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Modeling by Numerical Reduction
of Modes for Multivariable Control

of an Optical-Fiber Draw Process
Kok-Meng Lee, Fellow, IEEE, Zhiyong Wei, and Zhi Zhou

Abstract—Motivated by a need for a method to derive practical
and physical-based dynamic models that capture the essential
characteristics of an optical-fiber draw process for precision
control of diameter uniformity, we extend the Karhunen–Loeve
decomposition technique with a Galerkin procedure to derive
a reduced-order model (ROM) for a multivariable distributed-
parameter system. We validated the ROM derived from a high-
fidelity physics-based model by simulating a modern optical-fiber
draw process, the numerical solutions for which have been
experimentally verified in our earlier studies. Perturbation studies
demonstrated that the 24th-order ROM agrees remarkably well
with the original nonlinear semi-two-dimensional and quasi-
one-dimensional distributed models. We further examine the
efficiency of the ROM in the context of a model-basedH LQG

fiber drawing control system for the regulation of the fiber
diameter and tension. The results show that variations in fiber
diameter can be reduced significantly by appropriately distributing
the number of retained eigenmodes among the physical state
variables in the ROM. We also demonstrate that controlling the
surrounding air temperature in addition to the draw speed is
very effective in regulating both the fiber diameter and tension
while simultaneously keeping the draw speed and temperature
fluctuations to a minimum.

Note to Practitioners—Because of the stringent production
requirements (on draw speed, tension, and temperature), diameter
uniformity is a challenging distributed control problem in modern
fiber production where progressively larger diameter preforms
are drawn at higher speeds. The reduced-order model offers an
effective way to observe physical variables in a multivariable
distributed-parameter system, which may not be physically
measured. While developed in the context of fiber diameter
control, the modeling techniques presented in this paper are
applicable to other material processing systems, such as deposition
thickness control in semiconductor wafer manufacturing.

Index Terms—Distributed parameter systems, fiber draw
process, H LQG, Karhunen–Loeve (K–L) decomposition,
K–L Galerkin method, model-based control, optical fibers.
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I. INTRODUCTION

TO IMPROVE productivity and reduce setup cost in manu-
facturing optical fibers, modern draw towers must be able

to draw fibers from large-diameter preforms at high speeds and
yet be able to yield a high-quality product. One major obstacle
of this trend is the difficulty in maintaining diameter unifor-
mity, which influences transmission losses in the fiber and is di-
rectly related to manufacturing processes. During the drawing,
the fiber diameter exhibits significant variations with spatial pe-
riods extending over a wide region along the fiber length. These
problems become more pronounced with larger preforms and
higher draw speeds.

Numerous investigations have been taken on the diameter
control of the optical-fiber drawing process to minimize trans-
mission losses. Nakahara et al. [1] studied the effects of different
thermal and mechanical drawing conditions on the quality and
tensile strength of the fibers. They concluded that temperature
variation in the furnace is a major factor affecting the high-fre-
quency fiber diameter fluctuations, and that low-frequency fluc-
tuations are caused by longitudinal variations in the preform di-
ameter. They suggested a feedback control of drawing speed to
reduce low-frequency diameter variations. Smithgall [2] experi-
mentally obtained an empirical transfer function (that relates the
fiber diameter to draw speed) by heating a preform (7 to 25 mm
in diameter), drawn at a nominal speed of 1 m/s, and measured
the fiber diameter using an interference fringe counting tech-
nique (with an accuracy of 0.25 at a rate of 1000 measure-
ments per second). Due to physical limitations, measurements
made at some point below the heat zone were modeled as a
transport delay (40 to 100 ms) to characterize the fiber diameter
responding to geometrical variations in the molten neck-down
region. Smithgall demonstrated that the standard deviation of
fiber diameter can be significantly reduced using an optimiza-
tion theory based on a mean-square-error criterion, and that the
loop response is sensitive to the measurement delay. Imoto, et
al. [3] studied the use of laminar gas flow to reduce the short-pe-
riod variations of the fiber diameter due to rapidly changing fac-
tors, such as gas-flow instabilities, and in the furnace and/or me-
chanical vibration of the drawing machine. They experimentally
demonstrated that controlling fast-response laminar gas flow
around the surface of the converging glass could be more effec-
tive (than by simply varying the draw speed) to reduce the ef-
fects of high-frequency fluctuations on the fiber diameter since
the draw speed is difficult to respond quickly due to the mechan-
ical inertia of the rotating capstans/drums. Similar to those pub-
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lished earlier, Imoto, et al. based their study on small diameter
performs of 7.5 mm and drawn at a slow speed of 5 m/s. Mulpur
and Thompson [4] applied model reference control and quasi-
nonlinear control techniques on the diameter control based on
an isothermal model. Since the isothermal model (that is highly
simplified and generally neglects one or more terms among the
advection, radiation, and conduction in the energy transfer) was
open-loop unstable when the draw ratio exceeded some critical
value, their control efforts focused on stabilizing the closed-loop
system under a high draw ratio.

