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Abstract 

This paper considers the control of a variable reluctance 
(VR) spherical motor that offers some unique features by 
combining the roll, pitch and yaw motion in a single joint. 
The 3-DOF VR motor has multiple independent inputs, and 
the output torque is direction varying and orientation-
dependent and as a result, the control for such a motor is 
significantly more challenging than the single-axis motor.  
We formulate a new three-degrees-of-freedom (3-DOF) VR 
motor control design tool using backstepping, where the 
inputs are optimized to achieve minimum total energy 
consumed.  The torque has been derived as a linear 
combination of the square of the input currents, a form 
computationally friendlier than its quadratic counterpart for 
real-time implementation.  The overall stability of the system 
is shown using Lyapunov techniques. Simulation results are 
illustrated to show the performance of the controller. 
 
1. INTRODUCTION 

An increasing need for high-performance robotic 
applications has motivated several researchers to develop 
new actuators to improve dexterity of robotic wrists.  Among 
these is the ball-joint-like spherical motor (Lee et al., 1996), 
which combines the roll, pitch and yaw motion in a single 
joint.  The motor operated on the principle of variable 
reluctance (VR) has a simple structure, no singularities 
except at its boundary, and the ability to achieve high-
positioning precision with fast dynamic response due to its 
nature of direct drive.   These attractive features have 
potential applications in high-speed wrist motion control, 
where the orientation must be achieved rapidly and 
continuously with isotropic resolution in all directions.  The 
trade-off is the need of sophistical control techniques to 
compensate for the non-linear torque-current characteristics. 

In (Lee et al., 1996), the first author and his co-workers 
presented the dynamic modeling of a 3-DOF VR spherical 
motor.  In this paper, we explore the use of back-stepping 
control technique to design a stabilizing controller for the 
spherical motor.  The design procedure adopted here has 
been motivated by and conceptually similar to the framework 
in utilization of backstepping for solving single–axis VR 
motor control problems, but we extend it to the 3-DOF 
actuators. The 3-DOF VR motor has multiple independent 
inputs, and the output torque is direction varying, and 
orientation-dependent.   These unique features make the 
control of a 3-DOF VR motor significantly more challenging 
than the single-axis motor.  

This paper offers the following contributions:  

1. We formulate a new 3-DOF VR motor control design tool 
using backstepping, in which the inputs are optimized to 
achieve minimum total energy consumed. Such formulation 
enables the utilization of existing adaptive and robust 
backstepping design techniques for the control of multi-
input VR motors; for examples, Carroll and Dawson  
(1993), Kanellakopoulos (1995), Melkote et al. (1999), 
and Milman and Bortoff (1999).  

2. We present the derivation of the torque model of the 3-
DOF VR motor in terms of stator coil inductances, which 
are given in terms of Euler angles in this paper.  In the 
absence of permanent magnets, the torque is a linear 
combination of the square of the input currents, a form 
computationally friendlier than its quadratic counterpart for 
real-time implementation (Lee et al., 1996).  

3. The relationship between the inductance and the air-gap 
permeance commonly used in the community of stepper 
motors is also given. The relationship provides an effective 
means to calculate the stator inductances from the 
permeance model, which can be computed using finite-
element technique, analytically derived using assumed 
flux-path, or obtained experimentally.        

The remainder of this paper is organized as follows: 
Section 2 models the dynamics of a VR spherical motor 
appropriate for backstepping design, followed by the design 
of an optimal backstepping controller in Section 3. In Section 
4, we determine the characteristic inductance of the VR 
motor from the experimentally determined permeance model, 
verify the assumptions experimentally, and illustrate the 
backstepping controller with simulation.  Finally, conclusions 
are drawn in Section 5. 

 
2. DYNAMIC MODEL 

The assembly of the prototype VR spherical motor is 
shown in Figure 1. The spherical motor consists of four 
subassemblies: a rotor, a stator, a bearing system, and a 
orientation measurement mechanism.  The spherical rotor and 
the hollow spherical stator are concentric and are supported 
one on the other by means of gimbals.  The ferromagnetic 
poles are strategically distributed on the rotor surface and 
meet at the center of the rotor.  Similarly, the stator poles are 
distributed on the stator surface, on which the stator coils are 
wound and can be energized individually. The magnetic 
conductor layer between the shell and the stator core forms a 
magnetic circuit with air-gaps connecting the rotor and the 
stator.   The spherical rotor is constrained but allowed to roll 
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on the bearing gimbals, which are mounted on the inner 
surface of the stator.  The spherical surface of the rotor 
except for the rotor poles is made up of non-magnetic but 
hard material. 

