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Abstract—This paper presents the torque model of a ball-joint-
like three-degree-of-freedom (3-DOF) permanent magnet (PM)
spherical actuator. This actuator features a ball-shaped rotor with
multiple PM poles and a spherical stator with circumferential air-
core coils. An analytical expression of the magnetic field of the
rotor is obtained based on Laplace’s equation. Based on this ex-
pression and properties of air-core stator coils, Lorentz force law
is employed for the study of the relationship between the rotor
torque and coil input currents. By using linear superposition, the
expression of the actuator torque in terms of current input to the
stator coils can be obtained in a matrix form. The linear expres-
sion of the actuator torque will facilitate real-time motion con-
trol of the actuator as a servo system. Experimental works are
carried out to measure the actual magnetic field distribution of
the PM rotor in three-diamensional (3-D) space as well as to mea-
sure the actual 3-D motor torque generated by the actuator coils.
The measurement results were coincident with analytical study on
the rotor magnetic field distribution and actuator torque expres-
sions. The linearity and superposition of the actuator torque were
also verified through the experiments.

Index Terms—Magnetic field, spherical actuator, torque model.

I. INTRODUCTION

CONVENTIONALLY, a three-degree-of-freedom (3-DOF)
spherical motion can be realized by several single-axis

actuators connected in parallel or in series. Such a spherical
motion-generating device inherently has bulky structure, large
backlash, and motion singularities. In applications requiring
compact multi-DOF spherical motion, a spherical actuator with
a ball-joint-like device that can produce 2- or 3-DOF rotational
motion is desired. Unlike single-axis actuators, the torque output
of the spherical actuator has three components. Because all
torque components are dependant on rotor orientation, to obtain
actuator torque in terms of input current to the motor coils
becomes a complicated problem.
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Williams et al. [1] have designed the first spherical induction
motor to obtain a variable-speed drive of a single-axis ac motor
based on relative inclination of the rotating shaft. The magnetic
field generated by the stator windings induces current on the
rotor surface, and causes the rotor to incline. Davey et al. [2] de-
rived the torque model of this induction motor by integrating the
Maxwell stress moment over the spherical rotor surface and pro-
posed its use as a robot wrist [3]. The mechanical complexity and
the inherent poor servo characteristics of the spherical induction
motor led Lee and Kwan [4] to develop a 3-DOF spherical step-
per based on the principle of variable reluctance, which takes
advantage of the high coercivity of modern rare-earth perma-
nent magnets (PMs). The torque output of a variable-reluctance
spherical motor (VRSM) depends on the current inputs as well
as the magnetic reluctance at the air gaps between the rotor and
the stator poles [5]. For any attainable rotor orientation, optimal
current inputs [6], [7] can be found to move the rotor to a neigh-
borhood with knowledge of reluctance. The torque model of
this motor is obtained by differentiating coenergy with respect
to the angular displacement parameters. In the past decade,
several variations of spherical motors with a structure similar
to [4] have been studied. Wang et al. [8]–[11] have developed
spherical actuators achieving 2-/3-DOF motions. The rotor is
a completely magnetized ball. Coils are uniformly mounted on
the stator. The torque models of these spherical actuators were
obtained by using Lorentz force law. Chirikjian and Stein [12]
have made a spherical stepper with a PM-pole rotor and a stator
with an array of coils. Difference in the symmetric layout of the
rotor poles and the stator poles allows stepping motion in three
orientations. Commutation of this stepper motor has been stud-
ied to move the rotor. Kahlen et al. [13] developed a spherical
motor consisting of a rotor sphere with 112 PM poles and an
outer stator with 96 stator windings. The poles were arranged
symmetrically corresponding to lines of longitude and latitude
of a globe. The force/torque produced by the stator winding was
calculated numerically. More recently, Lee et al. [14], [15] have
developed a spherical wheel motor (SWM) that offers a means
to control the orientation of its rotating shaft in an open-loop
fashion.

