
Abstract— This paper presents a method of deriving the torque 
model for a three degrees of freedom (3-DOF) spherical motor 
such as a variable-reluctance spherical motor (VRSM) or a 
spherical wheel motor (SWM). The SWM (much like the VRSM 
capable of offering three-DOF in a single joint) offers the ability 
to spin continuously while the rotor shaft can be tilted arbitrarily.  
We derive a closed-form torque model and demonstrate its use 
for designing the switching controller based the principle of 
push-pull operation for the SWM.  The closed-form torque model 
given here greatly reduces the torque computation, and simplifies 
the design of the switching controller.

Keywords- actuators, torque model, stepper control

I. INTRODUCTION

obile vehicles (such as car wheels [1] [2], propellers for 
boats, helicopter or underwater vehicle), gyroscopes,  

and machine tools require orientation control of a rotating 
shaft. The growing interests in fuel-cell technology and 
low-cost electric vehicles have motivated a number of 
researchers to develop alternative design of in-wheel motors.  
Existing designs are typically single-axis devices; orientation 
control of the rotating shafts must be manipulated by an 
external mechanism. These multi-axe spinners are generally 
bulky, slow in dynamic response, and lack of dexterity in 
negotiating the orientation of the rotating shaft.  

An alternative to these multi-axis spinners is a spherical 
motor that takes a number of forms including the stepper [3], 
induction motor [4] [5], direct-current motor [6] [7] [8],  
variable-reluctance motor [9] [10] [11], ultrasonic motor [12] 
and also in [13]. Compared with its counterparts, the 
spherical stepper has a relatively large range of motion, 
simple, compact in design, and possesses isotropic properties 
in motion.  In addition, it can operate in open-loop and thus 
provides an incentive for further development as a SWM.   

The basic concept of a spherical stepper was originally 
proposed by [3]. The dynamic model of a particular VRSM 
can be found in [9], where the torque model is a quadratic 
function of the current inputs to the stator coils.  Reference 
[10] studied the method to place the rotor poles for stepping 
motion on a structure similar to that suggested in [3]. A 
similar study can also be found in [11], in which they derived 
the torque vector and the back electromotive forces in closed 
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form based on an analytical magnetic field distribution. Most 
of the spherical motor research has focused on developing 
alternative design concepts and non-contact sensors for 
measuring three-DOF orientation for feedback control. More 
recently, the interest to derive a closed-form solution to the 
inverse torque model has led [14] to design a VRSM that has 
a linear torque-current relationship. The torque model 
involves a large number of individual torque component 
terms, each of which requires the computation of a time-vary 
vector cross-product in 3D space. For real-time control 
particularly involving orientation feedback, this represents a 
significant computational burden.  These existing spherical 
motors (motivated by the advance in robotic technology) 
have pre-dominantly been designed for wrist like motions; 
the primary interest has been the control of three-DOF 
orientation displacements.   

Motivated by the growing interests in high performance 
in-wheel motors for electric vehicles, we explore in [15] the 
feasibility of designing a VRSM that offers orientation 
control of the rotating shaft, which led to the design concept 
of a SWM. This paper focuses the following: 
1. We present the method of deriving a closed-form torque 

model for a SWM, which greatly reduces the computation 
and simplifies the controller design. We start with an 
approximate model that consists of two electromagnets 
(EM) and a permanent magnet (PM) in 3D space, and then 
extends it to a more general configuration using multiple 
sets of 2EM-1PM models. 

2. We describe the method of controlling the rotor orientation 
while allowing it to spin continuously using the principle of 
push-pull operation in open-loop.  Specifically, we provide 
a method for deriving different switching sequences for 
open-loop speed control.  

3. We illustrate the switching controller design for a SWM 
that has 8 rotor PM pole-pairs and 10 stator EM pole-pairs. 
As will be shown, this switching controller essentially 
functions as an electronic gear transmission for the SWM. 

II. TORQUE FORMULATION FOR SWM DESIGN

Reference [14] derived a general torque model for a VRSM 
based the principle of variable-reluctance.  We consider here 
a design where the rotor poles of the VRSM are permanent 
magnets (PM’s) and the stator electromagnets (EM’s) are 
coils wound on non-ferromagnetic cores. The ith component 
torque acting on the rotor can be approximated as a linear 
combination of stator currents: 

T T( )rs
i r s r s

i
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where Tq is an orientation vector in spherical 
coordinates with angles defined in Fig. 1; and the subscripts 
“r” and “s” denotes the rotor and stator respectively. 

