
 

  
Abstract— Design and control of multi degrees of freedom 

(DOF) electromagnetic actuators require a good understanding 
of the magnetic fields, and involve real-time calculation of 
magnetic forces. This paper presents a new method to derive 
closed-form solutions for characterizing the magnetic field of 
permanent magnets (PM), and their uses in modeling the 
magnetic torque of a PM-based spherical motor. The method, 
referred here as distributed multi-pole (DMP) model, inherits 
many advantages of the dipole model originally conceptualized 
in the context of physics, but provides an effective means to 
account for the shape and magnetization of the physical magnet. 
The DMP models have been validated by comparing the 
calculated fields and magnetic forces against numerical and 
experimental results.  The comparisons show excellent 
agreement.  We also illustrate the application of the DMP model 
in developing an accurate torque model to faithfully simulate 
the transient response of a spherical motor, and as a basis for 
deriving a closed-form inverse torque model for its real-time 
current optimization. While developed in the context of a 
spherical motor, the modeling techniques presented in this 
paper are applicable to other PM-based actuator and sensing 
systems.   

I. INTRODUCTION 
Many meat handling and processing equipment, machine 

tools, mobile vehicles such as car wheels [1] [2], propellers 
for boats, helicopter or underwater vehicle, and gyroscopes 
require orientation control of a rotating shaft. The growing 
interests in fuel-cell technology and low-cost electric vehicles 
have motivated a number of researchers to develop 
application oriented in-wheel motors or multi-DOF spherical 
motors. In real-time control and analysis of a spherical motor, 
both the forward and inverse torque models are required. 

Existing techniques for analyzing electromagnetic fields 
and real time of a multi-DOF PM-based actuator rely 
primarily on three approaches; namely, analytic solutions to 
Laplace equation, numerical methods and lumped-parameter 
analyses with some form of magnetic equivalent circuits [3]. 
The possibility of obtaining an analytic solution is often 
remote for devices with complex geometry. Perturbation 
theory and linear superposition can sometimes render a 
difficult problem solvable. However, even if an analytic 
solution is achievable, it often results in a series of space 
harmonics of non-elementary functions [4] [5] which have to 
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be computed if a numeric solution to the problem is desired. 
Numerical methods (such as finite element method) offer a 
good prediction of the magnetic field for accurate 
computation of the magnetic torque [6] [7]. However, 
demanding computational time limits these numerical 
methods to off-line computation. Most of the real-time 
computations for optimization and motion control of 
electromagnetic actuators have been relied on lumped 
parameter approaches in order to obtain a closed-form 
solution which generally yields only first-order accuracy. 
These approaches have difficulties in achieving both 
accuracy and low computation time simultaneously.  Thus, 
we develop a new modeling method to derive closed-form 
field solutions for efficient design and motion control of the 
actuators. 

An alternative method is based on the concept of a 
magnetic dipole (originally suggested by Fitz Gerlad in 1883) 
as a tool to characterize the magnetic potential fields.  While 
the dipole model has been widely used to analyze the 
magnetic field at a sufficiently large distance for applications 
[8-10] such as electromagnetic wave propagation for antenna 
dynamics and geomagnetism to analyze earth polarization, it 
generally gives a poor approximation when the length scale of 
the field is very small.  For reasons including compact 
formulation/solutions and intuitive magnetic fields, many 
researchers (for examples, [11] and [12]) continue to develop 
dipole models to analyze actuator designs involving 
permanent magnets. Nedelcu et al. [11] used a magnetic 
dipole model to describe the field of a PM-based device, 
where each PM is modeled as a doublet.  While the model in 
[11] provides a concise computational formulae for the field 
and the energy flow, it has difficulties to obtain an accurate 
magnetic field. Visschere [12] later pointed out a number of 
mistakes by comparing the dipole approximation in [9] 
against an analytical 2D magnetic field solution of a PM. The 
existing single dipole model (equivalent to the mathematical 
theory of a doublet) is often studied in the context of physics 
and valid only for needle-like magnets; thus, it has very 
limited applications in modern actuator designs.  