This article offers an alternative analytical expression for
computing the torque output of a spherical actuator that con-
sists of a ball-shaped rotor with a full circle of PM poles
and a spherical-shell-like stator with multiple layers of air-
core coils [16], [17]. This configuration allows more PM poles
and coils incorporated to increase the motion resolution and
working range of the actuator. Based on Laplace equation and
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Fig. 1. 3-DOF motion of the spherical actuator. (a) First tilting motion.
(b) Second tilting motion. (c) Spinning motion.

suitable boundary conditions, the distribution of magnetic field
surrounding the rotor can be obtained analytically. Due to the
use of air-core coils, Lorentz force law can be used for the
derivation of the relationship between the actuator torque and
input coil currents. The complete actuator torque can be ex-
pressed in a matrix form in terms of input currents from all coils
through linear superposition. This analytical expression of the
torque output can be used for motion control and design op-
timization of the spherical actuator. Experimental verification
of the three-diamensional (3-D) magnetic field surrounding the
rotor and 3-D actuator torques was carried out. The tasks in-
cluded the design and installation of a semiautomatic 3-D mag-
netic field measurement system and 3-D torque measurement
testbed, measurement data acquisition and processing. Compar-
isons between analytical and experimental data show feasibility
and consistency of the proposed magnetic field model of the
rotor and torque model although there are minor errors which
may be due to the omission of higher order harmonics.

II. WORKING PRINCIPLE

The working principle of the spherical actuator is illustrated
in Fig. 1. The rare-earth PMs (NdFeB) mounted along the rotor
equator can produce high flux density. The air-core coils are
assembled on the stator, which can simplify the torque model
of the spherical actuator in a linear fashion. By activating pairs
of coils in two longitudinal directions, the rotor can tilt in two
orthogonal directions as shown in Fig. 1(a) and (b). Energizing
all circumferential coils, the rotor can spin about its own axis
[Fig. 1(c)]. Therefore, by varying the input currents of the coils,
any desirable 3-DOF spherical motion within the workspace can
be achieved.

III. FORMULATION OF THE MAGNETIC FIELD

In formulating the magnetic field of the rotor, we use a generic
rotor model shown in Fig. 2 for discussion. The PM rotor poles
are evenly spaced (with alternate polarities) around the rotor
equator, each of which has the shape of a dihedral cone defined
in terms of four parameters: longitudinal angle α, latitudinal
angle β, and outer and inner radii Rr and Rb . With such an
arrangement, the study of the rotor magnetic field can be divided
into three parts.

Fig. 2. Arrangement of rotor poles. (a) Single rotor pole. (b) Alternately
arranged poles.

1) Air Space Outside the Rotor (Region 1): The magnetic
effect of air space can be characterized by

B1 = µ0H1 (1)

where the subscript “1” denotes Region 1; B and H are the mag-
netic flux density and field intensity; and µ0 is the permeability
of the free space with a value of 4π × 10−7 H/m.

2) Within the Dihedral PM Rotor Poles (Region 2): The
magnetic property of PM can be represented by

B2 = µ0µmH2 + µ0M0 (2)

where µm is the dimensionless relative recoil permeability of
PM (typical value ranging between 1.05 and 1.20); M0 =
Brem/µ0 is the residual magnetization vector in Ampere per
meter; and Brem is defined as the remanence in Tesla. In spheri-
cal coordinates, the residual magnetization vector of the pth PM
can be expressed as

M0 =


 M0r

M0θ

M0φ


 = (−1)p−1|M0|


 cos(φ − αp) sin θ

cos(φ − αp) cos θ
− sin(φ − αp)




(3)

where αp = α/2 + 2π(p − 1)/P, p = 1, 2, . . . , P . P is the total
number of PM poles. In this study, let P = 8. Note that these
equations are only valid within the range of

0 < φ − 2π(p − 1)
P

< α,
π

2
− β

2
< θ <

π

2
+

β

2
.

For the nonmagnetized space in between poles on the rotor, the
residual magnetization is equal to zero.

3) Rotor Core Made of Ferromagnetic Material (Region 3):
The magnetic property of ferromagnetic material such as soft
iron should be

B3 = µ0µrH3 (4)

where µr is the relative permeability of the ferromagnetic core
(typically larger than 4000).

A. Governing Equations

The Maxwell’s equations that govern the magnetic field distri-
bution of the spherical rotor are formulated using scalar potential



YAN et al.: ANALYTICAL AND EXPERIMENTAL INVESTIGATION ON THE MAGNETIC FIELD 411

function. For an irrotational magnetic field

∇× H = 0, ∇ · B = 0 (5)

where H is curl free and can be expressed in terms of a scalar
potential function Φ based on Helmholtz’s theorem as

H = −∇Φ. (6)

In the spherical coordinates

H = Hrer + Hθeθ + Hφeφ

=
[
−∂Φ

∂r
,−1

r

∂Φ
∂θ

,− 1
r sin θ

∂Φ
∂φ

]T

(7)

where er , eθ , and eφ are the respective unit vectors; and Hr ,Hθ ,
and Hφ are components of the magnetic field intensity.