In the design of modern fiber draw towers, the trend is to draw
optical fibers at high speeds (20 m/s or higher) from large-diam-
eter preforms (0.08 m or larger) in order to improve productivity
and product quality while reducing manufacturing cost. This im-
poses a challenge as the draw ratio is two or more orders of
magnitude higher than that considered in the previous studies.
Furthermore, the glass undergoes large temperature variations
inside the furnace and the post chamber, which consequently
affects the fiber velocity and diameter through the influence of
glass viscosity, which is strongly temperature dependent. For
these reasons, we have focused on developing methods to derive
ROMs based on rigorous physical principles, which capture the
dominant dynamics of the energy transports with the minimum
order.

Modern fiber draw processes are represented as nonlinear
distributed-parameter (NLDP) systems. Control of these pro-
cesses is particularly challenging since practical dynamic models
that can be implemented without undue complications are
difficult to obtain. The degrees of freedom of NLDP systems
are essentially infinite and often too complicated to be im-
plemented in an industry. Coupled by a lack of satisfactory
mathematical theory and design procedure of NLDP systems,
most engineers rely on lumped-parameter techniques (that
generally yield only first-order approximation) to model dis-
tributed parameter systems. The controllers so designed are
often less than optimal for manufacturing processes (such as
precision drawing of optical fibers), where practical in-situ
measurements are difficult to make, particularly in real time.
The model-based diameter control of fiber drawing processes
requires the development of appropriate models. Tchikanda
and Lee [5] developed a linear state-space model for the draw
process by discretizing a quasi-one-dimensional (1-D) thermal
fluid model using the finite-difference method resulting in a
high-fidelity model (147th order). The fiber drawing process is
described by the nonlinear parabolic partial-differential-equa-
tions (PDEs) which include convection and diffusion terms.
The main feature of parabolic PDEs is that their dominant
dynamic behavior is usually characterized by a finite (typi-
cally small) number of degrees of freedom [6]. This implies
that the dominant dynamic behavior of such systems can be
approximately described by the finite-dimensional ordinary
differential equations (ODEs) using the Karhunen–Loeve (K–L)
decomposition technique, which was originally devised as a
rational technique enabling a stochastic field (ensembles or
snapshots) to be represented with a minimum degree of freedom
[7]. Contrary to the traditional Galerkin methods that employ
trigonometric or other special functions as basis functions, the
method introduced here uses empirical functions of the K–L

decomposition as basis functions in the Galerkin procedure
in discretizing the PDEs. As the eigenfunctions represent the
dominant physical characteristics of the system, the resulting
ODEs have the minimum order for the required accuracy [8].
Recently, a number of researchers explore the use of the K–L
Galerkin method to reduce thermal-fluid system models to a
set of ODEs [9]–[15]. Most of these studies applied the K–L
Galerkin method to control systems with a single distributed
temperature variable for deposition thickness control in the
thermal processing of wafers.

The remainder of this paper offers the following.

1) We present a nonlinear distributed-parameter quasi-1-D
model to characterize a fiber draw process, upon which
the perturbation model and a practical ROM are derived
about the operating point. Together, with our earlier CFD
models [16], [17], the different levels of models can be ap-
plied to design optimization, dynamic analysis, and per-
formance prediction; thereby offering an effective means
to reduce time and costly experiments in developing and
implementing model-based control systems.

