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Abstract— This paper investigates the effects of two control 
algorithms on high-performance point-to-point motions. The  
emphasis here is to overcome challenges in precision 
positioning of high-acceleration tables in the presence of 
significant external disturbances and exited vibration; an 
A-type of iterative learning control (ILC) algorithm for 
repetitive motions, and a look-ahead finite impulse response 
(FIR) filter plus sliding mode control for non-repetitive 
motions. The model-free convergence condition and the 
fastest-converging parameter equation for A-ILC are given in 
the frequency domain. Then, the FIR coefficients are decided 
through the ILC results and modified to eliminate the friction 
effect. Experimental studies demonstrate that both the 
algorithms perform well and the FIR-sliding mode control 
algorithm is robust in various experimental scenarios which 
include high acceleration (of 73.7m/s2 or about 7.5 g), model 
parameters and disturbances deviations from the position, 
velocity and acceleration at which the ILC (and hence FIR) 
are trained. 
 
Index Terms— linear motor, point-to-point motion, iterative 
learning control, FIR, high acceleration, look-ahead 

I. INTRODUCTION 

AST point-to-point motions with high acceleration are 
often required in semiconductor industry; for example, 

wire bonding and die mounting. Many positioning tables 
driven by permanent-magnet (PM) based electromagnetic 
linear motor (EM-LM) are widely used to perform such 
motion tasks [1] because of their high force density, low 
thermal losses, high positioning accuracy and mechanical 
simplicity. EM-LM positioning tables, however, are very 
sensitive to external disturbance because they eliminate 
mechanical transmissions and directly connect with the 
load. To exploit the potential of EM-LM positioning tables, 
we explore advanced control techniques to achieve 
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high-performance point-to-point motions with emphases on 
overcoming challenges in controlling precision 
high-acceleration tables in the presence of significant 
external disturbances that reduce motion accuracy and 
exited vibration often resulting in long settling time. 

Motivated by the needs in microelectronic industry 
where products have been continuously driven toward 
smaller feature size, faster speeds, and lower cost, a flurry 
of research has been devoted during the past two decades to 
developing advanced control algorithms such as motion 
profile generator, iterative learning control (ILC), finite 
impulse response (FIR) filter, and sliding mode control for 
high-acceleration point-to-point motions. Motion profile 
generator is an important factor to reduce the residual 
vibration caused by the high acceleration. Mizoshita et al. 
proposed a fifth-order polynomial profile generator [2], 
introducing the least vibration at the motion end. In order to 
minimize the residual vibration, Dijkstra et al. [3] used an 
iterative learning law to propose an optimal discrete time 
approach. Based on the conventional S-curve profile, Li et 
al. [4] used a level-shifted sinusoidal waveform to displace 
the step curve in the jerk profile, resulting in a smoother 
profile to cause little vibration at the motion end. 

Besides the motion profile generator, high 
performance control algorithms are pivotal for 
high-acceleration point-to-point motions. Several 
controllers have been designed. Based on the known 
dominant vibrational modes, Singer et al. [5] proposed a 
FIR filter convolving with the control signals to cancel the 
vibration after half vibration period. In [6], Cheng et al. 
presented a composite nonlinear feedback controller (CNF) 
consisting of a linear feedback law (designed to yield a fast 
response) and a nonlinear feedback portion that gradually 
tunes the damping ratio to reduce the overshoot and 
vibration when the table approaches its destination. Wang 
et al. [7] proposed a soft variable structure controller (that 
makes the system eigenvalues tend toward negative infinity 
continuously as the table moves to its destination); under 
this controller, the table has a fast response of 
point-to-point motion. Hirose et al. [8] proposed a feedback 
plus a polynomial feedforward controller with coefficients 
optimized to provide the desired frequency shaping in the 
control signals for suppressing residual vibrations. In [9], a 
sampled-data polynomial was used in feedforward manner 
to deal with disturbances and vibrations. Kim et al. [10] 
used a sliding mode control algorithm with coefficients 
tuned through a disturbance observer to control 
point-to-point motions. Lai et al. [11] used two adaptive 
neural networks (NNs) to independently compensate the 
external vibration and friction disturbances for fast motion 
control.  