For Regions 1 and 3, the scalar potentials are governed by the
Laplace equations

∇2Φ1 = 0, ∇2Φ3 = 0. (8)

Based on (2), (5), and (6), the scalar potential Φ2 within PM
pole (Region 2) can be expressed as

∇2Φ2 = ∇ · M0

µm
(9)

which is in the form of Poisson’s equation. With a symmet-
ric arrangement of rotor poles, the divergence of the residual
magnetization vector is equal to zero, i.e., ∇ · M0 = 0. Thus,
the Poisson’s equation can be reduced to Laplace’s equation,
∇2Φ2 = 0. Once the Laplace’s equations of all three regions are
solved, the magnetic intensity can be obtained. Consequently,
the flux density can be solved analytically. The analytical ex-
pression of flux density can be used for the torque computation
based on Lorentz force law.

B. General Solution to Laplace’s Equations

The Laplace’s equation can be written in spherical coordinates
as

1
r2

[
∂

∂r
(r2Φi) +

1
sin θ

∂

∂θ

(
sin θ

∂Φi

∂θ

)
+

1
sin2 θ

∂Φi

∂φ

]
= 0

(10)

where i (= 1, 2, and 3) denotes the region of concern.
Based on the separation of variables, i.e., Φi(r, θ, φ) =
Ri(r)Θi(θ)Ψi(φ), where Ri(r),Θi(θ), and Ψi(φ) are inde-
pendent functions, the general solution to the Laplace equations
characterizing all three regions has the following form:

Φi =
∞∑

n=0

n∑
m=−n

(
κm

n,ir
n + ξm

n,ir
−(n+1)

)
Y m

n (θ, φ) (11)

where κm
n,i and ξm

n,i are constants to be determined by the bound-
ary conditions. The angular part of the solutions to the Laplace’s
equation Y m

n is a complex-valued spherical harmonic function
defined by

Y m
n (θ, φ) = Sm

n Pm
n (cos θ)eimφ

where

Sm
n =

√
2n + 1

4π

(n − m)!
(n + m)!

.

Pm
n (cos θ) is associated Legendre functions; and n and m are

integers with the condition −n ≤ m ≤ n.

C. Boundary Conditions

The particular solutions that characterize the magnetic scalar
potentials of three regions require the specification of the source
term and the six unknowns, κm

n,i and ξm
n,i , where i = 1, 2, and

3. These unknowns can be solved from the following boundary
conditions.

1) Boundary Condition at the Far Field: The magnetic flux
density approaches zero when r → ∞, i.e., B1|r→∞ = 0. This
boundary condition implies

B1r |r→∞ = −µ0
∂Φ1

∂r
|r→∞ = 0

or

− µ0

∞∑
n=0

n∑
m=−n

(
nκm

n,1r
n−1 − (n + 1)ξm

n,1r
−(n+2)

)
Y m

n

× (θ, φ)|r→∞ = 0.

Through inspection of the exponential terms, it can be con-
cluded that κm

n,1 = 0. From (7) and (11), it can be verified that
the boundary conditions B1θ |r→∞ = 0 and B1φ |r→∞ = 0 yield
the same result.

2) Finite Boundary Condition at r = 0: The flux density at
r = 0 must be finite, which implies that B3|r=0 �= ∞. Accord-
ing to (7) and (11), the boundary condition B3r |r=0 �= ∞ can
be written as

B3r |r=0 = −µ0
∂Φ3

∂r
|r=0 �= ∞.

