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This paper presents results computed using a meshless method in a point collocation formulation to

investigate the effects of temperature and frequency on the magnetization switching mode in the

circular amorphous magneto-impedance sensor (element). Specifically, the solutions characterizing the

MI effect are solved from a set of coupled nonlinear equations consisting of the Maxwell’s equations,

the Landau–Lifshitz–Gilbert equation, and the thermal diffusion equation. This coupled nonlinear

space–time model predicts the formation and propagation of dynamic domain walls in switching and

it is shown how they contribute to experimentally observed temperature and frequency effects.

Computed results (that agree well with reported experimental data) suggest radial domain walls may

play a larger role in the MI effect than originally believed even for the realistic conditions considered

here at 1 MHz or more.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The development of highly sensitive magnetic field detectors
in both the past and present has afforded a number of novel
technologies such as the bit detections of the magneto-resistive
(MR) device embedded within the head of a computer hard-disk
drive system, and magnetometry using Superconducting QUan-
tum Interference Devices (SQUID) allowing observations of neural
signals from within the body [1]. Within the spectrum of
magnetic field sensors, each device has its relative strengths and
weaknesses. For example, while SQUIDs are remarkably sensitive,
they are inherently limited in their potential applications based
on a low temperature requirement to promote its fundamental
mechanism, superconductivity.

Alternatively, relatively new devices like magneto-impedance
(MI) sensors are also on the horizon of interesting developments
given its demonstration of high sensitivity and it has received
increasing attention since the early 90s. The MI effect, present in
small magnetic structures, can be described as a sensitive
realignment (or redistribution) of a periodic magnetization, where
the realignment is a result of the introduction of the measured dc
field, while a primary ac field (due to the ac current) drives the
periodic magnetization. For each realignment or value of the
measured field, a detectable voltage change emerges. It has also
been reported for some devices that the MI sensor demonstrates
good thermal stability [2]. A key distinction of devices like the MI
ll rights reserved.
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sensor is that it offers an impressive balance of sensitivity
(10�11 T), flexibility (small and portable), and relatively low costs
(compared to SQUIDs).

With few exceptions, the prediction of the MI effect has
generally involved solving a decoupled set of harmonic equations
reduced from Maxwell’s equations describing the electromagnetic
field and a micromagnetics equation describing the magnetiza-
tion. Generally speaking, the assumptions for decoupling require
that the magnitude of the measured axial field be very large
compared to the amplitude of the transverse ac field caused by
the current source (i.e. saturation). Also, a previous numerical
investigation in Ref. [3] has found that when the external field is
small, the effect of nonlinear coupling between the electromag-
netic field and magnetization may not be negligible in studying
the MI effect, as profound differences may be seen between the
two approaches. In addition, experimental data presented for MI
sensors has explored effects not considered explicitly in previous
models, such as effects of temperature [4,5]. Also, an accurate
understanding of the switching behavior in MI elements may be
useful in material and sensor development. For example, research
is active towards potential applications based on an under-
standing of double switching observed in magnetic alloys and/or
magnetic multilayered structures as discussed in Ref. [6].
Additionally, the relationship between temperature and switching
modes is relevant in other applications, for example, thermally
assisted magnetization reversal [7]. Here, switching mode refers to
the manner in which the magnetization field aligns itself with a
driving ac external field over the volume of the MI element wire.
The driving field is a transverse magnetic field due to the current
source. The question arises as to whether all the magnetization
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changes in the MI element structure are simultaneous or do
domain walls play a role in achieving the reorientation of all of the
domains. For any small magnetic structure, the answer depends,
in general, on sensor materials, geometry, and operating condi-
tions. For example, it is well known that in very low input
frequencies and at low field amplitudes, the switching mode can
take place by way of reversible domain wall motion [8], in
particular if equilibrium walls are present. But in larger uniform
fields, additional switching modes can take place including
irreversible domain wall motion as well as pure rotation.
Additionally, when the frequencies are relatively high, the domain
wall motion may be somewhat unfavorable due to the fact that
moving domain walls have dynamic attributes. If the variation of
the magnetic field is too fast and exceeds the amount of time
required for the formation of a domain wall, then their formation
and propagation become less favorable and this is referred to as
domain wall damping. However, in MI sensors, a unique set of
conditions are established where a non-uniform field at relatively
high frequencies develops within the element and these condi-
tions differ from the classical conditions upon which the above
observations are typically based. Here, switching modes are
examined under the conditions of the MI sensor. Relations to
damping are also discussed here in the context of the MI sensor.