We present a general method, referred here as distributed 
multi-pole (DMP) model, for precise calculation of the 
magnetic field around a PM. This method inherits many 
advantages of the dipole model but provides an effective 
means to account for the shape and magnetization of the 
physical PM. The remainder of this paper offers the 
following:  
1.  We present the DMP model that uses a limited set of 
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known field points to construct an analytical model 
consisting of multiple dipoles to obtain the closed-form 
field solutions around a PM. The simplicity of the DMP 
model offers an advantage for real-time applications. 

2.  We illustrate the procedure of developing a DMP model 
for characterizing the magnetic field of a spherical motor, 
which consists of cylindrical PM’s and multi-layer 
electromagnets EM.  The DMP models are validated by 
comparing the simulated fields and calculated magnetic 
forces against known solutions whenever possible, and/or 
published numerical simulations and experimental results. 
The comparisons show excellent agreement. 

3. We also illustrate how the DMP model can be used to 
develop the forward and inverse torque models for motion 
control of a spherical motor. The forward model computes 
the torque and along with the solutions to the rotor 
dynamics, simulates the rotor motion. The inverse model 
that computes an optimized set of currents to provide the 
desired torque for tracking the desired trajectory, however, 
must be controlled in real time.  As will be shown, the 
DMP model presented here provides a means to derive a 
closed-form inverse torque model for real-time current 
optimization while retain the full torque model to 
faithfully predict the motion of the spherical motor. 

II. CLOSED-FORM FIELD MODELING METHOD 
Design of electromagnetic actuators and their control 

involves calculation of magnetic forces. The Lorenz force 
equation is commonly used to calculate the magnetic force 
exerted on current-carry conductors:  

Id= − ×∫F Bv A    where  I d= − ∫∫ J Siw  (1) 
where A is the normalized current direction vector.  In (1), the 
current density vector J is directly used in the calculation and 
thus, it is not necessary to compute the magnetic flux 
generated by the current loop.  Thus, the Lorenz force 
calculation involves only modeling the B-fields of the PM’s.   

The solution to the force equation (1) requires solving the 
magnetic field. A method to model the magnetic field 
solutions in closed-form is to use multiple dipoles, which take 
into account the shape of the physical PM.  Cylindrical PM 
are commonly used, and some analytical and experimental 
results are available for model validation; they are used here 
for clarity to illustrate the DMP modeling procedure. 
However, the method can be extended to PM of customized 
shape.   

We consider here PM-based actuator applications which 
satisfy the following assumptions: the field is continuous and 
irrotational; and the medium is homogeneous. The 
irrotational field 0∇ × =B  enables us to define a scalar 
magnetic potential Φ such that the magnetic field intensity H 
is given by 

= −∇ΦH  and 0µ=B H  (2a,b) 
where µ0 is free space permeability. Since the field is 
continuous 0∇ • =B  and µ0 is a constant, we have 2 0∇ Φ = . 
The solution to Laplace’s equation, which satisfies the field 
for a pole [10] which may be a source or a sink, is given by  

( )( 1) / 4j m RπΦ = −  (3) 
where m is the strength of the pole; j takes the value 0 or 1 
designating that the pole is a source or a sink respectively; and 
R is the distance from the pole to the field point.  

Since a single pole does not exist alone in a magnet filed, 
we define a dipole here as a pair of source and sink separated 
by a distance A . An effective method to derive approximate 
flux paths of a magnet is to use multiple dipoles to account for 
the shape of the physical magnet. For design and control of 
PM-based devices, we seek the field solution outside the 
physical region of the magnets, particularly near its boundary.   

Figure 1 shows the DMP model of the cylindrical magnet 
(radius a, length A  and o zM=M e ), where k circular loops 
(each with radius ja ) of n dipoles are placed in parallel to the 
magnetization vector.  The k loops are uniformly spaced:  

( )/ 1ja aj k= +  at / 2z = ± A ;  where 0,1,...,j k=  (4) 

0 < <A A  (5) 
In Fig. 1, jiR + and jiR − are the distances from the ith source and 
sink in jth loop to any point P(x,y,z) respectively and given by   

( )22 22 cos sin / 2
ji j jR x a i y a i zθ θ

±
   = − + − +    ∓ A  (6) 