From this equation, it can be verified that ξm
n,3 = 0. B3θ |r=0 �=

∞ and B3φ |r=0 �= ∞ yield the same result.
3) Continuity at the Interface Between Two Different Media:

At the boundary of different regions (in between Regions 1 and
2, or Regions 2 and 3) shown in Fig. 3(a), the radial components
of the flux density normal to the interfacial surface must be
continuous. Additionally, Ampere’s circuital law states that the
line integral of the magnetic intensity along any closed contour is
always equal to the real total current crossing a surface limited
by the contour. As illustrated in Fig. 3(b), along the narrow
rectangular contour abcd at the boundary surface, where the
length segments lda and lbc are very small such that lcd = lab ,
there is no real surface currents on the boundary. Hence

H2t lcd − H1t lab = 0, or H2t = H1t

where H1t and H2t are tangent to the surface. For the spherical
actuator, there are two components Hθ and Hφ of the magnetic
field intensity that are tangent to the rotor surface. The two
boundary conditions shown in Fig. 3 at the interface of the air
and PM (Regions 1 and 2) as well as the PM and soft iron
(Regions 2 and 3) are stated as follows.
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Fig. 3. Continuity of boundary conditions. (a) B1r = B2r . (b) H1t = H2t .

At the air and PM boundary

B1r |r=Rr
= B2r |r=Rr

(12)

H1φ |r=Rr
= H2φ |r=Rr

and

H1θ |r=Rr
= H2θ |r=Rr

. (13)

At the PM and soft iron boundary

B2r |r=Rb
= B3r |r=Rb

(14)

H2φ |r=Rb
= H3φ |r=Rb

and

H2θ |r=Rb
= H3θ |r=Rb

. (15)

D. Solution of Scalar Potential and Flux Density

To utilize the continuity on the boundary conditions between
two medians, the radial component of residual magnetization
vector needs to be expanded in spherical harmonics.

1) Spherical Harmonic Expansion of M0r : The radial com-
ponent of the residual magnetization vector M0r can be
expressed as an expansion of spherical harmonic functions
Y m

n (θ, φ) as

Ms
0r (θ, φ) =

∞∑
n=0

n∑
m=−n

Cn,m Y m
n (θ, φ) (16)

where Cn,m are coefficients determined from the surface inte-
gral of the following form:

Cn,m =
∫ π

0

∫ 2π

0

M0r (θ, φ)
[
Y m ∗

n (θ, φ)
]
sin θdθdφ (17)

and Y m ∗
n (θ, φ) denotes the complex conjugate of Y m

n (θ, φ).
Substituting (3) into (17) gives the coefficients

Cn,m = |M0|
∫ 2π

0

f(φ)eimφ dφ

∫ π

0

Sm
n Pm

n (cos θ) sin2 θ dθ

(18)

where f(φ) = (−1)p−1 cos(φ − αp), p = 1, 2, . . . , 8. Hence,
Cn,m �= 0 if and only if m = ±4,±12,±20, . . .. Thus, the fun-
damental terms of the spherical harmonic functions can be taken
at n = 4 and m = ±4. Because the influence of fundamental
terms is crucial, higher order terms are omitted in the derivation
of the magnetic field

C4,±4 = |M0|
c√
π

(a ± bi) (19)

where a, b, and c are real numbers given by

a ± bi ≡
∫ 2π

0

f(φ)eimφdφ (m = ±4)

c√
π

≡
∫ π

0

Sm
n sin2 θ [Pm

n (cos θ)] dθ.

It can be verified that the results of the second integral for m = 4
and m = −4 are the same, and thus, C4,±4 is a complex conju-
gate pair. Ultimately, the radial component M0r of the residual
magnetization vector can be expressed in terms of spherical
harmonics as

Ms
0r (θ, φ) = C4,−4Y

−4
4 (θ, φ) + C4,4Y

4
4 (θ, φ) (20)

where Y ±4
4 = 3

16

√
35
2π sin4 θe±4iφ .

2) Derivation of the Coefficients: The four boundary condi-
tions on continuity can be further employed to derive the coeffi-
cients ξm

n,i and κm
n,i(i = 1, 2, 3) by using the spherical harmonic

expansion of M0r . As the stator coils are situated in the free
space outside of the rotor PM, the derivation of the scale poten-
tial and flux density is performed in Region 1. Therefore, only
ξm
n,1 and κm

n,1 are concerned. Note that as shown in the boundary
condition at far field κm

n,1 = 0.
Utilizing (16), the radial component of B2 can be expressed

as

B2r = µm H2r + µ0

∞∑
n=0

n∑
m=−n

Cn,m Y m
n (θ, φ). (21)

From (7), (11), (21), and boundary conditions in (12)–(15),
coefficient ξm

n,1 can be obtained

ξm
n,1 = −Cn,m dn = −Cn,m d	n /d⊥n (22)

where

d	n = Rn+2
r +

µm (2n + 1)Rn+2
b R2n+1

r

(µr − µm )nR2n+1
b − [µrn + µm (n + 1)]R2n+1

r

d⊥n = (µm − 1)(n + 1)

+
µm (2n + 1)[µrn + µm (n + 1)]R2n+1

r

(µr − µm )nR2n+1
b − [µrn + µm (n + 1)]R2n+1

r

.