2) This paper represents the first detailed study in extending
the K–L Galerkin method to a fiber draw process con-
trol characterized by more than one highly coupled dis-
tributed state variable, and involving heat inputs from the
free surface (in the PDE) as well as mechanical inputs
applied at the boundary conditions. We validate the K–L
Galerkin method by simulating a modern fiber draw tower
capable of drawing from large-diameter preforms at high
speeds, and then comparing the results against experimen-
tally verified numerical solutions.

3) We examine the efficiency of the ROM derived using
the K–L Galerkin method in the context of model-based
control. For this purpose, a controller is de-
signed for regulating both the diameter and tension of op-
tical fiber. Since the molten free-surface cannot be phys-
ically measured, the ROM offers an effective means to
predict the glass geometry under heating; thereby elimi-
nating control problems associated with the measurement
lag in the feedback loop. As will be demonstrated, the
ROM-based diameter-controlled system uti-
lizing both the air temperature and draw speed as inputs
is very effective in regulating fiber diameter and tension
simultaneously while keeping the draw speed and tem-
perature fluctuations to within 0.1 m/s and less than 1 K,
respectively.

II. PROCESS DESCRIPTION

The system considered here is a typical fiber draw process as
shown in Fig. 1, where the fiber is drawn from a melting preform
(or cylindrical glass rod) in a high-temperature furnace followed
by cooling in the post chamber. The deviation of the fiber diam-
eter must be kept within an acceptable tolerance. At the same
time, the temperature variation of the fiber after leaving the post
chamber must be minimized to avoid downgrading the subse-
quent coating process. As shown in Fig. 1, the controlling in-
puts are the feedrate of the preform, the draw speed of the fiber,
and the heat transfer at the surface of the glass/fiber through
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Fig. 1. Fiber draw process.

radiation and convection. The measurable outputs are the fiber
diameter, temperature, and tension.

In [17], we have derived two computational models (semi-
two-dimensional (2-D) and quasi-1-D) to describe the dynamics
of the axisymmetrical glass flow from the laws of mass, mo-
mentum, and energy conservation. The fiber draw processes
involves incompressible highly viscous fluid flow, where ve-
locity variations in the radial direction are greatly reduced
by the strong shear stresses. Thus, both models assume the
velocity distribution is essentially 1-D. The semi-2-D model,
which is solved numerically from the Navier–Stoke equations,
provides a detailed description of the 2-D-temperature and
1-D velocity fields and is useful for process design. On the
other hand, the quasi-1-D model (where the coefficients of
the PDEs are radially integrated parameters derived from the
solutions of the 2-D model) explicitly solves for the glass
geometry, velocity, and temperature along the axial direction.
In the interest to provide a simple yet practical formulation for
deriving a more tractable model for the control of diameter
uniformity, we derive the ROM from the nonlinear distributed
quasi-1-D model that was based on the following assumptions:
1) the velocity and temperature variations in the radial direction
are neglected; 2) the surface tension and the air-side normal
stress are considered very small; 3) the total axial stress can
be expressed using the elongation model [18].

In terms of the state vector

where , , and are the cross-sectional area of
radius , axial velocity, and temperature of the glass, the
dynamics of the quasi-1-D glass flow can be described by (1)

(1)

where

and where is the heat flux at the glass surface boundary; is
the gravitational acceleration; and is the equivalent thermal
conductivity. For a semitransparent material

(1a)

is the apparent Rosseland’s conductivity that accounts for
the radiative transfer in the participating medium such as glass,
and , , , and are the density, viscosity, thermal conduc-
tivity, and specific heat of the glass, respectively.

The free surface of the glass preform in the fiber drawing
process is heated by both radiation and air convection

(1b)

where

(1c)

(1d)

is the apparent emissivity, is the total emissive
power, is the apparent irradiation from the furnace, is
the convective heat transfer coefficient, and is the radially
lumped air temperature.

In addition to the above heat inputs, two other manipulating
inputs are the preform feedrate and the draw speed, which are
specified boundary conditions given by

(2a)

(2b)

III. DERIVATION OF A REDUCED ORDER MODEL

Equation (1) with its boundary conditions is referred here as
a quasi-1D model since the parameters ( , , , and ) are
derived from the steady-state solution of the original 2D equa-
tions. Once the parameters are defined, the state-space ROM can
be derived using the following three steps.