Most prior studies primarily focused on exploring 
alternative controllers to suppress the effect of external 
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disturbances and/or vibration. Potsaid et al. [12] explored a 
sequence of control strategies, which began with an inverse 
model (as feedforward controller), next enhanced it 
utilizing a model-based ILC for repetitive motion, then 
replaced it with a FIR filter to approximating the ILC 
signals, and lastly adjusted the FIR coefficients using an 
adaptive law to make the table execute random motions. All 
the algorithms in [12] have the same feedback controller 
and modifications are primarily made in the feedforward 
(learning or adaptation) controller to compensate for the 
disturbances and eliminate the vibration. While the 
sequential approach is potentially useful, Potsaid et al. [12] 
carried out experiments on a laser scanning machine which 
had neither significant Coulomb friction nor other 
non-smooth nonlinearities.   

Unlike most algorithms that calculate control signals 
based on current and past information of the motion profile 
to compensate or suppress the effect of external 
disturbances and vibration, this paper introduces a 
look-ahead property in designing the controller and offers 
the followings: 
− Two point-to-point motion controllers are presented 

here for investigating the effects of the look-ahead 
property on high performance point-to-point motion; 
namely, a P+A-ILC for repetitive motions, and a FIR 
filter (approximating and replacing the ILC) with 
sliding mode control for non-repetitive motions. While 
extending the previous research on P+A-ILC [13] built 
upon [14] and [15] and on [16] where external 
disturbances are divided into linear and nonlinear 
components for convergence analysis, this paper gives 
the model-free convergence condition and the 
fastest-converging parameter equation. Additionally, a 
look-ahead FIR filter complemented by sliding mode 
control is utilized in the feedforward manner for random 
runs. 

− The ILC and FIR control algorithms have been 
implemented on an EM-LM positioning table; and their 
effectiveness for controlling the high-acceleration 
point-to-point motion has been experimentally 
investigated against the basic cascaded P/PI feedback 
control structure. Four additional experimental studies 
were conducted to evaluate the effect of parameter 
variations on the robustness of the FIR filter with 
sliding mode control.  The findings which include high 
acceleration (of 73.7m/s2 or about 7.5g) demonstrate 
that the ILC-based FIR with sliding mode control 
performs well for non-repetitive motions and is robust 
in various experimental scenarios including model 
parameters and disturbances deviations from the 
position, velocity and acceleration at which the ILC 
(and hence FIR) are trained. 
The two control strategies presented here have the 

advantages that they are easy to implement and require 
little information about the controlled model and the 
external disturbances. While illustrated in the context of an 
electromagnetic linear motor system, they can be applied to 
a broad spectrum of other PM-based actuator systems; for 
examples, multi-DOF spherical motors [17], mega-speed 
drive systems [18] and compliant micromanipulator [19].  

II. POINT-TO-POINT MOTION CONTROLLER DESIGN 

A. Controlled System Model of an EM-LM system 

Fig. 1 shows a typical real-time motion control of an 
EM-LM which consists of a current, a velocity and a 
position loops with controllers Gi(s), Gv(s) and Gx(s) 
respectively. In Fig. 1, Gp1(s) and Gp2(s) are the transfer 
functions correspond to the electrical and mechanical 
subsystems of the EM-LM, and H(s) is a low-pass filter, 
and fL is external load (disturbance). In this paper, we 
investigate the effects of point-to-point motion control of 
the position loop control algorithm with the plant dynamics 
mathematically characterized by the form suggested in (1): 

( ) ( ) ( ) ( )rX s G s V s D s   (1) 

where X(s) and Vr(s) are the Laplace transforms of the 
displacement x(t) and velocity reference vr(t); and G(s) and 
D(s) can be derived from the block diagram: 

1 2

1 1 2

1
( )

1
v i p p

i p v i p p

G G G G
G s

G G G G G G H s


 
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In (1a), (1b) and subsequent derivations, we denote the 
Laplace domain variables using capitalized letters and drop 
“(s)” for simplicity. The disturbance in (1b) is divided into 
two parts: 

( ) ( ) ( )r nD s D s D s   (2)
where ( )rD s  represents the repetitive disturbance; and 

( )nD s  the non-repetitive disturbance.  