The influence of temperature on the magnetic permeability in
magnetic alloys has been studied in the past. Historically, in
measuring the effects of temperature on the magnetic perme-
ability, two peaks have been observed experimentally [5,9,10].
One peak occurs near room temperature and a second peak may
occur just before the Curie temperature. The second peak is
referred to as the Hopkinson’s peak (HP). This work discusses,
strictly, the effects of temperature near room temperature and
results discussed do not correlate to the HP, which has been
explained on the basis of several mechanisms [11].

In the interest of investigating the MI effect using a more
general approach suitable to examine dynamic switching modes
in weak fields, one key assumption that is commonly made is
relaxed here by solving a nonlinear coupled space–time numerical
model for the cylindrical MI element structure to support a better
understanding of the mechanisms driving the MI sensor. The
higher-fidelity solutions so-obtained should offer a better predic-
tion of MI device behavior and further insights to improved MI
sensor designs.

The remainder of this paper then offers the following:
(1)
 An MI sensor analytical model is formulated preserving the
coupling between the magnetic field, magnetization, and
temperature; thus, it provides the ability to examine dynamic
switching mode behavior under various conditions of interest,
including temperature changes (near room temperature).
(2)
 The numerical model also deploys a meshless method (MLM)
formulated in a point collocation formulation. A quasi-New-
ton nonlinear scheme is also used in an implicit integration
algorithm to further enable computations on a desktop PC.
(3)
 The weak-field (nonlinear MI) regime is considered here by
solving the problem in zero (He=0) external field under
common MI configurations. This region is highly nonlinear
and serves as a good representation of behavior in the weak
field regime [3]. Also, the MI effect is studied here using
experimentally reported conditions and parameters.
Using this approach, computations for important cases are
discussed, one of which has received minimal consideration
(effects of temperature). Also, most previous works have only
considered contributions from axially distributed Neel domain
walls in the MI sensor. Here, dynamic radial domain walls are
considered, and it is shown that (radial) domain walls possibly
play a very important role in the MI effect contributing to
previously reported experimental observations including tem-
perature and frequency effects.
2. MI effect analytical formulation

The following coupled nonlinear equations of motion, along
with boundary conditions and initial conditions, describe the
magnetic field intensity H, the magnetization M, the demagneti-
zation potential jD, and the temperature T.

The space–time behavior of the magnetic field intensity H,
described by classical electrodynamics, is given by the Maxwell’s
equation in the form

@B

@t
¼�

1

sðTÞ ðr �r �HÞ ð1Þ

where, the magnetic flux density B=m0H+M, where mo is the
magnetic permeability in free space; and s(T) is the bulk electrical
conductivity, depending on the local temperature T.

The magnetization ‘‘motion’’ is governed by a norm-preserving
micromagnetics equation where the Gilbert form is used given by

@M

@t
¼�gM�HTþ

a
MsðTÞ

M�
@M

@t
ð2Þ

In (2), g is the gyromagnetic ratio given here by m0qe/me [12]
where qe is the electron charge and me is the electron mass; a is
the dimensionless phenomenological Gilbert damping constant;
and Ms(T) is the temperature dependent saturation magnetiza-
tion. In (2), it is understood that at each point in space and
time99M99=Ms(T). In addition, HT is the total effective field
given by

HT ¼HþHKþHXþHD ð2aÞ

where H is the external field described by (1); HK, HX and HD are
the effective fields taking into account the effects of anisotropy,
exchange, and demagnetization, respectively. We also note that
due to MI elements having low magnetostriction, magnetoelastic
contributions are ignored.

