, 0.304) m 
Density (ρ1, ρ2) (2770, 2770) kg/m3 

Moment of inertia (I1, I2) (4.909x10-10, 4.909x10-10) m4 

Cross-sectional area (A1, A2) (7.854x10-5, 7.854x10-5 ) m2 
Young’s Modulus (E1, E2) (1x109, 5x107) Pa 

(a1, a2) (1/2, 1/2) 
Time step size ∆t 0.005 sec 

Initial tip location [x1(1),y1(1)] = [0.152, 0] m 
[x2(1),y2(1)] = [0.456, 0] m 

The displacement of the slider block is shown in Fig. 10 and 
the midpoint deflection of connecting rod is shown in Fig. 11. 
We also compare the presented dynamic model with the 
floating frame formulation (see [4] and [5]) and absolute nodal 
coordinate formulation [22] in these figures. These results show 
very good agreement. 

------   The Proposed Dynamic Model

 
Figure 10 Horizontal position of the slider block 

Undeflected link 

Pinned joint C 

L2 

L1y

x
Slider blockM
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----- The Proposed Dynamic Model

Figure 11 Deformation of link 2 

Example II A Four-Bar Mechanism 
We study here the dynamics of a compliant closed-chain 

mechanism with its initial configuration shown in Fig. 12. The 
coupler (link 2) is made more compliant than the other two 
links in order to examine the effects of large deformation. 
Detailed parameters of the mechanism are listed in Table 5. 

 
Figure 12 A four-bar mechanism 

Table 5 Simulation parameters and values for the compliant slider crank 

Parameters Values 
Length of link (L1, L2, L3) (0.5, 1, 1) m 
Density (ρ1, ρ2, ρ3) (7847, 7847, 7847) kg/m3 

Moment of inertia (I1, I2, I3) (1.257x10-7, 1.257x10-7, 1.257x10-7) m4 

Cross-sectional area (A1, A2, A3) (1.257x10-3, 1.257x10-3, 1.257x10-3 ) m2

Young’s Modulus (E1, E2, E3) (2.1x1011, 2.1x108, 2.1x1011) Pa 

Initial tip location [x1(0),y1(0)] = [0, 0] m 
[x3(1),y3(1)] = [1, 0] m 

The mechanism is initially at rest and the crankshaft is 
given a moment input from 6.00 ≤≤ t as follows. 











≤
<≤−−
<≤
<≤

=

t
tt
t

tt

tM

6.00
6.04.0)4.0(500100
4.02.0100

2.00500

)(  

The advantage of the presented energy-based model is that it 
allows us to easily verify the results by energy balance check. 
Figure 13 shows the calculated energy which must equal to the 
applied work apparently. It is obvious that the total kinetic 
energy is converted to potential energy at t=0.95s. After the 
potential energy reaches its maximum (and the kinetic energy 

L1: Crankshaft 

L2: Coupler 
L3: Follower

A 

B 

M 
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reaches its minimum), the energy transfers back again to the 
kinetic component.     
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Figure 13 A four-bar mechanism 

5 CONCLUSIONS 
A complete dynamic model, which accounts for bending, 

shear and axial deformations with no geometric approximation, 
has been presented for analyzing compliant links capable of 
large deflection with large overall motion. Specifically, we 
showed how the effect of shear angles and axial deformation on 
large deformation can be incorporated as geometric constraints 
in the governing equations derived using Hamilton’s principle 
for predicting the transient response of a compliant link. In 
addition, we demonstrated a numerical method that combines a 
Newmark scheme with shooting method to solve the equations. 
An illustrative example of a free-vibrating steel rod has been 
given to show the application of the model. The simulation 
result of the vibrating rod has matched well with the 
experiment data. Finally we develop a systematic formulation 
to analyze compliant mechanisms. Two illustration examples 
have been given to verify the formulation. 
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