1

s

Fig. 1 Electromagnetic linear motor controlled system 

B.  Iterative Learning Control (ILC) 

We first propose a proportional feedback controller 
plus a feedforward iterative learning control (ILC) in the 
position loop for repetitive motions. Fig. 2 illustrates the 
control diagram, where the control signal to the plant 
during the ith cycle is written as 

, ˆ( ) ( ) ( )r i i p iv t v t K e t   (3)

where ( ) ( ) ( )i r ie t x t x t  . In (3), the position-feedback 
controller Gx(s) is proportional with gain Kp; and ˆ ( )iv t is the 
feedforward ILC effort: 

1 1ˆ ˆ( ) ( ) ( )i i iv t v t ke t      (4)
where k is a positive learning parameter; and  is the 
look-ahead time.  
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îv
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Fig. 2 Block diagram illustrating iterative learning control 

We derive the convergence condition for the above 
controller that satisfies the following two assumptions: 

Assumption 1: All operations start from the same initial 
conditions, xi(0)=xr(0) for i =1, 2… Any differences, 
however, can be treated as a non-repetitive disturbance.  

Assumption 2: During the movement, the control signals do 
not saturate. This assumption can generally be satisfied 
by specifying proper motion profiles.  

From (3), ,î r i p iv v K e  . Substituting ˆ ( )iv t  and 

1ˆ ( )iv t  from (3) into (4), the result in Laplace domain is 
given by (5): 

, , 1 1 1( )s
r i r i i p i iV V ke E K E E

       (5)

Since 1 1i i i iE E X X    , and from (1) and (2) 

 1 , , 1 , , 1i i r i r i n i n iX X G V V D D        (6)

Equation (5) reduces to (7): 

  , , 1
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 
 (7)

Through recursive analyses, (7)becomes 
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where 
 1

ˆ
1

s
p

p

K ke G
G

K G
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


 (8a)

The convergence for the ILC requires ˆ| ( ) | 1G j  , which 
can be rewritten (by squaring both sides) yielding the 
convergence condition (9):  

 ( ) 2 ( ) cos( ) 2cos ( )pk G j K G j G j       (9)

Theorem: When the system (1) is under the control of (3) 
and (4), the tracking error converges if (9)  
holds. 

The proof of this theorem is given in Appendix A. 

Remark 1: As differences in initial conditions for any cycle 
can be regarded as a non-repetitive external disturbance, 
deviations from Assumption 1 will not cause the ILC to 
diverge provided the initial errors are small. Moreover, 
bounded initial errors result only in bounded tracking 
errors [13, 14]. 

Remark 2: Assumption 2 can generally be satisfied through 
specifying proper motion profiles. Even though the 
control effort is saturated, the above control algorithm 
can also achieve satisfactory performance as described 

in [13]. 

Remark 3: The convergence condition (9) is simplified to 

2 cos( )pk K    if ( ) 1pK G j   (10)

In other words, the algorithm parameters can be chosen 
independently on the controlled system model. 

Remark 4: For specified constants (, Kp and k), the 
condition (10) cannot hold for all frequencies since 
cos() may be negative. Thus, the signal should be cut 
off when off where off is a pre-defined cutoff 
frequency. On the other hand, excited vibrations (with 
<off) will be compensated by the learning algorithm. 

Remark 5: The fastest convergence occurs when ˆ| ( ) |G j is 
a minimum. This is equivalent to 

2|1 ( ) ( ) |
0

j
pd K G j ke G j

dk

  
 , which leads to 

 ( ) ( ) cos( ) cos ( )pk G j K G j G j       (11)

If ( ) 1pK G j  ,  (11) is simplified to  

cos( )pk K   (12)

C. Finite Impulse Response Filter with Sliding mode Control 

ILC is only suitable for repetitive motions and a 
number of trainings are needed to achieve a satisfactory 
performance. However, in practice, positioning tables often 
perform random runs. To allow for non-repetitive motions, 
we use a look-ahead finite impulse response (FIR) filter to 
displace ILC as shown in Fig.3 (a), which maps the 
reference command rx to the feedforward control signals. 
The feedforward control signal at time k is parameterized 
by the FIR filter as follows 

1 1 1

1 1 2 2

1 , 1 2 , 2 ,

1 , 1 ,

( ) ...

                 ...

fir r k n r k n n r k

n r k n n r k n

v k w x w x w x

w x w x

   

   

  

  
 (13)

where 1 2n n n   is the order of the filter; 2n  is the 
look-ahead horizon; and { , }iW w i n   are the 
coefficients. 