 
Figure 1 Prototype Spherical Motor 

Electromagnetic model 

The following assumptions are made in deriving the 
dynamic model: (1) The reluctance of iron core is negligible 
as compared to that of the air gap and thus the energy storage 
solely occurs in the air gap.  (2) Leakage flux is assumed to 
be negligible. (3) The coupling between stator poles may be 
neglected. (4) The system is electrically linear.  

The voltage supply to each coil, )(tvi , must overcome 
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)(tijλ  is the flux linkage between ith stator and jth rotor poles; 

and )(tui  is the current following through ith stator coil. 

Since the flux linkage is a function of both current and 
angular separation between the two interacting poles, its time 
derivative may be written as follows: 

∑
=

ϕ
ϕ∂
λ∂

+
∂
λ∂

=
λ M

j

ij

ij

iji

i

ii

dt

d

dt

du

udt

d

1

 (3) 

where ijϕ  is the angle between the position vectors of the  ith 
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where )],,([ φθψ5 is a 3x3 rotational matrix describing the  

rotor orientation with respect to the stator in terms of Z-Y-Z 
Euler angles; and rjo
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where Rs and Rr are the stator pole-surface from the center of 
the stator and the rotor radius respectively.  Since we have an 
electrically linear system, i.e.  
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The quantity ),,( φθψiL in Equation (7) is referred to as the 

ith stator inductance.  Substituting Equations  (3), (6) and (7) 
into Equation (1), we have 
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Thus, the current dynamics can be represented as 
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Note that the stator inductance is a function of Euler angles 
),,( φθψ  for a given geometrical. We have 
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Torque generation 

The torque generated by the spherical motor can be 
derived from the co-energy in the system: 
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By substituting Equation (15) into Equation (13) and taking 
the respective partial derivatives, the generated torque is 
derived in Equation (16),  
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which is a function of rotor orientation and the square of the 
currents applied at the stator coils.  
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Spherical Motor Dynamics 

We define the following state vectors: 

 3
1 ℜ∈x  where [ ]Tx φθψ=1 ; 17(a) 

3
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Nv ℜ∈  where [ ]TNvvvv L21= . 17(d) 
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The spherical motor dynamics can be written as follows: 
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3. OPTIMAL BACK-STEPPING CONTROL DESIGN 

The dynamic model of the spherical motor has the 
following cascaded structure:  
 
 
 

 
Figure 2 Spherical motor dynamic model 

As illustrated in Figure 2, back-stepping design procedure can  
be applied.   

Backstepping 

The control variable vector v can be used to drive the 

state 3x  to any desired state.  Similarly, if the state vector 3x  

was the control vector, a stabilizing controller can be designed 
to drive 2x  to its desired state.  This trend continues with the 

state 2x  used to drive 1x  to follow any desired trajectory.   

Since 3x  and 2x  are not control variables, we define the 

fictitious control variables 3dx and 2dx  for a specified 

trajectory: 
3

1d Cx ∈ , i.e. 1d1d1d and,, xxx &&&  are available. 

We define the following error state vectors: 
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where 2dx  and 3dx are virtual controls to be defined.  The 

fictitious controllers for the subsystems are chosen such that  

  kk zz kα−=& ,  where 0>α k  (21) 
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Equation (20) defines the error between the desired and the 
actual states. The choice of two fictitious and the actual 
control inputs ( 3dx , 2dx , and v ) defined by Equation (22) 

ensures that kz will converge to zero and thus guarantees the 

asymptotic stability of kz :   
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Optimal controller design for the VR spherical motor 

In designing the controller, the electrical dynamics are 
neglected.  This is justified by our use if analog current 
amplifiers, which serve to compensate the electrical dynamics 
with high gain feedback, increasing the electrical subsystem, 
Equation (19c) and the mechanical subsystem, Equations 
(19a) and (19b). 

Since �=)( 11 xf  and 2211 ),( xxx =g , we have the 

fictitious controller  from Equation (22a), 
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where 1dx and 1dx& are the desired rotor orientation and its 1st 

time derivative.  Note that the choice of 3dx  requires the time 

derivative of 2dx , which is given by 
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1d21d12d )( xxxx &&&& +−α=  (24) 
Substituting Equations (23) and (24) into Equation (22b), we 
have 
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However, ),,( d3212 xxxg  implicitly contains the generated 

motor torque vector T
r

 that is a function of the square of the 
currents.  The fictitious current control 3dx , the desired 

trajectory for the current state 3x , is solved in two steps:  