1) Find the appropriate shape functions using the K–L de-
composition.

2) Linearize the PDEs (1) and discretize the perturbed state
variables using the Gelekin procedure with eigenfunc-
tions obtained using K–L decomposition.

3) Along with the actuator and measurement equations,
the complete set of state-space equations of a fiber draw
system can then be derived.
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A. Karhunen–Loeve (K–L) Decomposition

In order to obtain a finite-order model, we introduce the K–L
decomposition technique to obtain the numerical eigenfunc-
tions from the (2-D or quasi-1-D) simulation of the physical
model as a basis set in the Galerkin procedure. The eigenfunc-
tions thus have embedded physical characteristics and satisfy
the boundary conditions automatically. For clarity, we introduce
the K–L Galerkin procedure using the quasi-1-D model (1) in
the following discussion.

The distributed state variables ( , , and ) are sampled
during the transient to all of the possible manipulating inputs
and the disturbances. As these sampled physical variables
have arbitrary shapes, they are often called irregularly shaped
functions or snapshots. We select snapshots with

for each state variable. The essence of the K–L
decomposition is to obtain the most typical or characteristic
structure among these snapshots. This is equivalent to
obtaining that minimizes the following objective function:

(3)

for which we impose the following normalization condition on
to make it unique:

(4)

The minimization of the above cost function is mathematically
equivalent to maximize the ensemble average of the inner
product between and

Maximize (5)

which can be rewritten as

or

where the linear operator is defined as

(6)

The maximization problem of (5) is thus reduced to the fol-
lowing eigenvalue problem:

(7)

The function that maximizes is the eigenfunction of (7), cor-
responding to the largest eigenvalue. Expressing as a linear
combination of the snapshots [19]

(8)

and substituting it into (7), the most typical characteristic struc-
ture among the snapshots is equivalent to solving
the following eigenvalue problem [12]:

(9)

where the entry of matrix is

(10)

The eigenvector is then substituted into
(8) to generate the eigenfunctions. Since the matrix is sym-
metric and positive-definite, the eigenfunctions also satisfy the
following orthogonality relationship:

(11)

We denote the eigenvalues and their
corresponding eigenfunctions in the order of
magnitude of eigenvalues, that is, the eigenfunction (corre-
sponding to ) is the most typical structure of the snapshots

followed by and so forth.

B. Perturbation Model

In deriving the perturbation model about a steady-state oper-
ating condition

(12a)

which can be solved numerically from the PDEs characterizing
the glass flow [16], [17], we define the (dimensionless) pertur-
bation state vector as

(12b)

where , , and .
The nonlinear temperature dependency of the parameters ,

, and is approximated by the following linear rela-
tions:

(13a)

(13b)
and

(13c)

In addition, we account for the fluctuations in the surface heat
flux as follows:

(14)

where is the value of at the operating point; the vector

(14a)
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characterizes the furnace and air temperatures and for
manipulating the radiation and air convection, respectively; and

(14b)

describes the disturbances in and in . The coefficients ( ,
, and ) are derived by linearizing (1c) and (1d)

and

Along with (1b), the coefficients in (14) can be identified as

(14c)

(14d)

(14e)

Using (12)–(14), the perturbation model about can be
shown to be

(15)
where

and

The state variables , , and in the linear
PDEs are distributed and, thus, the dimension of (15) is essen-
tially infinite.

C. Galerkin’s Procedure

A Galerkin procedure employing the above numerical eigen-
functions as a basis set can then be applied to (15), which leads
to a set of linear ODEs. For this, we define the perturbed state
variables in (12b) as a combination of the numerical eigenfunc-
tions. As derived in Section II, two of the manipulating inputs:
the preform feedrate and the fiber draw speed are
specified as boundary values in (2). To ease the controller de-
sign, we explicitly define the feedrate and draw speed as system
inputs

(16a)

(16b)

(16c)

where and are the steady-state responses to a small step
change in at the boundaries with magnitude and , respec-
tively; and , , and are the number of eigenfunctions
retained in the expansion of , , and , respectively. Note that
the first term on the right-hand side of (16b) satisfies homoge-
neous boundary conditions.