( )G spKrx ( )x t

(a) FIR 

( )G spKrx ( )x t

d

 
(b) FIR plus sliding mode control 

Fig. 3 Block diagram 
The filter coefficients { , }iW w i n   can be decided 
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through a least-square fit to the ˆ( , )rx v data obtained from 

the ILC results, i.e. set ˆ( ) ( )firv k v k . Write (13) in the 

matrix form as 

1 1 1 2

1 2 1 2

, 1 ,1 1 1

, 1 ,

ˆ

     ( ) ˆ  ( )

                             

ˆ( )     ( )
l l

fir r

r k n r k nfir

fir l r k n r k n n n l

W VV X

x xv k w v k

v k x x w v k



   

    

      
             
           



     


 

(14)

where 1( , )lk k  is the range of data used for fit. The least 
square solution is  

  1' 'ˆ ˆ
r r r rW X V X X X V


    (15)

Remark 6: In (14) and (15), the subscribe ∞ means the ILC 
control signals in the infinite cycle. However, in 
implementations, the ILC control signals that perform 
satisfactorily are enough for the decision of the FIR 
coefficients. 

Remark 7: The ILC feedforward control signals tend to 

compensate the external disturbances and excited 

vibrations. Thus 1( , )lk k  should include the complete 

transient motion, i.e. 1( , ) (0, ( ) / )l fk k T T  . In 

implementations, ( ) 0rx k   for 0k   and 

( )rx k s  for /fk T T , where T is the sampling 

time; and fT  is the motion time as in (20). 

Remark 8: Since the control signals depend on the table 
position, velocity and acceleration, the parameter 1n  
must be equal to or larger than 3 to include the velocity 
and acceleration information. A heuristic condition to 
choose 2n  is that 2n T   to include the look-ahead 
time in ILC. 

Remark 9: The friction has a stick-slip effect causing 
non-zero control signals when the table positions at the 
destination in the ILC algorithm. Based on the ILC 
signals, (15) will induce a vector 

0iw  introducing a constant non-zero input into 
the system when the table positions at a non-zero target. 
That is, suppose the table is at the position s , 
then 0fir iv s w   which can be regarded as a 
constant external disturbance and must be eliminated. 
In this paper, the FIR coefficients are modified as 
follows: 

2

2
ˆ i

i i k
k

w
w w w

w
  

 (16)

Obviously 
1

ˆ 0
n

i
i

w


  and thus, the feedforward input 
vanishes at any constant position under the modified 
coefficients. 

Remark 10: Equations (15) and (16) imply that the FIR 
coefficients obtained from the ILC results are constants, 
and produces fixed inputs once the motion profile is 
generated. Since FIR is utilized as a feedforward 
controller, stability is not an issue. 

The FIR approximates the ILC algorithm closely.  
However, any small differences between ILC and FIR 
outputs may exist and degrade the point-to-point motion 

performance. To compensate for this deviation the sliding 
mode control (well known for its effectiveness in system 
regulation [20-21]) is employed here to complement the 
FIR as shown in Fig.3 (b). To accomplish this objective, we 
define  

p e e   (17)
where re x x     with rx obtained from the motion 
profile from (20) and x  obtained through numerical 
difference. The sliding mode control expression is 

max ( / )sv f sat p   (18)
where  , maxf and  are positive constant parameters, 

( / ) sign( ) min{| / |,1}sat p p p  . With the help of the 
above sliding mode control, position errors converge to a 
bounded layer. For readability, the (straightforward but 
lengthy and standalone) convergence analysis is detailed 
for interested readers in Appendix B so that the significance 
and contributions of experimental findings can be more 
clearly followed.  

The FIR plus SMC structure compensates the model 
dynamics and repetitive disturbances using the FIR that 
approximates the ILC while suppressing non-repetitive 
disturbances by the feedback P controller and SMC to 
achieve perfect tracking. In order to achieve satisfactory 
performance by FIR plus SMC, the deviations of the model 
and disturbance dynamics between the ILC and the FIR 
plus SMC should be small; otherwise, the ILC must be 
re-trained, and the FIR parameters must then be determined 
from the new ILC results. 

III. EXPERIMENTAL INVESTIGATION  

A. Positioning Table Experimental Setup 

Fig. 4(a) shows a high-acceleration positioning table 
driven by a linear motor (Kollmorgen IL18-100A1P1) with 
a non-contact linear optical encoder (Heidenhain LIDA 475) 
for position feedback. The table sits on a pair of THK linear 
contact rails which inevitably bring frictions into the 
system. Other disturbances include cogging force and force 
ripples. All these disturbances vary with the position, 
velocity and acceleration of the table. The PC-based control 
hardware consists of a driver (Kollmorgen Servo Star 
CE06250), and a motion controller (GT400SV-PCI by 
Googol Technology) which commands the driver for 
positioning the table via PCI buses, and receives control 
signals via DAC I/Os (Fig. 4c).  