The uniaxial anisotropy field HK is given by

HK ¼ ðHK=MsÞðMUekÞek ð2bÞ

In (2a), HK(T)=9HK9=2K(T)/Ms(T) where K(T) is the first anisotropy
constant; and ek is the unit vector in the direction of the material
preferred anisotropy. The exchange field HX is given by

HX ¼ AXr
2M ð2cÞ

where AX is the exchange stiffness (scalar).
The long range interior demagnetization field HD is character-

ized here by the Poisson equation

m0r
2jD ¼rUM ð3Þ

where

HD ¼�rjD ð3aÞ

The thermal diffusion equation describing the temperature T

within the MI element is given by

rcpðTÞ
@T

@t
¼
@k

@T
99rT992

þkðTÞr2Tþ
1

sðTÞ
99r �H992

ð4Þ

where r is the mass density of the wire; cp is the specific heat
capacity; and k is the thermal conductivity.

The switching mechanism can be investigated by numerically
solving (1)–(4). To solve these four coupled nonlinear equations
for H, M, jD, and T with variations in both space and time (r, t)
[13], relevant boundary (BC) and initial conditions are also
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required and are specified in Sections 2.1 and 2.2, respectively.
The parameters that depend on temperature here include s(T),
k(T), Ms(T), K(T), and cp(T). The treatment of the temperature
dependent parameters used here is discussed in Section 2.3. The
amorphous magnetic alloy Co68.15Fe4.35Si12.5B15 has been chosen
here because a partial validation can be made against experi-
mentally reported data from Ref. [17].

2.1. Boundary conditions

The model describes the radial variation as a function of time t.
For the given problem, the normal component of B is zero on the
surface, which leads to the following equation for Hr:

m0HrþMr ¼ 0 ð5Þ

The BCs along the centerline of the circular wire are given by

r¼ 0 @Hz=@r¼Hy ¼Mr;y ¼ @Mz=@r¼jD ¼ @T=@r¼ 0 ð6Þ

For the transverse (circular) component, the use of a current
source in a material surrounded by air allows the BC to be
simplified to requiring only the medium of the MI element, and
allows ignorance of any nonconductive surrounding medium. This
follows from integrating Ampere’s law to arrive at an explicit
Dirichlet BC for Hy. With this, the MI element BCs for H, M, jD,
and T on the surface are given by

r¼ r0 Hy r ¼ r0
¼ IsðtÞ=2pr0; Hz r ¼ r0

¼He

���� ð7a;bÞ

@M

@n
r ¼ r0
¼ 0

�� ð7cÞ

ð�m0rjDþMÞ @OUn¼ 0
�� ð7dÞ

�krT @OUn¼ hðT @O�T1Þ
���� ð7eÞ

In Eq. (7c), where n is the unit vector along the radial direction,
assumes the free spinning condition, i.e. no localized torques on
the surface [14]. In (7e), h is the thermal convection coefficient;
and TN is the temperature of the surrounding environment.

2.2. Initial condition

The IC is assumed uniform at t=0. The magnetization is
assumed oriented along the axis (z-axis) of the wire, parallel to eK,
leading to

Hðr;0Þ ¼jDðr;0Þ ¼ 0 ð8aÞ

Mðr;0Þ ¼ 0 0 Ms
� �T

ð8bÞ

Tðr;0Þ ¼ T1 ð8cÞ

2.3. Temperature dependence of parameters

For the temperature range considered, the experimental
material Co68.15Fe4.35Si12.5B15 has not had these material proper-
ties measured and/or sufficiently reported, and thus their values
are necessarily estimated here. In many cases, however, a single
data point (at room temperature) has been measured, and so the
temperature dependence of the parameters is approximated using
commonly observed characteristic curves that pass through these
reported single data points for the material. A summary of the
relations used is given next.

2.3.1. Electrical conductivity

The bulk resistivity (1/s) is approximated as a second order
parabolic temperature dependence. The relation, which has been
designed to pass through the data point reported in [15] for the
material considered, is given by

rðTÞ ¼ 1=sðTÞ � r0þCT2 ð9Þ

2.3.2. Thermal conductivity

The thermal conductivity k(T) was approximated by comput-
ing the volume compositional average for Co68.15Fe4.35Si12.5B15

using reported values for the constituent materials over the
temperature range considered [16].