Particularly, for n = 4 and m = ±4, coefficients of ξ4
4,1 and ξ−4

4,1

can be expressed with C4,4 and C4,−4 in (19) as

ξ±4
4,1 = C4,±4d4 = −M0

d	4√
πd⊥4

(a ± bi)c (23)

where

d	4 = R6
r +

9µm R6
b R

9
r

4(µr − µm )R9
b − (4µr + 5µm )R9

r

d⊥4 = 5(µm − 1) +
9µm (4µr + 5µm )R9

r

4(µr − µm )R9
b − (4µr + 5µm )R9

r

.
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Fig. 4. Force activated by three components of the flux density (P is a plane
tangential to the sphere at point O; dl, B1θ , B1φ are vectors on plane P; B1r

is normal to plane P. (a) r-direction. (b) θ-direction. (c) φ-direction.

3) Solution of Magnetic Scalar Potential and Flux Density:
Substituting ξ4

4,1 and ξ−4
4,1 into (11) and discarding the higher

order harmonic terms result in

Φ1 = M0
3cd	4
8πd⊥4

√
35
2

r−5 sin4 θ(a cos 4φ − b sin 4φ). (24)

Using (1) and (7), the flux density in Region 1 can be obtain as
 B1r

B1θ

B1φ


 =

3µ0M0cd
	
4

8πd⊥4

√
35
2

r−6sθ3


 5sθ(a c4φ − b s4φ)

4cθ(b s4φ − a c4φ)
4(a s4φ + b c4φ)




(25)

where sθ, cθ, s4φ, and c4φ denote sin θ, cos θ, sin 4φ, and
cos 4φ, respectively. The direction of the force generated by
each component of the flux density can be determined as shown
in Fig. 4. The differential length dl of the wire is tangent to the
spherical surface at point O. Note that only B1r can produce
a torque to change the rotor orientation. B1θ and B1φ do not
produce torque on the rotor because the action lines of magnetic
forces generated by B1φ and B1θ pass through the rotor center.
Consequently, the following discussion focuses on the radial
component B1r .

IV. FORMULATION OF THE TORQUE MODEL

Because the stator poles are air-core coils, Lorentz force law
can be employed for obtaining the torque model of this PM
spherical actuator.

A. Approximation of Coil Geometry

To facilitate the integration of torque in spherical coordinates,
we approximate the cylindrical coil denoted by ABCDA in Fig. 5
with a conical-shaped coil denoted as A′B′C ′D′A′. With such
approximation, the volume swept by ABCDA is about 97% of
that swept by A′B′C ′D′A′. Therefore, in considering the wiring
on the coils, the total length of the wires wrapped around the
two coil geometries are about the same. Thus, computation of
the actuator torque based on Lorentz force law can be simplified
with the spherical geometry of negligible differences. The sec-
tional area of A′B′C ′D′A′ can be specified by four parameters:
R0, the distance from the rotor center to the top surface of the
coil; R1, the distance from the rotor center to the bottom surface

Fig. 5. Approximation of the coil shape (sectional view).

of the coil; ζ0, the inner surface angle of the coil; and ζ1, the
outer surface angle of the coil.

B. Torque Model of a Single Coil

1) Integral Form of Actuator Torque: Consider a differential
length dl of the winding. Fig. 5 shows the differential sectional
area of dl which can be computed by ds = rdrdζ. The current
passing through this section area is Jirdrdζ, where Ji is the
current density in the sectional area of the ith coil. According to
Lorentz force law, the differential force on the rotor caused by
the interaction between magnetic field of the rotor and current-
carrying conductor dl is

dF = −Idl × B1r (r, θ, φ)er = −Jirdrdζdl × B1r (r, θ, φ)er

where the negative sign indicates that the force imposed on
the rotor by dl is the reaction force of the one exerted by the
magnetic field. The torque generated is thus

dTi = rer × [−Jirdrdζdl × B1r (r, θ, φ)er ].