Unlike the VRSM where the PM’s and EM’s are placed on 
the vertices of regular polygons, equally-spaced magnetic 
poles are layered on circular planes for a SWM as illustrated 
in Fig. 1(b), where R is the radius of the spherical rotor;  is 
the angle between the circular plane from the XY plane; and
is the angle between the two adjacent poles (PM’s or EM’s) 
on the circumference. The spherical stator and rotor are 
concentric, and the air-gap between them is very small as 
compared to the radius R. The magnetization axis of the stator 
EM is defined mathematically by the position vector: 

Tcos cos( 1) cos sin( 1) sinj s s s s sR j js (2)

where j= 1, 2,…, ms; and s is the angle between the plane of 
stator poles and the XY plane as shown in Fig.2. Similarly, 
the magnetization axis of the rotor PM is given in the stator 
frame XYZ by (3):

Tcos cos( 1) cos sin( 1) sink r r r r rR k kr (3)

where k= 1, 2,…, mr. The coordinate transformation matrix 
[ ] from the rotor to the stator frames is given by 

C C C S S C C S S C C S

S C C C S S C S C C S S
S C S S C

(4)

where the cosine and sine of  is denoted by C and S  .

(a) Spherical ordinates (b) Plane of pole location 
Fig. 1 Parameters defining coordinate system and pole layout 

As the magnetic circuit is linear, the torque generated from 
the changes of flux linkages can be written in XYZ frame as  

T

1 1 1

sr r mm m

X Y Z rk jk
k k j

T T TT T T (5)

0 if 0

( )( ) / if 0

j k

jk

rk sj j k j k j k j ku u f

s r
T

s r s r s r

1cos j k
j k

j k

s r
s r

T

(6)

where rkT is the torque as a result of the interaction between 
the kth PM with ms EM’s;  urk  defines the polarity of the kth

PM; usj is dimensionless current flowing through the jth EM; 
and f( jk) is a torque function that can be derived from the 
computed data using the finite-element (FE) analysis [14] or 
obtained experimentally [9].  

The SWM offers the ability to spin continuously (much 
like a brushless DC motor) about the rotor z-axis while the 
shaft can be tilted arbitrarily from its Z-axis:

Tˆ S C S S Cz (7)
The torque component about the z-axis is given by 

z X Y ZT T S C T S S T C (8)
Since sj and rk are positive vectors, the torque direction of 
each term on the right-hand-side of (5) depends on urk  and usj.
Computation of the resultant torque involves summing ms mr

terms of Tjk each of which includes a unit cross-product 
(sj rk/|sj rk|). Since the rotor and stator poles are 
symmetrically arranged and the torque function f( jk)
generally has a limited range, the torque model (5) can be 
reduced to deriving a few non-zero Tjk.  For this, we consider 
a 2EM-1PM model and then extend to a general case by 
constructing multiple sets of 2EM-1PM models.   

A. 2EM-1PM model 
Without loss of generality, we set  

( 1) 1r k rku u ,  where 1 1ru (9)

and ( ) 0jk jk sf (10)
Equation (10) can be justified with the illustration as shown 
in Fig. 2. If the torque function has a range larger than s, there
will be conflicting torques acting on the same rotor PM.  

Figure 2 Conflicting torques on the rotor pole-pair 

For the 2EM-1PM model shown in Fig. 3, Equation (5) can be 
reduced to (11): 

1
( 1) ( 1)

1

( 1) ( ) ( )j k j kk
k jk sj j k s j

j k j k

f u f u
s r s r

T
s r s r

(11)

where the index j is chosen such that 
( 1),jk j k s (11a)

Equations (9) and (10) reduce the number of Tjk terms from 
ms mr to 2mr where ms>mr. To facilitate our discussions, we 
define in Fig. 3(a) the following parameters: 
Angle between rk and XY plane:

1 2 2
3 1 2tan /k k k kr r r (12a)

where T
1 2 3k k k kr r rr .