 

(a) Positioning table (b) Real-time operation system 
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(c) PC-based control hardware 

Fig. 4 EM-LM driven positioning table experimental setup 

A PC-based motion control program (written in C 
language with a sampling frequency of 1kHz) has been 
developed and implemented on a VenturCom real-time 
operation system consisting of two subsystems (MFC and 
RTX) with a shared memory as shown in Fig. 4(b). MFC 
provides a friendly human-computer interface and executes 
non real-time operations (such as monitoring and off-line 
analysis) while RTX (as a timer) undertakes real-time tasks 
including data acquisition for feedback as well as real-time 
computing, control and communication between the 
controller and the driver of the positioning table. 

The control system is designed in a cascaded fashion 
which includes a current, velocity and position loops (Fig. 
1). The velocity and current loops are realized in the driver, 
while the position control algorithm is implemented in 
RTX. The current-loop has a very small time constant as 
compared to that of the mechanical part; thus, its transfer 
function is approximated by a constant thrust coefficient kf 
(i.e., fm kfir ). The dynamics of the electromagnetic linear 
motor (EM-LM) can be modeled by (19): 

f r Lmv bv k i f    (19)

where m is the moving mass; and b is the viscous friction 
coefficient. . The velocity-loop is controlled by a PI 
controller ( ) (1 / )v vp viG s k k s  . The plant transfer 
function has the form given in (1), where 

2

( ) 1
( )

( ) ( )
vp f vi

vp f vi

k k s k
G s

sms bs k k s k H s




  
 (19a)

and 2

1
( )

( ) ( )
L

vp f vi

F s
D s

sms bs k k s k H s




  
 (19b)

where H(s) is a low-pass filter with the cutoff frequency 
80Hz. The detailed derivation of (19a) and 19(b) is shown 
in Appendix C. 

B. Experimental Results 

The ILC and FIR control algorithms are implemented 
on the high-acceleration positioning table and 
experimentally evaluated against the basic cascaded P/PI 
feedback control structure. The motion profile (suggested 
in [2] for least vibrations at the motion end) was utilized as 
the reference command for analyzing the point-to-point 
motions: 

     5 4 3
( ) 6 / 2.5 / (5 / 3) /f f fx t s t T t T t T     

 (20)

where the travel distance s is 2mm; and the motion time Tf 

is  15ms. The highest acceleration and velocity are 
50.12m/s2 (5.2g) and 0.25m/s respectively. The values of 
the characteristic parameters used in the experimental 
evaluation are tabulated in Table 1. The results, which 

evaluate the performance in terms of tracking error, 
overshoot, and s-stabilized time (defined as ŝ ft t T   
where t denotes the time after which the absolute 
positioning error is less than s), are summarized in Figs. 5 
and 6. In this paper,s=5m and ŝt is referred to here as 
5μm-stabilized time. 

Table 1: Values of the parameters used experimental evaluation 

EM-LM driven Table: 

Peak force (N) 1200 Total movable mass, m (kg) 7.9 

Continuous force (N) 270 Damping coefficient, b  87 

Encoder precision (µm) 0.5 Thrust coefficient, kf (N/A) 171 

Sampling time T:   1ms 

Position and velocity controller gains:  Kp=4000, kvp=2000, kvi=1000 

ILC parameters: = 4ms, k=1000, cut-off frequency=50Hz 

FIR Filter parameters: =1, =4m, fmax=100; n1=3, n2=4. 
W [−1.4113, 3.8634, −5.5677, −0.146, −2.0796, −0.8288, 6.1929] T 

ˆ W [−1.4118, 3.8596, −5.5755, −0.146, −2.0807, −0.8289, 6.1833] T 

Fig. 5 shows that the ILC tracking responses at 1st, 10th 
and 40th cycles, where the 1st cycle of the ILC is essentially 
the P controlled. Fig. 6(a) compares the ILC and FIR 
outputs with different look-ahead horizons.  The FIR 
response and tracking error (at look-ahead horizon equal to 
4) are graphed Figs. 6(b) and 6(c). Observations from these 
results are summarized as follows: 

− In Fig. 5, the 1st-cycle response corresponding to the P- 
controlled position loop has three properties:  
a) It has a 4.5ms time-delay and thus a large tracking 

error (with maximum absolute error about 1mm).  
b) The maximum overshoot is 65μm (or 3.25%).  
c) It oscillates with a period of about 14ms resulting in 

a relatively long 5μm-stabilized time of 65ms with a 
steady-state position error of 5μm. 