Integrating this differential torque within the entire volume
covered by the ith coil gives the total torque produced by a
single coil

Ti = Ji

∫ R1

R0

∫ ζ1

ζ0

{∫
C

rer × [B1r (r, θ, φ)er × dl]
}

rdrdζ.

(26)

Note that the symbol
∫

C as in (26) denotes the line integral of
the differential torque along a circular loop of the winding that
has a “wire” section area of ds. The differential length dl is
perpendicular to er . Thus, the relationship of er × (er × dl) =
−dl can be readily obtained. As a result, (26) is reduced to

Ti = −Ji

∫ R1

R0

∫ ζ1

ζ0

{∫
C

rB1r (r, θ, φ)dl
}

rdrdζ. (27)

2) Solution of the Torque Integral: The solution to (27) is to
express Ti with the coil position in the rotor frame (θi, φi) and
the current input Ji .

The wire loop in Fig. 6 represents one loop of winding on the
sphere surface. A pair of θi and φi can specify the direction of
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Fig. 6. One loop of wire on the sphere surface.

the ith coil axis in the rotor frame. Correspondingly, eθi and eφi

represent the unit vectors in θi and φi directions. The segment
dl can be expressed as

dl = r sin ζdψ(sin ψeθi − cos ψeφi). (28)

Substituting B1r in (25) and (28) into (27), and using the relation
between Cartesian coordinates and ζ, ψ, θi , φi , the expression
of Ti can be finally obtained as

Ti = [Txi Tyi Tzi ]T = Tcf(θi, φi)Ji (29)

where Tc =
√

35
2

15µ0M0cd4
16π (R−2

0 − R−2
1 ), and f(θi, φi) =

[fx(θi, φi) fy (θi, φi) fz (θi, φi)]T is a 3× 1 vector completely
determined by the coils position in the rotor frame [see [18] for
the expression of f(θi, φi)].

C. Torque Model of the Full Set of Coils

Equation (29) represents the torque of a single coil. With
N coils on the stator, there are N torque equations like (29).
Arranging all N equations in a matrix form, the torque model
of the spherical actuator with a complete set of coils can be
obtained

T=Tc


 fx(θ1, φ1) fx(θ2, φ2) · · · fx(θN , φN )

fy (θ1, φ1) fy (θ2, φ2) · · · fy (θN , φN )
fz (θ1, φ1) fz (θ2, φ2) · · · fz (θN , φN )






J1

J2
...

JN




= TcQJ (30)

where J = [J1 J2 · · · JN ]T represents currents passing through
N coils, and Q is defined to be the torque matrix

Q =


 fx(θ1, φ1) fx(θ2, φ2) · · · fx(θN , φN )

fy (θ1, φ1) fy (θ2, φ2) · · · fy (θN , φN )
fz (θ1, φ1) fz (θ2, φ2) · · · fz (θN , φN )


 .

Fig. 7. Prototype of spherical actuator.

TABLE I
STRUCTURE SPECIFICATIONS OF SPHERICAL ACTUATOR

V. PROTOTYPE AND EXPERIMENTS

A. Prototype

A research prototype of the actuator has been developed as
shown in Fig. 7. The specification is listed in Table I. The large
size of stator (aluminum) is to facilitate the experimental re-
search and the eddy current. The diameter of the aluminum coil
core is about 3 mm. The use of aluminum for the coil core and
stator is undesirable for high dynamic performance. By using
nonmetal material such as Delrin in future designs, the eddy cur-
rent effect and the stator size can be reduced. A conical-shaped
coil will be designed to increase the winding turns and actuator
torque. The maximum torque in the table is obtained with a 3-A
current input. Although the maximum tilting torque is much
smaller than the maximum spinning torque, a rotor with two-
layer PM poles has been proposed recently to achieve similar
values of spinning and tilting torques. A spherical bearing that
can achieve 3-DOF rotation is assembled at the rotor center to
support the rotor. It avoids the wear of rotor and friction torque
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Fig. 8. Measurement of flux density. (a) Testbed. (b) Measuring plane.

produced by contact bearings. This configuration allows more
coils to be incorporated into the stator so that the maximum
tilting angle can be increased up to ±45◦ and the resolution
can also be improved. By using this prototype, experiments on
magnetic field and torque variation can be carried out.