Perpendicular distance from kth PM to the chord c, between jth

and (j+1)th EM’s:

2 sin( )
2

s k
kh R (12b)

Angle between the projection of rk on XY plane from the 
X-axis at initialization (i.e. XYZ and xyz frames coincide): 

( 1)( )k r sk (12c)
When 0 , k . The index j in (11) for the EM with 
respect to the kth PM can be found from (12d): 

int /k sj k (12d)
where int( ) denotes the integer of its argument. 
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Fig.3 Triangle of PM and EM’s on the projected plane corresponding axes 

B. Finding the cross-product term  
To derive the unit cross product (sj rk/|sj rk|) in the torque 

model, we define a local coordinate frame (xkykzk) at the kth

PM as shown in Fig. 3(d). The kth PM and its two adjacent 
EM’s, jth and (j+1)th, form a triangular plane (Fig. 3a). The xk

axis is normal to the triangular plane and the zk axis lies on the 
triangular plane pointing towards and perpendicular to the 
chord c (between the two EM’s) as detailed in Fig. 3(b).  The 
transformation from xkykzk to XYZ is given by (13 ) 

( ) / 2 ( ) / 2 ( ) / 2

( ) / 2 ( ) / 2 ( ) / 2

ˆˆ
ˆˆ 0
ˆˆ

s k k s k k s k

k rk

s k k s k k s k

k

k

k

XC C C S Sx

y S C Y
z S C S S S Z

(13)

We resolve the cross-product (sj rk) into two components: 
The component normal to the plane as shown in Fig. 3(c) lies 
mainly along the radial axis of the rotor pole, which generates 
no torque. Only a small fraction of this normal component 
contributes to the torque in (11) and is neglected to trade-off 
for a closed-form torque model for designing the switching 
controller. The 2nd component accounts for the torque on the 
ykzk plane denoted here as j k j ks s r , or ˆ ˆ( ) 0jk jk k k kl y h zs

From Fig. 3(c), we have ˆ ˆjk k k jkh y l zs

or 2 2ˆ ˆ( )j k j k k k jk k k jkh y l z h ls s (14)

( ) / 2

( ) / 2

ˆ

ˆ

ˆ

jk k jk s k k

jk k jk s k k

jk

T

j k

j k

C S S S C X

C C S S S Y

ZS

s r
s r

(14a)

Similarly, 

( 1) ( 1)

( 1) ( 1)

1

1

ˆ

ˆ

ˆ

j k k j k k k

j k k j k k k

jk

T

j k

j k
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C C S S S Y

ZS

s r

s r
(14b)

where 2 2(2 sin( / 2))jk jk kl R h ; ( 1)j k jkl c l

2 2cos /
jk jk k k jkC h h l ; 2 2sin /

jk jk jk k jkS l h l

( 1) ( 1)cos
j k j kC  ; and

( 1) ( 1)sin
j k j kS

C. Torque Model in Closed Form 
The torque Trk for the 2EM-1PM model is given by 

1 2

1
( 1) sin ( ) / 2 sjk

k k k s k
s j

u

u
T T T (15)

where

1,

1,

1,

1,

1
1,

1,

( ) ( )

( ) ( )

( ) ( )

jk k j k k

jk k j k k

jk j k

jk j k

k jk j k

jk j k

f C S f C S

f C C f C C

f S f S

T
(15a)

( 1)

( 1)

1,

2
1,

( ) ( )

( ) ( )

0 0

jk k j k k

jk k j k k

jk j k

k jk j k

f S C f S C

f S S f S ST (15b)

In summary, the torque generated by the 2EM-1PM model for 
a specified rotor orientation can be computed as follows: First, 
compute kr using (3) and k and kh  from (12). Next, 
calculate jk using (6). Then, obtain the cross-product using 
(14). Finally, calculate the torque using (15). 

We extend the 2EM-1PM model to a more configuration 
for computing the resultant torque. First, consider the 
left-hand-side in Fig. 4, where a rotor PM urk (blue open 
circle) interacts with four EM’s.  In Fig. 4 where the subscript 
“s” is dropped for simplificity, sju and usj are a conjugate pair, 
which have the same X and Y coordinates but their 
Z-ordinates are equal in magnitude but opposite in sign. 
Similarly, ( 1)s ju  and us(j+1) are conjugate pairs.  Using two 
separate 2EM-1PM models given by (15), the net torque for 
this 4EM-1PM model can be written as  

rk k kT T T (16)
where kT  and kT  result from the interaction between urk

and (usj, us(j+1)) and between urk and ( s ju , ( 1)s ju ) respectively.  