We substitute (16a)–(c) into (15) followed by applying the
Galerkin procedure. The procedure involves multiplying (15) by

and then integrating both sides of the resulting equation with
respect to , where

(17)

The resulting equations for the glass flow can be written using
state-space representation. For

(18)

where

and
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D. State-Space Representation

For completeness, we derive the state-space representation
for the overall system that includes the ROM characterizing the
glass flow, the actuator dynamics, and the measurements. The
actuator dynamics of the inputs to the system represented by
(18) are typically first order

(19)

where

(19a)

The elements of are the electrical inputs to the pre-
form-feeding motor, fiber-drawing motor, furnace, and air-tem-
perature controller, respectively

(19b)

and

(19c)

where and are the time constant and gain of the actuators,
respectively.

The measurable outputs include the fiber cross-sectional area,
temperature, and tension at the post-chamber exit

(20)

where and are given by (16a) and (16c), respectively. Using
the elongation model , the perturbation form of
the tension force can be shown to be

(21)

where

and

As described earlier, the eigenfunctions are arranged in the
order of the typical structure of the snapshots; the properties of
the empirical eigenfunctions as well as the number of terms to be
retained can be examined numerically by comparing the ROM
with the CFD model. As will be seen in the results, the system
order obtained using the K–L Galerkin method is usually small.
The state-space representation of the overall system thus takes
the following form:

(22)

where ; , ,
, , and .

For , the system matrixes are readily
obtained from (18)–(21), which takes the form

(22a)

(22b)

(22c)

(22d)

where the elements of and are and , respectively;
and , , and are constructed by , , and in the
column direction, respectively.

The remainder of the results is broadly divided into two
parts–model verification and illustrative control applica-
tions–which are discussed in Sections IV and V, respectively.

IV. MODEL VALIDATION

A MATLAB program with C++ subroutines has been written
to simulate the dynamic responses of a modern optical-fiber
drawing process so that the ROM can be validated against the
solutions of the original quasi-1-D and semi-2-D models, which
have been validated experimentally in [17]. The values of the
parameters used in the simulation are given in Table I.

A. Parameters for Quasi-1-D Model

The temperature and velocity fields at steady-state were com-
puted from the semi-2-D model with a grid number
of 200 15, which provides a basis for deriving the pertur-
bation model and computing the distributed parameters in the
quasi-1-D model. The temperatures of the glass, surrounding
air, and furnace/post-chamber wall along the draw direction are
given in Fig. 2(a) with the corresponding radiation and convec-
tion heat fluxes in Fig. 2(b). The draw speed and glass/fiber ra-
dius are plotted along the draw direction in Fig. 2(c), which are
normalized to the specified draw speed (25 m/s) and fiber radius
(62.5 ), respectively. Also graphed in Fig. 2(c) are the irra-
diation from the furnace and the heat-transfer coefficient
of the mixed air convection normalized to their respective max-
imum values listed in Table I.

Fig. 2(a)–(c) show that in the neck-down region inside the
furnace (where the heating of the glass is dominated by radia-
tion), is negligible compared to , but it becomes significant
in the post-chamber where the glass is primarily cooled by air
convection due to the high surface area to volume ratio and the
high moving speed of the glass.

Once the axial temperature distributions are obtained, the
temperature-dependent coefficients of the PDEs can be com-
puted using the properties of the glass, and its surrounding air
given in Fig. 3(a) and (b). For completeness, the glass apparent
emissivity is given as a function of optical thickness in Fig. 3(c),

where is the absorption coefficient in and
is the glass radius in meters.

Since the apparent irradiation from the furnace in (1c)
cannot be calibrated directly, we relate to the peak temperature
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TABLE I
PARAMETERS USED IN THE SIMULATION

of the furnace so that the time constant of the furnace system
in (19) can be characterized experimentally. Fig. 4 shows the
simulated value of to a step change in along
the z-axis at three different time instants during the transient. As
shown in Fig. 4, the response is essentially static as the dynamic
effect of radiosity from the glass on is negligible. It is also
noticed that the relative change of in the furnace domain

is close to a constant. As the radiation heat flux is
dominant only in the furnace domain, we consider the response
of in that region as a constant gain of .
The time constant of the furnace dynamics is in the order of
3 min.