The first step determines the desired torque needed to 
drive the rotor to the desired orientation, which can be 
obtained from equation (25): 
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From the fundamental theorem of linear programming, the 
existences of basic feasible solutions to the constraint 
equations ensure the existence of the optimal solution to the 
above problem.  Therefore, with the desired current found, the 
overall system is asymptotically stable.  The stability 
argument can also be verified using Lyapunov stability 
analysis as follows.  With a Lyapunov function  
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4.  EXPERIMENTAL AND SIMULATION RESULTS 

Figure 3 is an equivalent circuit of the spherical motor. In 
Figure 3, Rij is the reluctance of the air-gap between the ith 
stator and jth rotor poles. The 5 rotor poles are arranged at the 
apices of an octahedron with the topmost pole removed to 
provide an area for attaching the output shaft.  The 10 stator-
poles are placed on the apices of an icosahedron without the 
topmost and bottommost poles.  

Relationship between stator inductance and permeance 

The permeance P  that is a reciprocal of the reluctance 
has been determined experimentally (Lee et al., 1996) as a 

function of the angular displacement between an adjacent pair 
of stator/rotor poles for the prototype spherical motor.    
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where ϕ is the angular displacement between a pair of rotor 

and stator poles; and  
a0 =  6.1553E-07 a1 =6.5365E-08 a2 = -3.7298E-06 
a3 = 6.1471E-06 a4 = -3.9278E-06 a5= 7.7800E-07 
a6 = 8.4387E-08  a7 = 5.3668E-08  

Since the flux linkage is defined as  
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n is the number of turns in each of the stator coils; Φij is the 
flux flowing through the air-gap between the ith stator and jth 
rotor poles. Substituting ijλ Equation (6) into Equation (31), 

which leads to 
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Figure 4 shows a typical inductance in terms of Euler angles.  

 
 
 
 
 
 
 
 
 
 

Figure 3 Equivalent circuit of the spherical motor 

 

Figure 4 Inductance (ψ=0.75 radians) 
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Linearity and mutual inductance  

In investigating the extent to the coupling effect and 
linearity of the inductances in the spherical motor, a stator 
pole was excited with a step current.  The voltage responses 
of the excited stator as well as the adjacent stator coils were 
recorded.   For a locked rotor, the inductances are constant. 
For a step change in current, the voltage across the excited 
coil would be a combination of an impulse (as a result of the 
derivative of the current) and a steady-state voltage across the 
coil resistance as illustrated in Equation (8), and that across 
each of the unexcited coils would be due primarily to mutual 
inductance.  As shown in Figure 5, the voltage response in the 
excited stator coil #1 was significantly larger than the adjacent 
stator poles #2 and #5. Thus, the contribution of the flux 
linkage due to the induced current is negligible. 

The flux linkage can be determined experimentally As 
illustrated in Equation (1): 

[ ] tdrtutv
t

iii ∫ −=λ
0

)()(  

Figure 6 shows that the flux linkage integrated over the 
voltage difference for several values of a step current input.   
The result shows that the inductance is linear with current 
excitation to about 1 ampere, beyond which the flux linkage 
saturates and the inductance decrease with further increase in 
current input. 

Simulation results 

Figure 7 compares the desired and output rotor trajectory in 
terms of Euler angles and the corresponding output torque.  
Good orientation tracking performance is obtained as may be 
seen from Figure 7.  The optimized currents are given in 
Figure 8.   With a few exceptions, most of the input currents 
needed were within 2 amperes for the period of 5 seconds.  

5. CONCLUSIONS 

A new 3-DOF VR motor control design using 
backstepping has been presented, where the inputs are 
optimized to achieve minimum total energy consumed.  It is 
expected that this design provides an essential basis for the 
control of multi-input VR motors utilizing backstepping. 

We derive the torque model in terms of stator 
inductances, a form more appropriate for backstepping design 
of a 3-DOF VR spherical motor.  It has been shown that in the 
absence of permanent magnets, the torque is a linear 
combination of the square of the input currents, which is 
computationally friendlier than its quadratic counterpart. Such 
a formulation enables the utilization of existing adaptive and 
robust backstepping for the control of 3-DOF VR motors.   

The relationship between the inductance and the air-gap 
permeance is also given, which has been used to calculate the 
stator inductances from the experimentally permeance model.  
Finally, the overall stability of the system is shown using 
Lyapunov techniques. Simulation results have illustrated the 
performance of the controller. 

 Figure 5 Coupling effect 

 
Figure 6 Linearity 
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Figure 7 Trajectory and torques 
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Figure 8 Input currents 

 