Fig. 4 Extension of 2EM-IPM to general cases 

Next, we consider a symmetrical structure by adding four 
identical stator poles 180  out-of-phase (right-hand-side of 
Fig. 4) such that the eight stator poles form four pairs of EM’s 
with their magnetization axes passing through the stator 
center. The net torque for this 8EM-2PM model is simply 
twice that of the two 4EM-1PM models given by (16). 
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Finally, we consider a 3rd configuration where two 
additional PM’s (red solid circles) are added to the structure 
discussed earlier.  In Fig. 4, rku is the conjugate of urk in the 
rotor xyz coordinates. The net torque can be computed using 
two 4EM-2PM models, one with urk and the other with rku .

III. DESIGN AND OPERATIONAL PRINCIPLE

As will be shown, the torque computation and the 
switching controller design can be further reduced by 
exploiting by the pole layout of the VRSM.   

A. Rotor and Stator Pole Layout 
Figs. 5(a) - 5(c) show three symmetrical configurations of 

rotor PM’s on circular planes: Fig. 5(a) shows a typical rotor 
PM pole-pair (PMpp); the polarities of the PM’s of a PMpp 
depend on whether the number of PMpp’s on the plane is odd 
or even. When the number of the PMpp’s is odd, the polarities 
of each PMpp are opposite, Fig. 5(a). On the other hand, the 
polarities are the same when the number of PMpp’s is even, 
Fig. 5(b).  Fig. 5(c) shows two layers of PMpp’s, each of 
which has four PM’s. All the four PMpp’s point radially 
towards the rotor center but unlike those in the single layer, 
the planes formed by the PMpp’s are perpendicular to the XY 
plane and the polarities of each PMpp are opposite. 

Fig. 5: Types of design configurations; (a) odd number of rotor PM pole-pair, 
(b) even number of rotor PM pole-pairs, (c) double-layer of rotor PM 
pole-pairs, (d) double-layer-stator/single-layer-rotor with odd pole-pairs,  (e) 
double-layer-stator/double-layer-rotor (even pole-pairs), (f) plan view 
showing the initial locations of 8 PM’s and 10 EM’s.

There are two layers of stator EM pole-pairs (EMpp’s) in 
VRSM as illustrated in Figs. 5(d) and 5(e). The EMpp’s are 
arranged in pairs on a plane perpendicular to the XY plane and 
point radially towards the stator center. The EM polarities can 
be externally controlled.  Due to the page limit, we denote the 
number of PMpp’s and EMpp’s as mr and ms and discuss only 

even number of PMpp’s and EMpp’s from here on. Clearly, a 
SWM with odd number of PMpp’s and EMpp’s can be 
designed following the same procedure. 

B. Push-pull Interaction between Stator and Rotor Poles 
The VRSM operates in two different modes; static rotor 

orientation control, and continuous spin as a SWM.  
The rotor orientation is regulated on the principle of 

push-pull operation. As illustrated in Figs. 5(d) and 5(e), the 
inclination from the Z-axis is manipulated using two 
opposing torques, T and T , about the axis normal to the 
plane that contains the current inputs sju and ( )s j mu

producing the torques. The specific polarities of the EMpp’s 
depend on the PMpp layout; for example, ( )s j m sju u in Fig. 
5(d) while in Fig. 5(e), ( )s j m sju u to maintain the rotor at 
zero inclination.  In either case, any perturbation will result in 
a differential torque T driving the rotor to its equilibrium.  
For this push-pull operation, the torque model is written in the 
following form: 

i i i iT T T T (17)
/ 2i i iT T T  and / 2i i iT T T (18)

where the subscript “i” denotes the torque components in the 
X, Y and Z directions; iT  are the static torques;  and kT is
the dynamic torque. The differential torque kT represents
the ‘driving torque’ because it causes the rotor to move. 
However, to maintain the rotor shaft at a particular inclination
( , ), a ‘holding torque’ iT must be applied.   

The basic modes are as follows: 
1) To regulate the rotor at a desired steady-state orientation, 

the torque must satisfy the following:  
L 0T T  where 0 and 0T T (19)

where TL accounts for external load. A change in rotor 
position from any equilibrium requires a differential 
current to be applied to generate the required T .

2) To spin about the rotor axis at a constant rate while 
regulate the rotor at the desired inclination, a driving 
torque zT  must be maintained in addition to the 
application of the extraneous torque iT .