B. Validation of the ROM

As shown in Fig. 2(a) and (b), the glass flow is highly dis-
tributed along the draw direction. To complete the derivation of
the ROM for the glass flow, we obtain numerically the snapshots
using the nonlinear distributed quasi-1-D model. Although the
dimension of the input space is infinite, it is not necessary to sim-
ulate all of the possible inputs since any arbitrary input function
can be approximated by a corresponding Fourier transformed
function with enough sinusoidal terms [12]. The ROM can be
validated by comparing its solutions against the validated 2-D
nonlinear distributed model of the draw process [17]. Two types
of time functions were used in obtaining the snapshots; namely

1) step input of magnitude ;
2) sinusoidal function .

Since the bandwidths of the preform feedrate and the furnace
radiation heating are small, only step responses are simulated.
The type/value and the number of snapshots obtained for each
input are given in Table II. Fig. 5 shows the first 20 eigenvalues
of the matrix in (9) for each of the state variables using a
total of 754 snapshots. For each variable, the eigenvalues are

Fig. 2. Distributed variables and parameters at steady-state. (a) Axial
temperature distributions. (b) Heat flux on the glass free surface. (c) Normalized
parameters (H=H , h=h , R=R , v=v ).

normalized to the first (maximum) one. These snapshots were
used to solve for the eigenvectors in (9).

Neglecting the eigenmodes corresponding to small eigen-
values, we retain eigenfunctions in
deriving the ROM. Fig. 6 compared the step responses of the
fiber diameter to a 4% change in , 5% in , and 2% in .
Each step response has been computed using three different
models; namely, ROM, quasi-1-D and semi-2-D models. Since
the actuator dynamics are well-defined ODEs, we exclude the
actuator dynamics in Fig. 6. The comparisons show that the
prediction of the 24th-order ROM to perturbations in draw
speed and feedrate matches those computed using the nonlinear
distributed models. Some discrepancy between the ROM (that
closely follows the quais-1-D model from which it was derived)
and the semi-2-D model can be explained as follows. The
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Fig. 3. Properties of glass and air. (a) Air physical properties (normalized to
values at 300 K). (b) Molecular thermal conductivity and specific heat of glass
(normalized to values at the melting point of 1853 K, k = 2:22 W/m/K,
C = 1507 J=kg=K). (c) Glass apparent emissivity.

Fig. 4. Step response of H(T ) to a step change in T̂ .

TABLE II
PARAMETERS FOR SNAPSHOTS

Fig. 5. Normalized eigenvalues for snapshots.

heat input appears explicitly in the energy equation of the
quasi-1-D model, but indirectly through the furnace blackbody
emissive power in the semi-2-D model. To approximately
simulate the 2% step change in , is increased by 2% in
the semi-2-D simulation. Thus, the effective change in for
the semi-2-D simulation was less than 2% since also includes
the reflected radiosities originally from the preform, resulting
in a slower response and a lower overshoot. It is expected that
this slight model mismatch and the high-frequency noises in
the air convection can be compensated using feedback control,
which will be examined in the next section.

V. CONTROL OF AN OPTICAL-FIBER

DRAWING PROCESS

Asanillustrativeapplication,weconsiderhere thecontrolofan
optical-fiber drawing process. The main sources of disturbances
are the high-frequency noise due to the fluctuation in the
convection heat-transfer coefficient at the glass surface, and
the change in the furnace temperature commonly used to
regulate the tension of the fiber. We design an
controller, which not only minimizes the norm to guarantee
the good performance of the closed-loop system but also reduces
the norm to improve the system robustness to modeling
errors. The objective is to keep the deviation of the fiber
diameter within m of the nominal value 125 m and as
small as possible. At the same time, the temperature variation
after leaving the post-chamber must be minimized to avoid
downgrading the subsequent coating process. For this reason,
the variations in draw speed must be kept within 1% of
the nominal value as small as possible; for a draw speed of
25 m/s, this corresponds to 0.25 m/s.
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Fig. 6. Step responses of fiber diameter (N = N = N = 8). (a)
Response to step change in draw speed. (b) Response to step change in feedrate.
(c) Response to step change in furnace radiation.