 
Fig. 1 DMP model of a cylindrical magnet 

For a cylindrical magnet, the field is uniform 
circumferentially and thus, we set the dipole moment mji=mj.   
To minimize the field variation in the θ direction, we impose 
the following constraint on n: 

[ ] [ ]
[ ]

( ) ( )
100%

( ) , /2

Max Mean
Mean r a z

θ
θ θ

ε
θ

Φ − Φ
× ≤

Φ = =A
 (7) 

where εθ is a specified (positive) error bound.  
Since Laplace equation is linear, the magnetic field 

Φ(x,y,z) of the PM can be obtained by summing the magnetic 
fields contributed by the individual poles: 
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Similarly, the flux density at P can be found from (2): 
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Since ( ) 21/ (1/ )RR R∇ = −a  where ( )/R R=a R , 

( ) ( ) ( )
( ) ( ) ( )

2 3 / 222 2
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The unknowns (k, n, δ, and mj where j = 0, …, k) in the 
DMP model are solved by minimizing the error function (10) 
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subject to constraints imposed by the magnet geometry and a 
limited set of known field solutions (as fitting points): 

[ ]2( ) ( )A
z

E z z dz= Φ − Φ∫  (10) 

where ( )A zΦ  is the analytical solution along the 
magnetization axis.  The general expression of AΦ from a 
magnetic pole at R’(x’, y’ z’) to the field point R(x, y z) is 
given in [11]: 

( ) 1 1, ,
4 4A

V S

x y z dV dS
π π

−∇ • •Φ = +
′ ′− −∫ ∫

M M n
R R R R

 

where n is the unit surface normal; the first integral is a 
volume integral over the body volume V while the second is a 
surface integral over the body boundary surface S.   In (10), 
the potential and flux density of a cylindrical PM along the 
z-axis can be expressed in closed form:   

( ) ( )( ) 1
4

A

o

Z
A B A B

M − − + +
Φ  = − − − A

 (11) 

( ) 1
2

A

o o

B BB Z c
M A Aµ

+ −

+ −

 
= − + 

 
 where 

0 if 1
2 if 1

Z
c

Z
 ≥=  <

 
(12) 

where
/ 2
zZ =
A

; 
/ 2
aγ =
A

; 2 2A Bγ± ±= + and 1B Z± = ± . 

For a given residual magnetic flux density, we have from 
(12): 

 
( )= ( )=-A o A z= /2

/2 /2 µ ∇ΦB B AA A  (13) 
where B is given in (9). Since (10) accounts for the potential 
field along the magnetization axis, the remaining ( 1k n× + ) 
constraints are constructed from (8) and (9) along two other 
orthogonal directions. For PM-based actuator applications, 
the specified Φ values are evaluated at an appropriate magnet 
surface. To avoid the singularity at ′=R R , we choose  

point
0 at surface

'lim RR R
ε

ε
→

 = + 
 

 

where εR is a small positive number. The procedure for 
modeling a PM is summarized as follows: 
Step 1: Compute ΦA and BA analytically long the magnetization vector from 

(11) and (12) respectively 
Step 2: Generate an initial set of spatial grid points (k, n). 
Step 3: Formulate (8) and (9) in terms of the unknowns, A  and mji. 
Step 4: Find A  and mji by minimizing (10) subject to a set of constraints 

constructed from (11) and (12). Error computed by (9) is saved.  
Step 5: Check if the condition (7) is satisfied.  If yes, increase k or n, and 

repeat from Step 3. If no, the optimal parameters (k, n, A  and mji) 
can be obtained by minimizing (10) using Step 4. 

III. DMP-BASED TORQUE MODEL OF A SPHERICAL MOTOR 
Figure 2 shows a CAD model of a spherical wheel motor 

(SWM) [14] based on a modified design of 
variable-reluctance spherical motors (VRSM) [6].  Unlike a 
VRSM where the rotor PM and stator EM poles are placed on 
locations following the vertices of a regular polygon, the 
PM’s and EM’s of a SWM are equally spaced on layers of 
circular planes such that their magnetization axes pass 
radially through the motor center.  