2.3.3. Saturation magnetization

The saturation magnetization dependence on temperature in
magnetic alloys has been studied in the past; the specific relation
used here has been discussed in Ref. [17], where the saturation
magnetization in the alloy is approximated by

MsðTÞ ¼Ms0ð1�T=TcÞ
b

ð10Þ

where Ms0 is the value at T=0; Tc is the Curie temperature; the
value for b has been reported from experimental measurements
in both iron and cobalt where b=0.36 [17]. Tc has also been
reported for this material, Tc=310 1C [18].

2.3.4. Anisotropy constant

The variation of the first anisotropy constant with temperature
has been approximated using a hyperbolic tangent function,
inspired by classical curves reported for cobalt and iron [8]. The
curve used here has been scaled to be consistent with the as cast

data point for the considered material reported in [19], and
subsequently estimated after annealing. The relation is given by

KðTÞ ¼�K0 tanhðBðT�T0ÞÞþKm ð11Þ

The parameter z controls the variation rate with temperature and
has also been estimated based on previously reported values of
K(T) for cobalt and iron [8].

2.3.5. Specific heat capacity

Similar to the thermal conductivity, cp(T) is approximated by
computing the volume compositional average (with cobalt and iron)
using reported values over the temperature range considered [16].
3. Numerical simulations and discussion

The equations of motion form a coupled nonlinear system with
variations in both space and time (r, t) [13]. Using Eqs. (1)–(7), the
cylindrical MI sensor element is spatially discretized using a point
collocation (PC) formulation using meshless methods (MLM) [20].
In the PC-MLM formulation, the Hp-Cloud MLM shape functions
using discontinuous weighting functions are deployed to avoid
some known stability issues near the boundaries in MLM-PC
formulations, which have been discussed in previous works [21].
The MLM formulation is summarized in the Appendix. The time
integration is done here using a second order implicit Newmark
integration scheme along with projection of the magnetization
vector to stabilize the algorithm [22]. At each time step, a
nonlinear equation is solved and a quasi-Newton solver is used
known as Broyden’s method [23].

Table 1 tabulates the values of the temperature dependent
parameters used in the simulations which are computed for a
circular amorphous magnetic alloy (Co68.15Fe4.35Si12.5B15) [17]
wire of radius 15 mm and length 5 mm. Other values of the
material parameters used here are summarized in Table 2.

In the simulations discussed here, the wire assumes a uniform
axial anisotropy axis eK, although there is evidence of a non-
uniform anisotropy orientation along the radius of the wire [19].
Another relevant point is that 1801 transverse Neel walls have
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also been observed along the axis of the wire. Given this equili-
brium configuration, the choice of an axial anisotropy represents
the center of the Neel wall, where the equilibrium magnetization
points along the wire axis. This location also represents a
potential location for nucleation of longitudinal wall motion
(with respect to an ac transverse field), due to a lower energy
requirement to switch (only needs a 901 turn vs. 1801).

Solutions for 2.5 current cycles have been computed and stable
behavior is established in the second cycle at the latest. Thus, data
from the second and third cycles are primarily used in the
discussions that follow.

Computed results have been obtained for three specific
behaviors of the MI effect; the switching mode, temperature
and frequency. First, the switching mode predicted by the coupled
nonlinear space–time model is discussed. This is required to
explain the predicted effects of temperature and frequency on the
MI effect. Additionally, computed results are compared (for partial
validation) against previously publish experimental data in the
discussion of frequency effects.
3.1. Magnetization switching mode

Fig. 1 shows six ‘‘snapshots’’ of the magnetization spatial
profile in a cycle for a cylindrical quarter illustrating the switching
Table 1
Temperature dependent parameters.

T (K) 300 400 500

s (mO m)�1 0.769 0.500 0.345

k (kW/m K) 74.23 61.22 54.77

cp (kJ/kg K) 301.49 327.99 347.88

Ms (T) 0.8101 0.6926 0.5212

K (J/m3) 0.1912 0.1547 0.1148

Table 2
Additional simulation parameters.

f (MHz) Is (mA) h (kJ m�2 K�1) a AX (J/m2)

1–1000 15 200 0.01 10�11

Fig. 1. Illustration of the radial domain wall in switching of circul
mode in the MI element considered. The results reveal that for
conditions taken from realistic MI sensors materials, as given in
Table 2 (at 1 MHz), a dynamic domain wall motion nucleating at
the surface achieves the switching. Unlike an equilibrium domain
wall that typically forms semi-permanently in self-minimizing
the energy of the magnetic structure in the absence of time
varying external fields, the formation of this dynamic wall is in
the presence of a very active and nonuniform dynamic external
field Hy. The dynamic domain wall develops on the surface, where
the field is maximum, and propagates into the core until the wire
is homogeneously transverse in one direction.