Since TX, TY, and TZ are orthogonal and linear functions of 
the currents, we decompose usj into three independent 
components: 

1sj j j ju u u u j=1,2,…ms (20)

where ju  governs the spin motion via TZ ; and ju and ju

are the incremental factors regulating the rotor inclination 
about the Y- and X-axes through TY and TX respectively.  To 
spin an inclined rotor at a constant rate, the input u j must not 
contribute to TY and TX .

C. Design Parameters
To facilitate the discussions on the design of a switching 

controller, we define two design parameters; plane angle of 
symmetry, and minimum phase angle:
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Plane angle of symmetry 

, ( )sym r sLCM (21)
where sym in degrees; and LCM is the least common 
multiplier of its arguments. There are nsym symmetric regions:  

int 360sym symn (22)
For example, the design (ms =12 and mr =18) has three 
symmetric regions ( sym=60 ) and that (ms =10 and mr =8) 
has two ( sym=180 )
Minimum Phase angle

min ( , )r sGCD

where GCD is the greatest common divisor of its arguments.  
The number of drive modes is equal to  

max minint rn (24)
Different switching sequences for the Z-axis rotation can be 
designed based on n number of min or 

11 minn  where maxn n
Each n corresponds to a quasi-static location, at which at least 
one pair of PM and EM on the XY-plane are aligned. The 
resolution of the spin motion depends on the drive mode for a 
given design configuration. As will be demonstrated in 
Section IV.C, the design parameters can be useful when 
designing an electronic gear for the SWM.   

D. Starting Torque 
In order to have a high starting torque to overcome the rotor 

inertia when the SWM accelerates from rest, we derive the 
starting torque for a class of designs where ms > mr, s < r < 
2 s. From (12c) and (12d), j k  for min r s  and 

maxk n .The Z component torque has the following form:  
/

1 1 (1 / )/
2

( 1)
s sym

s syms sym

m n
jZ

Z s jZ sj s m nm n Z
jsym

T
c u c u c u

n
(25)

where 1 11 11 11( ) sinZc f ;
/

( ) sin
s sym

f f fm n Z
c f

1, 1 1, 1 1, 1, sin sinjZ j j jj j j j j jj jjc f f ;

and the subscript / /s sym s symf m n m n .  From the XY 

projection, 1,j k s jkXY XY
which implies 

( 1)( 1) min/ 1s j j s symXY
m n n j ;

min1jj XY
n j ; and

2 2
min1m ms s

s
s

symXY

m
n

n

To maximize the Z-spin starting torque, ( 0) 1 j

s ju t u
/ 1

1

( 0) s symm n
Z

jZ
jsym

T t
u c

n
(26)

IV. ILLUSTRATIVE EXAMPLE

Fig. 4(f) illustrates a design example [14] along with its 
torque function in Fig. 6. Both the rotor and stator have two 
layers of pole-pairs; eight PMpp’s and ten EMpp’s 
respectively.  Fig. 4(f) is the plan view (or the projection on 

the XY-plane) showing the initial locations of the PM’s and 
illustrates the following properties of structural symmetry: 
1) Push-pull planes: The stator has five (equally spaced) push-pull 

planes formed by the 20 EM’s.  The rotor has four planes 
formed by 16 PM’s. 

2) Symmetry about XZ plane: The S2, S3, S4, and S5 EM’s are the 
mirror images of S10, S9, S8 and S7 respectively.   

3) Symmetry about YZ plane: The S4, S5, S6, S7 and S8 EM’s are 
symmetrical to the S3, S2, S1, S10, and S9 EM’s respectively. 

4) When 5j ju u , ju will result in generating a torque about 

the Z-axis only. 

mr=8,
ms=10

r =45 ,
s=36
r =20º, 
s = 26º 
min =9 ,

max 4n
sym =180 ,

4symn 0 10 20 30 40 50
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(a) Design  (b) torque function as a function of separation angle
Fig. 6 Design parameters and torque function  

A. Staring torque for Spin about the Z axis 
As an illustration, all the current inputs are assigned a unit 

magnitude. For a positive starting torque, 
5

1 5
2

(9 ) (45 9 ), ( 9 ) (45 )
2
Z

Z jZ Z
j

T
c c j j c

where the last term 5 (45 ) 0Zc . ,

1 2 34 (9 ) (18 ) (27 )Z z z zT c c c and 0Z ZT T

Note that if the starting current is maintained, this starting 
torque will decrease to zero at  and therefore the 
current pattern must change before reaching min3 27
in order to maintain the spin rate as shown below: 