− As compared against the P controller (that alone cannot 
reduce the time-delay, vibration and steady-state error 
without sacrificing the 5μm-stabilized time and 
overshoot), the ILC eliminates the tracking errors and 
effectively reduces the 5μm-stabilized time and 
overshoot (Figs. 5a-c). 

− Fig. 5(d) shows that the ILC converges pretty fast 
decreasing the maximum overshoot and 5μm-stabilized 
time to no more than 8μm (or 0.4%) and 3ms after 30 
cycles. Similarly, the maximum tracking error is reduced 
from 1mm at the 1st cycle to 20m after the 15th cycle. 
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Fig. 5 ILC Tracking response (1st, 10th and 40th cycles) 
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(c) Response curves (d) Zoom-in response around 2mm 

Fig. 6 FIR responses 

− The effect of look-ahead horizons on the 7th order FIR 
output is illustrated in Fig. 6(a) and Table 2. The latter 

tabulates the sum of squared deviation (SSD) between 
ILC and FIR showing that the FIR with a look-ahead 
horizon n2 of 4 best approximates the ILC. As compared 
in Fig. 6(a), the control signal is oscillatory without the 
look-ahead horizon (n2=0).  Unlike the ILC control 
signal which does not vanish (but requires a relatively 
constant effort of  85) when the table reaches the 
positioning destination, the FIR control signal with 
modified coefficients equal to zero at the destination, as 
shown in the zoom-in plot Fig. 6(b). 

− Figs. 6(c) and 6(d) show the FIR response curves. The 
overshoot is 12μm (or 0.6%) and the 5μm-stabilized 
time 2ms. 

Table 2: Effect of look-ahead horizon on the sum of square deviation  

Look-ahead horizon 0 1 2 3 4 5 6 

SSD* (105*(2-15m/s)2) 425.7 118.3 20.4 3.7 3.0 3.0 4.1 

C. Experimental Investigation of FIR Robustness 

Five experimental studies were conducted to examine 
the effect of parameter variations on the robustness of the 
FIR filter:  

Case 1:  Effect of acceleration (Fig. 7) 
The motion profile parameters are s=8mm and Tf=25ms 

corresponding to the highest acceleration of 73.7m/s2 
(about 7.5g) and velocity 0.6m/s. 

Case 2: Effect of motion direction (Fig. 8) 
The table moves from 0 to 2mm (with s=2mm and 

Tf=15ms), stays at 2mm until 200ms, and moves to −2mm 
(with s=4mm and Tf=20ms).  

Case 3: Effect of cumulative motion (s=2mm and Tf=15ms) 
3a. Reciprocating motion (Fig. 9) 
3b. stair-like motion (Fig. 10) 

Case 4: Effect of external impact disturbance (Fig. 11) 
Since the motor driver has a closed architecture not 

accessible to users, the effect of an external disturbance on 
the control performance was simulated using an impact test 
(by striking the stage with a hammer). The motion profile 
parameters are s=2mm and Tf=15ms. 

In Case 1 to Case 3, apart from disturbances in the 
system mentioned earlier, which include friction that varies 
with position and velocity, and the periodic cogging forces 
and force ripples, the motor parameters slowly change with 
position. There are also vibrations resulted from different 
accelerations. These external disturbances (friction, 
cogging force, force ripple and etc.) and slow parameter 
variations are position dependent. In experiments, the 
motions start at random positions with different trajectories 
(point-to-point lengths, velocities and accelerations) so that 
the FIR robustness can be evaluated by comparing the 
results of the above four cases (Figs. 7 to 10) against the 
base FIR response (Fig. 6): 

− Case 1: Fig. 7(a) compares the response against the 
command curve. Since the results nearly overlap, Fig. 
7(b) zooms in the detailed response at 8mm. Response 
has a maximum overshoot of 43.5µm (0.54%); and the 
5µm-stabilized time is 5ms. The slightly higher 
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5µm-stabilized time and maximum overshoot are due to 
the increase in motion acceleration and velocity. 

− Case 2: Fig. 8(a) shows similar comparison with tracking 
errors given in Fig. 8(b). Figs. 8(c, d) display the 
zoom-in responses at 2mm and -2mm respectively. The 
maximum overshoots of the 2mm step-forward and 4mm 
step-backward motions are 4.5µm (0.225%) and 10.5µm 
(0.265%) respectively. The responses are nearly 
instantaneous (with 5µm-stabilized times of 
approximately 0ms and 1ms respectively). 