A. Design Configuration of a Spherical Motor  
The rotor PM’s and stator EM’s are grouped in pairs; 

every two pole-pairs form a plane providing a well-balanced 
symmetry electromechanically. In rotor coordinates (x,y,z), 
the magnetization axes of the mr rotor PM pairs are given by 

T1( 1) cos cos cos sin sini
i r ri r ri rφ θ φ θ φ−= −   r  (14) 

where i= 1, 2,…, mr; and ( 1)ri riθ θ= − .   Similarly, the ms 
stator EM pairs in the stator frame (XYZ) are given by (15): 

T
cos cos cos sin sinj s sj s sj sφ θ φ θ φ =  s  (15) 

where j= 1, 2,…, ms. ; and ( 1)si siθ θ= − .   Unlike ms which 
may be odd or even, mr, is always an even number.  

  
(a) CAD Model (SWM [ ]) (b) Rotor inclination in XYZ frame 

Fig. 2 Spherical motor  

The inclination of a continuously spinning rotor is 
commonly described in terms of zyz Euler angles (α, β, γ) as 
it can be easily visualized as shown in Fig. 2(b). This 
representation, however, has singularities at 0,α π= ± which 
makes it difficult to compute numerically.  Thus, the xyz 
Euler angles ( , ,α β γ ) are used for the numerical 
computation of coordinate transformation:   

( )1sin sin sinα α β−= −  and ( )1sin sin cos / cosβ α β α−=  (16a,b) 

To facilitate calculating the torque of the spherical motor 
in stator (inertia) frame, we define the transformation: 

s sr ri ri=x L L x  (17) 
where rix the local coordinate frames of the ith PM defined in 
Fig. 1; riL  describes the transformation from rix to rx  

cos sin sin cos sin
sin sin cos cos cos

0 cos sin

r ri r ri r

i r ri r ri r

ri ri

φ θ φ θ φ
φ θ φ θ φ

θ θ

− 
 = − −
 
 

rL  ;  

and srL from rx to sx  

cos cos cos sin sin cos cos sin sin sin
sin cos cos cos sin sin sin sin cos sin cos sin

sin sin cos cos cos
sr

φ β φ α β φ α β φ α
φ β α φ φ α β φ α β φ α

β α β α β

 − +
 = − − +
 − 

L

For a structure with linear magnetic properties, the magnetic 
field of the spherical motor is obtained from (8) summing 
over the DMP models of the rotor PM’s with the coordinate 
transformation (17).  

B. Torque Calculation  
The resultant torque of the spherical motor has the form: 

[ ] [ ]T
X Y ZT T T= =T K u  (18) 

where ( )3
1

s
s

m
j mK K K×  ∈ =  K \ " " ; (18a) 
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and 
T

1 sj mJ J J =  u " "  (18b) 

In (18a), 3 1
jK ×∈\  is the torque characteristic vector 

contributed by the jth EM.  In terms of rotor orientation,  

( )
2

1
/ ( , , )

rm

j sj j j i
iEM

K rdrd dα β φ θ
=

  
= × ×     

∑∫L R J J B Av  (19) 

where 3 1
i

×∈B \  is the flux density of the ith PM;  R and r are 
the position vector and the radius of current conductor 
respectively; and sjL is the coordinate transformation from 

sjx (the local coordinate frame of the jth  EM) to sx , which has 
the same form as irL  but replacing the angles in (15).  

C. Control System Analysis  
For control and motion simulation of a spherical motor, 

both the forward and inverse torque models are required as 
illustrated in Fig. 3.  For a given set of current inputs, the 
forward model (18) computes the torque and, along with the 
solutions to the equation of rotor dynamics given in the 
appendix, simulates the rotor motion.  The inverse model that 
computes an optimized set of currents providing the 
necessary torque Td to track the desired trajectory xd, however, 
must be controlled in real time.  