B. Experiment on Magnetic Field

1) Testbed and Measuring Process: The flux density B is a
3-D vector, not a scalar. Therefore, it is necessary to measure
all three components of the flux density vector at any mea-
suring point surrounding the rotor. A three-axis Hall probe is
employed in this measurement. Fig. 8(a) shows the complete
flux density measurement testbed. The Hall probe is mounted
on a high-precision three-axis translational motion stage so that
it can pinpoint to any location near the rotor. It is also con-
nected to the Gauss meter to display the measured flux density
in three components. The Gauss meter is linked to a personal
computer (PC) through a data-acquisition card. The measured
flux density then can be automatically stored on the PC. The
rotor is mounted on a motorized fixture that can spin along the
rotor axis in 360◦. Thus, it is possible to measure the magnetic
flux density in the longitudinal direction of the rotor by simply
rotating the rotor using the fixture without reorienting the Hall
probe.

The Hall probe moves along a predetermined path illustrated
in Fig. 8(b) and takes measurement of flux density at sampling
points along the path. As the rotor structure is symmetric about
the equatorial plane, the measurement is only carried out for
the upper hemisphere. The measuring path starts from a point
along the center axis of a PM pole and very close to the ro-

tor surface. The measuring path is kept along a vertical plane
called a measuring plane. The probe moves along an arc up-
wards on the plane while keeping a constant normal distance
da with the rotor surface. It can be seen from Fig. 8(b) that the
neighboring sampling points keep a constant angle of ∆θ with
respect to the rotor center. After the probe completes an arc of
θ = 30◦, the probe offsets a distance of ∆r radially and then
carries out measurement along the subsequent arc path. This
measuring process is repeated with increasing radial distance
r until the flux density is significantly small. For our measure-
ment, the maximum motion in the r-direction is 30 mm. This
distance far exceeds the possible location of the stator coil. Due
to the constant-angle sampling pattern, the measuring points are
sparsely located when the radius r increases. It is coincident
with the fact that the gradient of the flux density decreases with
the increase of r. Therefore, this sampling method is more ef-
fective than sampling with equal distance points, which requires
more sampling points.

After completion of the measurement task in one measuring
plane, the PC sends commands to the controller of rotor fixture
to turn the rotor with an angle of ∆φ. The Hall probe is thus
positioned in a new measuring plane and the same data acquisi-
tion procedure is repeated. The entire process of positioning the
probe, taking measurement, and turning the rotor can be fully
automated.

2) Experimental Result: In our prototype actuator, PM poles
with Brem = 1.0 T are used. Comparisons between experimen-
tal result and analytical model are presented in Fig. 9. Fig. 9(a)
shows the distribution of B1r along the longitudinal (φ) and
latitudinal (θ) directions (θ = 75◦ ∼ 90◦, φ = 0◦ ∼ 360◦) at a
fixed radial distance da . The analytical and experimental results
of the flux density B1r are approximately the same. To observe
the difference of the two results, Fig. 9(b) is used to show the
variation of B1r along the rotor equator (θ = 90◦). It can be
seen from Fig. 9(a) and (b) that the experimental measurement
fits the analytical result well. Along the rotor equator, i.e., the
φ-direction, eight positive/negative peaks can be observed due
to eight alternately magnetized PM poles. The maximum differ-
ence between the experimental data and analytical model occurs
along the rotor equator and in between two rotor poles (300 G
or 5% of the measured data). This indicates that the accuracy
of the proposed magnetic field model is acceptable. With the
inclusion of high-order harmonics in the magnetic field model,
the difference may be reduced.

C. Experiment on Actuator Torque

1) Torque Generated by a Single Coil: The objective of this
experiment is to verify the torque generated by a single coil as
described in (29). A testbed is developed for the measurement
of the force/torque generated between the PM rotor and a single
coil as shown in Fig. 10. The coil is supplied by a dc power
(Topward 3303D). A six-axis force/torque sensor (ATI Nano43)
is mounted on the shaft of the rotor which in turn is connected
to a guide shaft. This guide shaft can slide along the slot of
the arc guide so that a tilting motion of the rotor is able to
be achieved. In addition, the guide shaft can rotate about its
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Fig. 9. Comparison of experimental result and analytical model (Br ). (a) 3D view of experimental versus analytical results(da = 0.5 mm). (b) 2D view of
experimental versus analytical results (θ = 90◦).