A. Plant Model

The plant model is written in a standard state-space two-port
system

(23a)

(23b)

(23c)

where and are input and output vectors defined in (19a) and
(20), respectively; and is the state vector (augmented with an
integrator)

In (23a)–(b)

where is defined in (14b) and

accounts for heat flux fluctuations and sensor noises, respec-
tively. The performance variable vector in (23c) is given by

Fig. 7. Block diagram of the closed-loop system.

where are the weights on the perfomance
variables and control efforts. For the following simulation, we
assign the fiber tension a lower control priority than the fiber
diameter .

The matrices , , and
in (23a) and (23b) are readily obtained from

(22)

The weighting matrices for the input disturbances and sensor
noise are given by

where ( , 7, 8) are the tunable weights accounting for the
relative effects of the measuring noise. The weighting matrix
and are defined as follows:

B. Controller

As illustrated in Fig. 7, the control problem is to find to reg-
ulate the fiber diameter under the effects of disturbances. For
a stabilizable and detectable system given by (22), the mixed

control problem is to determine a dynamic compen-
sator

(24)

which satisfies the following design criteria:

i) closed-loop system is internally stable;
ii) closed-loop transfer function from disturbances

to performance variables satisfies the constraint

(25)
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where is a given small constant;
iii) the norm of

(26)

is minimized.

The solution of the control problem can be found
in [22] and is given below

(27)

(28)

(29)

where the positive semidefinite matrixes and satisfy

(30)

(31)

where ; ; ; and
.

C. Results and Discussions

Simulations have been performed for the following studies.
Design I: Diameter Control Using Draw Speed

Only: As shown in Fig. 6, the system responses to perturbations
in and are very slow. It was found numerically and ex-
perimentally that manipulating the orifice opening to affect the
air temperature could result in significant turbulent noise around
the converging fiber and relatively large time-constant due to air
capacitance in the post-chamber. Moreover, the operating range
of the orifice opening is very small in order to ensure that the
air is only exhausting from the post-chamber to the ambient to
avoid contaminating the fiber. Thus, commercial draw processes
often rely on manipulating the draw speed to control the fiber di-
ameter. Using this, we investigate the effects of 1) the number
of retained eigenmodes, and 2) modeling errors on the diameter
uniformity.

Design II: Diameter Control Using Both Draw
Speed and Air Temperature: Diameter control relying solely on
manipulating the draw speed could adversely affect the subse-
quent coating process, which requires that the fiber be cooled
to the room temperature before reaching the coating die. More-
over, the mechanical inertia of the rotating capstan/drum makes
it difficult for the draw speed to respond quickly and accurately
to high-frequency fluctuations such as . We have observed
numerically that changes in the air temperature surrounding the
glass/fiber give rise to a rapid response to fiber diameter due to
the strong temperature dependency of the glass viscosity. This
finding is consistent with that observed experimentally by Imoto
et al. [3]. Thus, we explore the effects of directly manipulating
the gas temperature , which can be changed by appropriately
introducing a laminar gas flow around the glass/fiber surface as
illustrated in Fig. 8.

Fig. 8. Schematics illustrating laminar cooling with T .

The values of the parameters used in the diameter
controlled system are as follows:

Designs I and II

upper bound of norm

Design I .
Design II , (via laminar flow).

Equations (30) and (31) are solved using MATLAB.
Effects of the number of retained eigenmodes: In the at-

tempt to optimize the performance of the diameter
controlled system, we examine numerically the effects of the
number of retained eigenmodes on the variations in fiber diam-
eter and draw speed in the presence of high-frequency fluctu-
ations in . The effects are studied by comparing the standard
deviations (SDs) of the variations in fiber diameter and draw
speed in the presence of a zero-mean white-noise with an SD
of 2.13% and a maximum deviation (MD) of 8%. The model
(with ) is chosen here as a basis for com-
parison, where SD in and are 0.1901 m and 0.4205 m/s,
respectively. For , the matrices in (22) can
be derived by substituting perturbed state variables in (16a)–(c)
into (15), and applying the Galerkin procedure detailed in Sec-
tion III-3. The steps are tedious but relatively straightforward;
they are not repeated here due to space limitations. Table III
compares some example choices and their effects on the criteria.
Two observations can be made.