 
Fig. 3 Closed-loop control of the spherical motor 

The torque characteristic vector (19) is orientation 
dependent, and the volume integral must be evaluated 
numerically in real time. In order to reduce the computation to 
a tractable form so that an optimized set of current inputs can 
be computed and implemented in real-time, it is desired to 
express the inverse torque model in closed form. It has been 
shown in [6] that for a spherical motor with linear magnetic 
properties, the torque generated by the interaction of one 
stator EM pole pair with mr rotor PM pole-pairs can be 
calculated by summing up its individual interaction with mr 
rotor pole-pairs. Thus, the torque characteristic vector in (19) 
due to the interaction of one stator pole-air and mr rotor 
pole-pairs can be evaluated as follows: 

( )3 1
1

ˆ ( ) if  0ˆ

0                                   if  =0

r

jk

m
j k

j k
j j kk

j k

fK ϕ ϕ
ϕ

=
×

=

  × − × ≠  ∈ =  ×   ×

∑ s r
s r

s r
s r

\  (20) 

 
where ˆ( )f ϕ is a curve-fit function derived from (18) as a 
separation angle ϕ  between a PM pole-pair and an EM 
pole-pair as shown in Fig. 6(a); and  

( ) ( )1cos /jk j k j kϕ −  = • s r s r . 

The actual current input vector u is found by minimizing 
the control input energy consumption: 

1
2 [ ]TJ = u W u  (21) 

subject to the desired torque constraint  

1
ˆ ˆ ˆ

sd j mK K K =  T u" "  

where [ ] s sm mR ×∈W  is a positive-definite weighting matrix; 
and ˆ jK is given in closed-form in (20).  Provided that the 
control currents are kept within limits, the optimal u can be 
solved using Lagrange multipliers.  The optimal solution can 
be written in closed form: 

[ ] [ ][ ]( ) 1T T
d

−
=u K K K T  (22) 

In implementation, saturation limits are imposed on the 
controller to ensure the current inputs are within the amplifier 
limitations. The eventual stability of the system depends on 
whether the spherical motor can generate the desired torque.   

For completeness, the rotor dynamics is given in the 
appendix. Using Lyapunov stability analysis, it can be shown 
that the desired torque for a PD controller can drive the 
spherical rotor from its initial state to a specified final state:  

1 2 [ ] [ ]= +d p dT K x (t) K x (t)� �  (23) 

where 1 = −dx (t) q q(t)� and 2 = −dx (t) q q(t)� ��  define the 

tracking error and its derivative; and [ ]T= ψ θ φq  is the 
orientation vector of Euler angles.  For real-time control and 
motion simulation, the closed-form inverse model (22) is 
used in real-time control while the full torque model (18) is 
retained to faithfully predict the motion of the spherical 
motor.  

IV. SIMULATION AND EXPERIMENTAL RESULTS 
We illustrate and validate the DMP model for computing 

of the magnetic torques by comparing the simulated results 
against published experimental data and by evaluating the 
performance between two different designs, Design A 
(VRSM [6]) and Design B (SWM [14]) in Fig. 3.  In both 
designs, the coils are air cored and other parameters used in 
the following simulations are given in Table 1: 

A) validation of DMP model for torque computation, and 
B) application of the DMP model to a spherical motor. 

Given the specified trajectory, the steps and functional 
models for a typical feedback cycle (Fig. 3) are as follows:  
Step 1: Compute Td from the inverse dynamics given in Appendix. 
Step 2: Optimize the control input vector u using (23). 
Step 3: Compute the actual torque T from (18), (19) and (22). 
Step 4: From the rotor dynamics given in Appendix, the actual trajectory of 

the spherical motor is computed.  
Step 5: Outputs (α, β, γ) are then fed back.  Since the focus here is to illustrate 

the DMP, unity feedback is assumed.  

A. Validation of DMP Model for Torque Computation  
The PM’s used in both designs have a unity aspect ratio 

(or 2 / 1aγ = =A ).  Using MATLAB Optimization Toolbox, 
the parameters, k, n, δ, mj and mo were solved for 1γ ≤  by 
minimizing (10) subject to constraints (7) where 0.05%θε = ,  
(8) and (13).  For a PM with constant magnetization, the 
known field points, ( )0, , / 2A aΦ = Φ A  in (8), can be found 
numerically from the following expression: 
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1
4A

S

dS
π

•Φ =
′−∫

M n
R R

 