− Case 3: Figs. 9 and 10(a) compare the responses of Case 
3a and Case 3b against their respective command curves. 
Fig. 9(b) zoom-in the response of Case 3a around 2mm. 
Fig. 9(c) and Fig. 10(b) illustrate the 5µm-stabilized time 
and the overshoot of both cases. In these cumulative 
motion tests, the largest 5µm-stabilized time of Case 3b 
(stair-like) is 5ms larger than that of the 3ms of Case 3a 
(reciprocating). Case 3b also exhibits a larger maximum 
overshoot (15µm or 0.75%) than that of Case 3a 
(10.5µm).  These results are somewhat expected since 
unlike the stair-like motion, the reciprocating motion 
stays within the range where learning (and thus FIR 
coefficients are based) takes place. 

As demonstrated experimentally in Figs. 7 to 10, the 
non-repetitive motion responses nearly overlap follow the 
command curves non-distinguishably confirming that the 
ILC-based FIR algorithm with SMC is robust against 
disturbances and model deviations from the operating 
conditions at which the ILC (and hence FIR) are trained. 
As further demonstrated in Fig. 11 that compares the 
response (Case 4) against the command, the zoom-in 
detailed response (to an external impact disturbance) shows 
that the system is stable and the response converges to 
2mm rapidly with 5μm precision. 
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Fig. 7 FIR response Case 1 
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Fig.8 FIR response (Case 2) 
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(b) Zoom-in around 2mm 
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Fig. 9 FIR response (Case 3a) 
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Fig. 10 FIR response (Case3b) 
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IV. CONCLUSION 

This paper proposes two high-performance 
point-to-point motion control algorithms. The first 
algorithm utilizes a feedback P-controller plus a 
feedforward A-type of ILC for repetitive motions. The 
convergence condition is given in frequency domain and 

can be simplified to an inequality independent of the 
system model.  Also the optimal learning parameter is 
found for the fastest convergence. The second algorithm is 
a look-ahead FIR filter (replacing the ILC for 
non-repetitive motions, where the filter coefficients are 
obtained from the ILC results and modified to eliminate the 
friction effect) with sliding mode control to compensate 
any deviation between FIR and ILC. Specifically, these two 
algorithms, which are easy to implement with a little 
information requirement for the controlled model and the 
disturbances, offer two novelties; 1) model-free 
convergence condition along with a fastest-converging 
parameter equation for the proposed ILC structure, and 2) 
FIR with a look-ahead property for approximating the ILC 
to cope with system dynamics, friction and other 
non-smooth nonlinear terms.  

Experiments on a high acceleration positioning table 
driven by linear motors are carried out. The ILC converges 
pretty fast decreasing the maximum overshoot and 
5μm-stabilized time to no more than 8μm (or 0.4%) and 
3ms after 30 cycles with the maximal acceleration about 
50.12m/s2 (5.2g). Based on the ILC results, FIR plus sliding 
mode control performances non-repetitive motions well. 
Moreover, experiments on effects of larger acceleration 
(7.5g), motion direction and cumulative motion verify its 
robustness against parameter variations as well as illustrate 
the effectiveness. 

Appendix A 
Proof: From (7), the tracking error in the ith cycle 

contains two parts. The first part represents the (i-1)th cycle 
error and the second part is caused by  non-repetitive 
disturbance. Since the non-repetitive disturbance accounts 
for only a small portion of the whole disturbances, it 
becomes very small after the suppression by the feedback 
controller. Therefore, this part can be omitted in the 
convergence analysis.  

The convergence for (7) implies ˆ| ( ) | 1G j  . 
Squaring both sides of (8a), it leads to 

2 2|1 ( ) ( ) | |1 ( ) |j
p pK ke G j K G j       (A-1) 

That is 

2

2

[1 ( cos( ) sin( )) | | (cos sin )]

[1 | | cos | | sin ]

p

p p

K k jk G j

K G jK G

   

 

   

  
(A-2)

where ( )G j   . 