1) When the total of retained eigenmodes (or the order of
ROM) is doubled to 48th ( , , and

), the SD in draw speed is essentially doubled without
significantly affecting the diameter variation. However,
the closed-loop performance does not solely depend on
the total number of retained eigenmodes.

2) For the same 24th order, the variations in fiber diameter
can be reduced by approximately 25% without sacrificing
the draw speed by appropriately distributing the number
of retained eigenmodes.

In the following discussions, the 24th ROM with ,
, and will be used in the diameter
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TABLE III
EFFECTS OF THE NUMBER OF RETAINED EIGENMODES

TABLE IV
EFFECTS OF MODELING ERRORS ON ROBUSTNESS

TABLE V
COMPARISON OF THREE CONTROL METHODS (TO WHITE NOISE

COUPLED 10% STEP INCREASE IN h)

control simulation. The minimum order is based on a numerical
search by comparing the SD of the fiber diameter and the draw
speed.

Effects of modeling errors: Table IV compares the SD of
the fiber diameter in both the open-loop and the closed-loop
responses to the same white noise in but under the influ-
ence of different modeling errors (in , , , and the absorp-
tion coefficient at the small wavelength band ). As shown in
Table III, the control system reduces the SD in fiber
diameter fluctuations to within 0.16 , less than 50% of the
SD in the open-loop system.

Effects of air temperature manipulation: Three control
methods are compared in response to a 10% step change in
superposed by a zero mean white-noise (2.13% SD, 8% MD):

1) open-loop with specified draw speed;
2) CL without control: closed-loop diameter

control with only draw speed manipulation;
3) CL with control: closed-loop diameter

control by controlling both the draw speed and the cooling
gas temperature around the fiber.

The results are compared in Table V and the graphical responses
of the fiber diameter, temperature, draw-speed, and tension are
given in Fig. 9(a)–(d).

The comparisons in Table V show that the SD of the fiber di-
ameter fluctuations can be reduced to 0.11 with negligible
draw speed variations by controlling both the draw speed and air
temperature (method C) which also exhibits excellent transient
responses as compared to methods A and B as shown in Fig. 9.
Fig. 9(d) shows that method B results in a much larger fluctua-
tion in the fiber draw tension than that in methods A and C. It is
because fiber tension depends significantly on the draw speed in

Fig. 9. Comparison of three control methods (to white noise coupled with
a 10% step increase in h). (a) Responses of fiber diameter. (b) Response of
the fiber temperature at the post-chamber exit. (c) Response of draw speed. (d)
Responses of draw tension.

addition to the temperature-dependent viscosity and cross-sec-
tion area of the glass fiber. Furthermore, the additional control-
ling input eases the burden on the control effort in the draw
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speed. Thus, the method of controlling both the air temperature
and the draw speed is very effective to regulate both fiber

diameter and tension while simultaneously keeping the draw
speed and temperature fluctuations to a minimum.

VI. CONCLUSION

We have presented a method to extend the Karhunen–Loeve
decomposition technique with a Galerkin procedure to derive
an ROM for a multivariable distributed-parameter system. The
method has been numerically examined in the context of fiber
diameter control of a modern draw tower capable of drawing
fibers from large-diameter preform at high draw speed.

Perturbation studies have demonstrated that the 24th-order
ROM agrees remarkably well with the original nonlinear
semi-2-D and quasi-1-D distributed models. We further
examine the efficiency of the ROM in the context of the
model-based fiber drawing control system for the
regulation of the fiber diameter and tension. The results show
that variations in fiber diameter can be reduced significantly by
appropriately distributing the number of retained eigenmodes
among the physical state variables, and that controlling the
surrounding air temperature in addition to the draw speed
is very effective in regulating fiber diameter and tension si-
multaneously while keeping the draw speed and temperature
fluctuations to a minimum.

It is expected that the modeling reduction techniques pre-
sented in this paper are applicable to other materials processing
systems such as deposition thickness control in semiconductor
manufacturing.
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