It has been previously mentioned in some works that in this
type of MI element at 1 MHz, Neel domain wall motion [24].
However, for the case of the radial domain walls, a more general
coupled nonlinear model used here reveals that the structure
switches by developing propagating radial domain walls even at
1 MHz whose apparent length scale easily ‘‘fits’’ into the wire. The
observation of the domain wall length scale is discussed in more
detail in a forthcoming work. Thus, the results here suggest that
the role of domain wall dynamics, including radial walls, in the MI
effect may be much more significant than originally believed for
the frequencies considered.

Estimates of the domain wall velocity in Fig. 1 is approxi-
mately 20 m/s (or 45 mi/hr). The domain wall motion is also seen
to have non-uniform velocity, starting from vdw=0 at the surface,
then increasing in the core, and later decreasing as the wall gets
closer to the center.
3.2. Effects of elevated temperature

The MI effect model has been used to examine the initial
increase in the MI voltage starting from room temperature (300 K)
well before approaching the expected decrease as T approaches
the Curie temperature [5]. The results are presented in Figs. 2
and 3, where the MI effect (for f=1 MHz) is simulated at ambient
environmental temperatures of TN=27 1C (300 K), 771 (350 K),
and 127 1C (400 K).

Figs. 2(a) and (b) plot the radial distributions of the transverse
magnetic field intensity Hy(r,tp), and the corresponding magneti-
zation distributions My(r,tp) in the wire at the three distinct
temperatures. The point in time is taken at the second ac current
peak time tp in the second cycle of calculations (i.e. otp=5p/2).
ar MI sensor for 15 mm radius wire, f=1 MHz, at T=300.10 K.
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Fig. 2. Hy and My spatial profiles for TN=27, 77, and 127 1C. Dashed leftmost

curves )27 1C, rightmost solid curve = 4127 1C

Fig. 3. MI voltage components (ohmic, inductive, total) at TN=27, 77, 127 1C.
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Each field intensity Hy(r,tp) is normalized by the peak value at the
surface, Hy(r0,tp)=9Is9/2pr0, while the magnetization is normalized
by Ms(T) for each temperature given in Table 1. Fig. 3 shows the
amplitude components of the MI voltage VMI as a function of
temperature

VMIðtÞ ¼ VRðtÞþVLðtÞ ð12Þ

where

VRðtÞ ¼
L

psðTÞr2
0

IsðtÞ and VLðtÞ ¼ �
dFðtÞ

dt
ð12a;bÞ

It is noted that (12a) is typically considered to be appropriate in
low frequencies, however, results from the model used here show
that the current is distributed (although non-uniformly) throughout
nearly all of the wire at 1 MHz (i.e. a weak skin effect is observed),
and thus (12a) is still used as an approximation for the case of a weak
skin effect. However, above 1 MHz, a strong skin effect develops and
thus (12a) is much more inappropriate and the changes in ohmic
losses are estimated at these higher frequencies by computing a
modified dc resistance using the actual penetrated area of the current
instead of the whole wire cross-section. This modification is used in
Section 3.3 in the discussion of frequency effects. With this, some
observations from Figs. 2 and 3 are discussed as follows:
�

Fig. 4. Simplified MI element domain wall motion and illustration of domain wall

velocity in relation to My profiles.
As shown in Fig. 2(a), although a weak skin effect is observed,
the distribution of the magnetic field intensity Hy within the
wire is ‘‘widened’’ as the temperature is elevated above room
temperature. This can be explained by Maxwell’s Eq. (1) for the
magnetic field Hy as follows: The ac current in the MI element
introduces a skin effect (weak in this case) [26] in the field,
where an approximate length of distribution (from the surface
inward) is given by

dsp1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðTÞmyo

p
ð13Þ

Eq. (13) reveals that the distribution widening in Hy is a result
of the reduction in the electrical conductivity s(T) as
temperature increases.