Expanding both sides of (A-2), it becomes 
2 2 2| | 2 | | cos( ) 2 | | cos( ) 0pk G G k G K k      (A-3)

which equals to (9). 
Moreover, similar to (7), we can get 

, 1 , 2
1 2

( ) ( )ˆ( ) ( ) ( )
1 ( )

n i n i
i i

p

D s D s
E s G s E s

K G s
 

 


 


 (A-4)

Keep on this progress and finally we get 

,2 ,1
2 1

( ) ( )ˆ( ) ( ) ( )
1 ( )

n n

p

D s D s
E s G s E s

K G s


 


 (A-5)
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Combing (7), (A-4) and (A-5), it leads to (8). It suggests 
that the tracking error converges to a small bound as the 
cycle goes to infinite. And this bound is caused by the 
non-repetitive disturbances, which are suppressed by the 
feedback controller. 

The proof is completed. 

Appendix B 
From Fig.3(b), the table output can be written as 

( ) ( )( ( ) ) ( )p FIR sx t G s K e t v v d t     (B-1)

where FIRv  and sv  denote the output of the FIR and the 
sliding mode control respectively, ( )d t  is the external 
disturbance corresponding to ( )D s , ( ) ( ) ( )re t x t x t   is 
the position error. 

In repetitive motions, ILC achieve satisfactory 
performance by training through tracking error to 
compensate the model dynamics and repetitive disturbances. 
Hence, ILC affords the dominant control signals for the 
desired motion xd. Since the FIR parameters are decided 
through the ILC control results, it is supposed that 

( ) ( ) ( ) ( )FIR r rG s v d t x t t    (B-2)
where ( )t  is a small position error, and dr is the 
repetitive disturbances. Substituting (B-2) to (B-1), we get 

( ( ) 1) ( ) ( ) ( ) ( )p s nK G s e t G s v t d t     (B-3)

where dn is the small non-repetitive disturbances. From (18), 
it leads to 

max( ( ) 1) ( ) ( ) ( / ) ( ) ( )p nK G s e t G s f sat p t d t     (B-4)

Three situations are discussed. 
1. If p  , (B-4) becomes 

max( ( ) 1) ( ) ( ) ( ) ( )p nK G s e t t d t G s f     (B-5)

Since ( )G s from (1) has an integral item, max( )G s f  
increases, then ( )e t  will decrease and thus ( ) 0e t   until 
p  . 

2. If p   , (B-4) turns to 

max( ( ) 1) ( ) ( ) ( ) ( )p nK G s e t t d t G s f     (B-6)

Similarly, ( )e t  will increase and thus ( ) 0e t   until 
p   . 

3. If p    , substituting (17), (B-4) becomes 

max max[1 ( ) ( )] ( ) ( )p n

f f
K s G s e t d t 

 
      (B-7)

( )e t  equals to  the tracking error of ( )G s  with the 

motion profile ( ) ( )nt d t   under a PD controller whose 

parameters are max / ( )pK f   and max /f  . 
Situation 1 and 2 tell that p  will converge to [ , ]  . 

Considering ( ) 0FIRv t   after ft T , ( )t  becomes 
constant. If ( )nd t  is zero, from (B-7), ( )e t  converges to 
a constant, i.e., ( ) 0e t  . Combing situation 1 and 2, the 
position error will converge to [ / , / ]     at least. In 
real systems, ( )nd t is usually not zero but a small value. 
Under the PD controller as in (B-7), the error will 
converge to a bounded layer. 

Remark11: Because the FIR affords the dominant control 
signals for the point-to-point motion, only a small 

maxf  is needed, which will not bring stability problem 
in the PD control in (B-7) and will not cause a violent 
chattering. 

Appendix C 

As mentioned above, the current loop transfer function 
in Fig.1 can be approximated by a constant thrust 
coefficient kf and the mechanical subsystem Gp2 has the 
following form 

m Lmv bv f f    (C-1)

Combing fm kfir, (C-1) gets to (19). Thus the transfer 
functions from ir to v and from fL to v are 

2
f

p i
r

kV
G

I ms b
 


 (C-2a)

2

( ) 1

( )p L
L

V s
G

F s ms b
  


 (C-2b)

where V, Ir and FL are the Laplace form of v, ir and fL 
respectively. 

Under the velocity controller (1 / )v vp viG k k s   and 
the feedback filter H, the system can be written as 

2

2
2

( )

1 ( ) ( )
v p i vp f vi

r v p i vp f vi

G G k k s kV

V G G H ms bs k k s k H s


 

    (C-3a)

2

2
21 ( ) ( )

p L

L v p i vp f vi

GV s

F G G H ms bs k k s k H s


 

   
 (C-3b)

According to /X V s  and (1), equations (19a) and (19b) 
are obtained. 
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