Fig. 10. Testbed for force/torque measurement of single coil.

own axis along with the rotor. The tilting motion and rotation
can provide the values of θ and φ, which specify the position
of the coil axis in the rotor frame. By using this testbed, the
force/torque variation between the rotor and the coil with respect
to θ and φ can be obtained. In this experiment, the measuring
range of φ is from 0◦ to 360◦, whereas the measuring range of
θ is from 70◦ to 110◦, which cover the range of coils on the
stator. The torque is a 3-D vector with components Tx, Ty , and
Tz defined on the rotor frame. The torque vector is pose (θ, φ)
dependant, where θ and φ specify the coil-axis orientation in
the rotor frame. The variation of torque components can be
visualized as a surface with respect to (θ, φ). Fig. 12 presents
the torque variation of experimental and analytical results. In the
experiment, 3-A current is supplied to the coil. The change of Ty

is the same as Tx with 30◦ shift in the φ-direction. It can be seen
that the analytical model fits the experimental result well with
maximum difference of 8% of the experimental result. Adding in
high-order terms may improve the accuracy of the torque model
further.

2) Torque Generated by Multiple Coils (Two Coils): Ac-
cording to (30), the total torque of the spherical actuator is the

Fig. 11. Force/torque measurement on two coils.

superposition of torques generated by individual coils. The ob-
jective of this experiment is to verify the superposition principle
of the spherical actuator torque. The testbed of this experiment
is the same as that in Fig. 10 except that the stator is used to
replace the single coil. To verify the superposition principle,
force/torque measurement is conducted on two arbitrarily cho-
sen coils indicated in Fig. 11. The initial positions of these coils
in the rotor frame are (θ = 79◦, φ = 0) and (θ = 79◦, φ = 30◦).
In this experiment, the rotor shaft changes the orientation by
sliding along the arc guide with an angle θr . For any specified
rotor orientations, three sets of data are captured: torque pro-
duced by energizing Coil 1 alone, by Coil 2 alone, and by Coil 1
and 2 simultaneously. By comparing the vector sum of the first
two sets of torque values with the last set, the superposition of
actuator torque can be evaluated. It can be seen from Fig. 13(a)
–(c) that the superposition of torque generated by two individual
coils fits well with the torque generated by energizing two coils
simultaneously. Hence, the linear model of (30) can be used for
the spherical actuator.
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Fig. 12. Analytical versus experimental results of torque generated by single coil (a) Analytical versus experimental results in 3-D space (Tx ) (b) Analytical
versus experimental results in 2-D (Tx , θ = 72◦) (c) Analytical versus experimental results in 3-D space (Tz ) (d) Analytical versus experimental results in 2-D
(Tz , θ = 90◦).

Fig. 13. Superposition of actuator torque. (a) Torque x. (b) Torque y. (c) Torque z.

3) Linearity of Torque Model: According to (29) and (30),
the torque output is proportional to the current input. Experi-
ments are carried out to verify this relation. The coil is fixed at an
arbitrary position in the rotor frame, such as φ = 21◦, θ = −9◦.
By varying the current input, torque outputs are measured.

Fig. 14 shows the experimental and theoretical results. Ac-
cording to these results, three components of the torque are
all proportional to the current input. This linear property will
facilitate the real-time position and velocity control of the
actuator.
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Fig. 14. Linear relation between actuator torque and current input. (a) Torque x. (b) Torque y. (c) Torque z.

VI. CONCLUSION

This paper presented the development of an analytical ex-
pression of the output torque for a 3-DOF spherical actuator
in terms of input currents to the coils. Two major works were
crucial to the derivation of the torque model: 1) formulation
of the analytical magnetic field distribution of the PM rotor
based on Laplace’s equation with suitable boundary conditions,
and 2) superposition of the motor torque produced by the input
current to multiple stator coils according to Lorentz force law.
Experimental verification of the analytical 3-D magnetic field
surrounding the rotor and 3-D actuator torques was carried out.
The tasks included the design and installation of a semiauto-
matic 3-D magnetic field measurement system and 3-D torque
measurement testbed, measurement data acquisition, and pro-
cessing. Comparisons between analytical and experimental data
have shown consistency of the proposed magnetic field model
of the rotor and torque model although there are minor errors
which may be due to the omission of the higher order terms of
the harmonics. The analytical expression of the actuator torque
facilitates the real-time control of the spherical actuator as a
servo system for precision applications. Design optimization on
the actuator dimensions and arrangement of the PM poles and
stator coils hence becomes possible.
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