�
 Fig. 2(b), which shows the progress of the moving domain wall

at the same point in time for the three temperatures, further
suggests that the dynamic domain wall propagates at a higher
average speed vdw from the surface towards the center at
elevated (above room) temperature. Even for seemingly small
changes in Hy. This observation is reasonable based on the well
known characteristic of domain walls that they can be moved
with very small magnetic field intensities.

�
 The increase in the inductive voltage VL with temperature

shown in Fig. 3 can then be explained by the resulting micro-
scale domain wall dynamics. To illustrate this Fig. 4 shows a
simple schematic of the switching domain wall motion near
the surface of the wire as predicted by the model used here.
In the circular wire, because of geometrical factors and
Hy(r=0)=0, the transverse magnetization is also negligible at
the center for the circular wire. Thus, M(r=0)E0, leading to
the simple illustrative diagram shown below (also see Fig. 2b).
Fig. 4 shows that the change in flux is given by the difference
between the area under Profiles 1 and 2. Thus, the shaded area
in Fig. 4 represents the change in flux. It follows that the
inductive voltage can be approximated from (12a) as follows:

VLpLz
d

dt

Z r0

0
My dr� LzMsðTÞ

Dr

Dt
ð14Þ

From Fig. 2(b), an increase in the dynamic domain wall velocity
(vdw=Dr/Dt), due to the higher magnetic field gives rise to an
increased voltage based on (14). However, (14) also suggests that
eventually the effects of a decreasing Ms(T) and likely other
parameters such as anisotropy K(T) begin to dominate causing the
expected eventual decline of the MI voltage with temperature.

3.3. Effects of frequency on the MI effect

One of the objectives in this section is to validate the coupled
micromagnetic model formulation used here. Fig. 5 shows the
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Fig. 5. 9VMI9 components (ohmic, inductive, total) , compared to experiment [ ],

with fequency f from 1 MHz to 1 GHz.

Fig. 6. Magnetic flux used in (12b) with time vs. frequency f. Largest amplitude

(solid curve))1 MHz, smallest amplitude (dashed curve))1000 MHz.

Fig. 7. Variations of Hy and My with all four different frequencies f=1, 10, 100, and

1000 MHz. Solid leftmost curves )1 MHz, rightmost dashed curve )1000 MHz.
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voltage components with frequency, where the evaluation of the
errors (in %) is based on differences relative to reported
experimental data [15] as follows:

ex ¼
VMI�VMIðexpÞ

VMIðexpÞ

The results are computed at four different operating frequen-
cies (1, 10, 100, and 1000 MHz). For the two available published
data points at 1 and 10 MHz, the coupled nonlinear analytical
space–time model agrees reasonably well (within 8% and 17%
differences, respectively). Note that this order of error represents
a significant improvement for the nonlinear regime, where much
larger errors have been highlighted in this region for decoupled
MI sensor models as high as 100 s of percent [3]. As shown in
Fig. 5, VMI increases with frequency up to a certain frequency then
decreases. This behavior is known and has already been demon-
strated experimentally in MI sensors in Ref. [27]. In Fig. 6, the
harmonic flux at each frequency is computed by

FðtÞ ¼
Z

S
½m0HyðtÞþMyðtÞ�ds ð15Þ

where S is the flux integrating area in the (r, z) plane.
Results here illustrate that the micro- and macro-behavior are

closely coupled in the MI sensor where the distribution of the
field link closely to domain wall dynamics, etc. To explain the
coupling effect of the micro-scale domain wall dynamics on VMI,
Figs. 7(a) and (b) graph the corresponding Hy(r,tp) and My(r,tp)
profiles for the four frequencies. The following observations made
in Figs. 5 and 7 explain the effects of micro-scale domain wall
dynamics on VMI with frequency:
�
 As the frequency changes, a flux change (with f) is due to the
evolving skin effect caused by the ac current source. Fig. 6
shows that as f increases, the flux amplitudes decrease due to
this effect. However, in the case of increased (low) frequency,
the increasing rates for Hy cause faster domain walls by
turning the magnetic moments faster, which increases the
inductive voltage in the wire as discussed in Section 3.2, even
though the flux amplitudes are decreasing.