Since (101 is singular at the surface, the ΦA values for (10) 
are solved numerically with 6' 10−+R ; no significant 
difference in results was found when 310Rε −≤ .  The calculated 
DMP model for the PM with unity aspect ratio is summarized 
in Table 2, where the error is defined as   

%Error 100 ( ) ( ) / ( )A A
z z

z z dz z dz= × Φ − Φ Φ∫ ∫  

The simulated fields using the DMP models are 
compared with the exact solutions in Fig. 4.  As expected in 
(14) and (15), the normalized potential and density field, 

( ) /( )A oZ MΦ A  and ( ) /( )A o oB Z Mµ , are only a function of 
the aspect ratio γ.  Figure 4 shows that the exact solutions 
agree well with the field solutions based on only 7 dipoles 
(n=6 and k=1). The discrepancy primarily occurs in the 
magnetic flux density around the corner; it can be reduced by 
using more loops (Fig. 5).   

To examine the effect of the DMP model on the 
prediction of magnetic forces, we compute the torque exerted 
on the EM pole-pairs in the magnetic field of the rotor using 
(17), where the magnetic flux density is given by (8) along 
with the DMP model summarized in Table 2.    

 
(a) Φ(Z) (b) B(Z) 

 
(c) Φ(Y) (d) B(Y) 

Fig. 4 Potential and flux density along Y and Z axes (n=6 and k=1) 

 
(a) Effect of k on corner error (n=6) (b) Effect of n on θ  (k=1) 

Fig.5 Effect of n and k on modeling errors of PM with (2 / ) 1aγ =A  
For the purpose of validating the force computation, we 

simulate the torque for Design A since numerical solutions 
computed using ANSYS, a commercial finite element (FE) 
package, are available for comparison [6].  In Case 1, we 
compute the torque generated by the interaction between the 

EM pole-pair s1 and the PM pole-pair r1 as shown in Fig. 6(a), 
where the pole locations are defined (14) and (15).  Case 2 is 
identical to Case 1 except that the interaction is between s1 
and r2. Case 3 was performed to determine the principle of 
superposition holds, which compares the superposition of the 
two individual cases against the torque calculated with s1 and 
the combined r1 and r2.  In each of these cases, the stator coils 
are given a current of 4 Amperes. As shown in Fig. 6(b), the 
torques computed using the DMP model as a function of rotor 
position agrees well with the ANSYS results.  
Table 1 Rotor Parameters  

Parameters Design A [6] Design B [14] 
Rotor   
Rotor diameter, mm(inch) 76.2 (3) 76.2 (3) 
PM, number of  6 (1 layer) 16 (2 layers of 8) 

Magnetization axis γ r = 0º; δ r = 60º γ r = 20º; δ r = 45º 
Mo, Telsa 1.12 1.35 
OD= 2A mm (inch) 19.05 (0.75)  12.7 (0.5) 
Aspect ratio (2 / )aγ A  1  1 

Moment of inertia (kg-m2) Ia = 7.00e-4;It 
=3.50e-5 

Ia = 6.06e-5;It 
=3.86e-5 

Offset of mass centre 0r =K  0r =K  
Stator   
Air-gap, mm(inch) 0.762 (0.03) 0.762 (0.03) 
EM, number of  10 (1 layer) 20 (2 layers of 10) 

Magnetization axis γ s = 26º; δ s = 36º γ s = 26º; δ s = 36º 
ID/OD/ 2A mm 9.53/12.7/25.4 9.53/19.05/25.4 
Number of coil turns 600 1050 
29AWG wire, resist. Ω 6.46 10.51 

Table 2 Values of the parameters (k=1, n=6) 
DMP Model /δ = A A  m (T/m2)×1.0e-4 %Error 

Design A 0.5141 mo=-0.424; m1i=1.151 0.998 
Design B 0.5136 mo=-0.229;  m1i=0.618 1.00 
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Fig. 6 Torque Computation using the DMP model 

 

7th order polynomial fit function: 

 
7
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=

=∑   where 0 -53.18c = ; 

1 232.51c = ; 2 -402.68c = ; 

3 343.74c = ; 4 -142.27c = ; 5 20.61c = ; 

6 1.25c = ; and 7 0.01c =  

Fig. 7 Torque between a PM pole-pair and an EM pole-pair 

B. Application of DMP models in Spherical Motor Control  
Once the magnetic field is characterized by the DMP 

model, the torque model can be computed from (18).   Figure 
8 graphs the torque between a PM pole-pair and an EM 
pole-pair as shown in Fig. 6(a) for Design B.   