1 218 2 (18 ) 2 (27 )Z z zT c c  and 

1 3(18 ) 2 (9 )Z Z z zT T c c

( 27 ) 0ZT  and 

1 2 52 (27 ) (9 ) (18 )Z Z z zT T c c c

B. Driving Torque for Continuous Spin 
For a specified power input, the torque that can be 

generated depends on the rotor speed. To illustrate this 
torque-speed relationship, we define the following Speed 
Number SN to regulate the spin rate in an open-loop sense:

( 1)NS nj n Where j =1,…,ms/2 (27)
The current to regulate the spin-rate takes the form: 

( 1) sgn(sin )j
j s mu t u (28)

where j = 1, 2, …,5; and sgn( ) 1, 1x corresponding to x 0
and x<0  respectively. 

C. Results 
Two simulation examples using the torque model are given 

here. The first illustrates the switching sequences (Table I) as 
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an electronic gear transmission for 5 speed levels. Due to the 
geometrical symmetry; only 5 of the 10 stator EMpp’s are 
listed.  For example, a controller based on a 9 -step sequence 
repeats the sequence S1 to S10 in inputting  the currents to the 
EMpp’s, while the controller designed for a 45 -step repeats 
S1 and S6= -S1.  The simulated torques for these five speed 
levels are compared in Fig. 7, where mu =1; 2 / s  = 8ms 
(corresponding to a sample period limited by Window XP).
As shown in Fig. 7, the 9 -step sequence generates much 
lesser torque ripples but has a low spin rate for a given 
frequency while the 45 -step sequence is able to generate a 
high spin rate with the input frequency.  

The second simulation estimates the errors due to the 
torque approximation in (10), where u =1A, u =0.5A,
u =0 and t =1ms for =0 to 45  using the 45 -step
sequence.  Fig. 8 compares the torque computed with and 
without the approximation; the difference is less than 3.5%. 

V. CONCLUSIONS
We present a method of deriving a closed-form torque 

model for designing the SWM structure and its switching 
controller. The formulation starts with an approximate 
2EM-1PM model and extends to a more general 
configuration built upon multiple 2EM-1PM torque model.
The closed-form torque model given here greatly reduces the 
torque computation, and simplifies the design of the 
switching controller.   As has been shown, the torque model 
generally involves ms mr number of Tjk terms, each of which 
requires the computation of a time-vary vector cross-product 
in 3D space.  For a SWM with 16 PM’s and 20 EM’s, this 
implies 320 computations of Tjk terms.  We demonstrate this 
computational load can be effectively reduced by a two 
order-of-magnitude (to 8) by the approximate torque in 
addition to exploiting the structure and symmetry of pole 
layout of the PM’s and EM’s. We demonstrate numerically 
how this torque model can be used to design a switching 
controller for open-loop speed control that bases on the 
principle of push-pull operation.
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TABLE I: STATOR EM SWITCHING SEQUENCE (9° INTERVAL)
SN EM pole-pair
 1 2 3 4 5 

N
Switching sequence 

( 1)NS nj n

1 1 +1 1 +1 1 1 SN = j  = 1, 2,…, 10, 1, 2,…, 10,1 2… 
2 1 +1 1 +1 +1 2 SN = 2j -1 = 1, 3,…, 9,1,3,…,9,1,3… 
3 1 +1 1 1 +1 3 SN = 3j -2 = 1, 4,7,1,4,7,1,4… 
4 1 +1 +1 1 +1 4 SN = 4j -3 = 1, 5, 9, 1, 5, 9, 1, 5,… 
5 1 1 +1 1 +1 5 SN = 3j -2 = 1, 6, 1, 6,1,6,1… 

TABLE II: SPIN RATE AND AVERAGE TORQUE

Phase angle 9 18 27 36 45 
Speed (rpm) 118 236 354 472 590 
Torque (Nm) 3.344 3.165 2.485 2.169 1.807 

Fig. 7 Torque model for switching sequences 

.
(a) Torque norm (Nm) (b) Error (%) 

Fig. 8 Comparison between complete model and approximate model, 
Equation (10), on computed torque  
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