�
 However, at ultrahigh frequencies, VMI decreases with f, on the

order of 100 MHz to 1 GHz as shown in Fig. 5, which is
consistent with experiments in similar wires [26]. A factor
contributing to the decrease in VMI is given as follows: As the
frequency increases, the Hy profile becomes increasingly
confined to the surface due to the skin effect as shown in
Fig. 7(a). At very high frequencies, these developing conditions
are not conducive to both form and propagate a domain wall
towards the center and complete switching of the whole wire.
The domain wall travels less and less into the wire resulting in
a vanishing inductive voltage by way of both a lack of a driving
force into the wire and dynamic domain wall damping ensues
as the variation of the source becomes too fast. The result is
that VMI begins to diminish with frequency.
4. Conclusion

In this work, we have numerically solved a coupled nonlinear
space–time model to investigate MI effects under dynamic
conditions that have been reported in the literature. Here, a
weak-field behavior has been considered (He=0), specifically,
where coupling is more important. The model has also been
enabled by use of a spatial discretization tool known as meshless
methods formulated in a point collocation scheme. This approach
has enabled the study of the MI effect under the influence of both
temperature and frequency. The predicted switching mode and its
behavior by way of dynamic domain walls has been shown to
explain experimental observations reported elsewhere, where
elevated temperature near room temperature speeds up domain
walls causing an increased voltage (temporarily). Also, the decline
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in MI voltages at ultrahigh frequencies has been shown to be due
to dynamic domain wall damping because of a receding penetra-
tion of the wall into the MI element.
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Appendix. Hp-Cloud MLM shape functions in MLM

Given H(x,t), M(x,t), jD(x,t), and T(x,t), each component, for
example, of the vector unknown H is an independent scalar
degree of freedom, u. To derive the MLM shape functions used
here, which are not closed form functions, each degree of
freedom, u, begins with a definition given by

uiðxÞffiurðx; xk;rÞ ¼
Xp

j ¼ 1

jjaj ¼jvA ðA1Þ

x and xk are global (from anywhere in the domain) and local (only
near x) positions, respectively, within the computational domain.
The basis function coefficients, aj (which are unknown) are
associated with each independent basis function, jj and are often
taken from the set of monomials that span the set of polynomials
in Rn. For example, the one dimensional basis functions, jj, for a
3nd order reproducible formulation, are given by

fjg ¼ f1; x; x2; x3g ðA2Þ

Then, to determine the coefficients A uniquely, in the case of the
Hp-Cloud formulation used here [28], a discrete moving least
square problem is solved. A localized discrete cost function, Jd, is
defined by

Jd ¼
Xn

k ¼ 1

w
x�xk

r

� �
uk�

Xp

j ¼ 1

jj

x�xk

r

� �
aj

0
@

1
A

2

ðA3Þ

The weighting function, w, is chosen to provide compact support.
n is the number of local support nodes. Minimizing (A3) to solve
for parameters aj results in the following equations:

TU¼MmA) A¼Mm
�1TU ðA4Þ

The final shape functions can be computed as

uðxÞffijvMm
�1TU¼Cs

vU ðA5Þ

Mm is a p�p matrix, often referred to as a moment matrix, and p

is the number of monomial basis functions, e.g. in (A2) p=4,
whose matrix elements are given by

Mm;ij ¼
Xn

k ¼ 1

ji

x�xk

r

� �
w

x�xk

r

� �
jj

x�xk

r

� �
ðA6Þ

T is a p�n matrix, whose elements are given by

Tij ¼w
x�xj

r

� �
Uji

x�xj

r

� �
ðA7Þ

The result is an approximation of the degree of freedom u in terms
of the final shape functions given by

urðxÞ ¼
Xn

j ¼ 1

CS
j uj ðA8Þ

CS
j are the final Hp-Cloud MLM shape functions. The approxima-

tion in (A8) is then used explicitly in a point collocation scheme to
define each degree of freedom, where, for the MI effect variables,
we have

HðxÞffi
Xn

j ¼ 1

Cs
j Hj;MðxÞffi

Xn

j ¼ 1

Cs
j Mj

jDðxÞffi
Xn

j ¼ 1

Cs
jjDjTðxÞffi

Xn

j ¼ 1

Cs
j Tj

ðA9Þ
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