In Fig. 8, the result is compared against those obtained 
using ANSYS. We note that the accuracy of the ANSYS 
results depends significantly on the resolution of the mesh.  It 
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addition, the FE analysis must cover a relatively large free 
space to include the magnetic fields and thus demands 
significant computational time. Unlike ANSYS results where 
a few data are available, the torque (18) computed using the 
DMP model is smooth and can be easily curve-fitted as 
shown in Fig. 7, where the average error of the 7th order 
polynomial curve-fit is less than 0.02%. 

As an illustrative application, we simulate the closed 
loop control system performance using the torque model 
computed with the DMP model. The simulation assumes that 
the orientation measurement system to have no dynamics. For 
a specified Td, the optimized set of current inputs can be 
determined from (22) with the curve fit function ˆ( )f ϕ given in 
Fig. 7. With the following PD gains 

0.5 0 0
0 0.3 0
0 0 0.5

 
  =      

pK and [ ] 0.5=dK I  

where I is 3x3 identity matrix, the simulation results for a step 
change in rotor orientation from its initial upright position 
( 00α β γ= = = ) to the final state ( 00α = , 010β =  and 060γ = ) 
are given in Fig. 8.  

To examine the effect of the curve-fit function based on 
the DMP model, we compare the full model (19) and the 
simplified closed-form solution (20) in modeling the forward 
torque.   As shown in Fig. 8 and Table 3, the comparisons 
show very good agreement with less than 15% error in both 
the computed torque and the simulated motions. 

 
Fig. 8 Step response of Spherical Motor (Design B)  

Table 3 Maximum percentage error  
Torques (%) Angles (%) 

Tx Ty Tz α β γ 
9.78 4.37 6.02 13.9 7.6 10.4 

V. CONCLUSIONS 
A new model providing a means to derive closed–form 

field solutions and magnetic torques of a PM-based spherical 
motor has been presented.  This method extends the concept 
of a magnetic doublet beyond the context of physics, but 
accounts for the shape and magnetization of a physical PM. 
The modeling method has been validated by comparing the 
computational results against published experimental and 
numerical data.  The simplicity of the closed-form solutions 
along with precise (and yet intuitive) magnetic fields of the 
DMP models have been demonstrated with practical 
examples of torque modeling and motion simulation.  
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APPENDIX: EQUATIONS OF ROTOR MOTION 
The motion of SWM can be characterized in term of ZYZ Euler angles 

(α, β, γ).  For the mechanical structure, the equation of rotor motion derived 
using the Lagrangian formulation has the following form: 

( , )+ =  M q C q q Q�� �  (A.1) 
where 

 
2( ) cos 0 cos

0 0
cos 0

a t t a

t

a a

I I I I
I

I I

β β

β

 − + 
=    
 
  

M  (A.2) 
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 (A.3) 

and 
1 2 3

1 2

3

sin cos sin sin cos
sin sin cos

T T T
mgh T T

T

β γ β γ β
β γ γ

− + + 
 = + + 
  

Q  (A.4) 

where q =[α β γ]T ; a zzI I=  ; t xx yyI I I= = ; and m is the mass of the rotor.  

In (A.3), h accounts for the off-center of the mass; and Q represents the 
contributions of the applied torque to the generalized moments. The applied 
torque in the rotor frame is expressed by the stator frame as  

[ ]123 XYZ= ΓT T  (A.5)  
 

where 
   

[ ]T
123 1 2 3T T T=T ; [ ]T

123 1 2 3T T T=T ; and 

[ ]
cos cos cos sin sin sin cos sin cos sin sin cos
cos cos sin sin cos sin cos sin cos cos sin sin

cos sin sin sin cos

α β γ α γ α β γ ψ γ β γ
α β γ α γ α β γ ψ γ β γ

α β α β β

− + 
Γ = − − − + 

  
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