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Abstract – Coriolis mass flowmeters (CMFs) have been widely 
used in industry because of its high precision (up to 0.1% on flow 

rig). A precondition to ensure the excellent performance of a CMF is 

that its measuring tube must vibrate with proper amplitude under 

different operating conditions. It is thus necessary to modify the 

driving force of its electromagnetic actuator (EMA), which however 
cannot be measured directly by means of a traditional force sensor.  

This paper presents an analytical model for calculating the EMA 

force of a CMF providing a means to predict some parametric 

effects on its performance. Specifically, the analytical model of a 

curved-tube CMF has been derived in closed forms for 
reconstructing the magnetic field from measured boundary 

conditions, and for calculating the Lorentz force of a 

permanent-magnet (PM) based EMA in this paper. This novel 

coupled measurement-calculation approach, which relaxes the 

assumption of known magnetic property of the PM, has been 
validated through a series of experiments, and applied to actual 

CMF offering insightful findings for designing EMA in CMF 

applications. Two sets of results are presented. The first set 

investigates the effect of two different loads on the vibration 

amplitude. The second set reveals the influence of vibration 
amplitudes on the Lorentz force of the EMA. 

 

Index Terms –Coriolis mass flowmeter, electromagnetic actuator, 

driving force, analytical model, magnetic field, reconstruction, 

Lorentz force 

I. INTRODUCTION 

Coriolis mass flowmeters (CMFs) are among the most 

accurate instruments in industry for measuring mass flowrate[1], 

where measurements are made by maintaining the vibration of 

two independent vibrating tubes (VT) with fixed ends [1][2]. 

Electromagnetic actuators (EMAs) are commonly used in CMF 

to drive the VT vibration. Owning to its high precision, CMFs 

are widely  used in various industrial and engineering areas, such 

as measurement of ingred ients for quality control of chemical 

reaction [3] and fuel measurement for an aircraft rocket [4].  

To maintain the CMF performance, the driv ing force provided  

by the EMA on the tubes must be appropriately modified  so that 

they vibrate with proper amplitude for any operating conditions. 

Classical proportional plus integral (PI) algorithms  are 

commonly employed to control the vibration amplitude of the 

measuring tubes, where mapping from driving current to 

vibration amplitude is included to avoid explicitly determin ing 

the EMA driving force [5]. Some recent digital CMFs, adopting 

PI algorithms, have shown better performance than prev ious 

analogue CMFs when measuring fast changing small flows [6], 

flows batching from empty [7], o r two phases (gas -liquid) flows 

[8][9]. While high signal-to-noise rat io (SNR) for the EMSs can 

be achieved with large vibration amplitude [10]; the trade-off is 

the difficu lty to maintain stability when dealing with different 

flow conditions and vibration loads, which significantly  

influence the accuracy of CMF [11]. 

Nevertheless, the ability to accurately calculate the EMA 

forces is highly desirable during the design of a CMF as it offers 

an essential basis to analyze the effects of the driving current 

and VT parameters (material, size and shape etc.) on the tube 

vibration, and hence predict these effects on the operating 

performance of the CMF. Such findings will help define an  

appropriate operating current when designing an EMA, and 

offer some intuitive insights potentially  useful to controller 

design. Taking the specific application in this paper as an 

example , the value o f vib ration amplitude (and hence the 

excit ing current passing through the EMA) could be 

pre-determined based on the analytical fo rce model.  

However, as the coil and permanent magnet (PM) of the EMA 

are separately attached on the two independent tubes [3], it is 

generally clumsy to mount fo rce sensors on the VTs for 

measuring the EMA force. In addit ion, the increase in inertia 

and reaction forces due to the added sensors will change the VT 

vibration characteristics and distort the measured EMA force. 

An alternative approach is to determine the EMA force by 

means of a calculat ion method. Numerical methods have been 

adopted to study the relat ion between the excit ing current, 

driving fo rce and vibration amplitude for different shaped VT  

[12]. However, these numerical methods are often 
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computation-time costly for real-t ime applicat ions as moving 

meshes are required to adapt the vibration between the PM and 

coils [13]. Therefore, this paper presents an analytical model 

based on measured boundary conditions for developing a 

model-based method to determine the EMA forces of a 

high-precision CMF.  

  Several methods are commonly employed to calculate forces 

and torques involved in  an electromagnetic devices; namely, 

Maxwell stress tensor [14], virtual work method [15], Lorentz 

force law [16] and dipole methods [17][18]. Among these 

methods, Lorentz force law is especially useful when the force 

or torque is generated by a current-carrying conductor laying in 

the magnetic field of PM [18][19][20]; the EMAs of CMF 

belong to this case. To ensure high-precision calculation of 

Lorentz force law, the magnetic field distribution of the PM 

acting on the current-carrying conductor must be accurately 

determined. Calculating the field based on the remanence 

property of the PM is a commonly used method [20][21][22]. 

However, the remanence property is difficu lt to measure and 

susceptible to environment effects (such as  temperature 

changes). Accordingly, it is difficult to meet  the stringent 

requirements of high precision CMF using this method. 

Recently, a reconstruction method has been proposed in [23] to 

numerically determine the magnetic flux density (MFD) 

distribution around the PM, and has been applied in spherical 

motors [23] and electromagnetic flowmeters  [24][25]. Th is 

method, which  relaxes the assumption of known geometry  or 

property of the PM commonly made in other analytical or 

computational methods, requires only measurement of the 

normal MFD distribution on the surface of the PM; thus, high 

precision reconstruction can be achieved.  

This paper presents an analytical model based on magnetic 

field reconstruction for calculating EMA force of a CMF. It is a 

new application of the reconstruction method. Different from 

the prior applicat ions where the magnetic fields were 

reconstructed using finite-element methods, we adopt here an 

analytical method to reconstruct the field  around the PM and 

calculate the EMA force for design optimization of an  

electromagnetic CMF. The remainder of this paper offers the 

followings: 

1. The analytical models for reconstructing the PM magnetic 

field and calcu lating the Lorentz force of a curved-tube CMF 

are derived. Given in  closed form, the reconstructed 

magnetic field and force models have been experimentally  

validated.  

2. The models have been applied on a CMF for investigating 

the effects of different loads on the electromagnetically  

induced vibration and forces. The intuitive experimental and  

numerical findings presented here offer some useful insights 

for guiding the design of a CMF. 

II. ANALYTICAL MODEL OF EMA FORCE 

Fig. 1(a) illustrates the structure of a CMF, which consists of 

two curve-tube VTs, an electromagnetic actuator (EMA) and a 

pair of electromagnetic sensors (EMS, installed symmetrically at  

upstream and downstream with EMA respectively). Fig. 1(b) 

defines the characteristic parameters of the EMA, where the 

cylindrical coordinate system (,  , z) describing the axial (or z 

direction) mot ion of the PM is assigned at its geometrical center.   

During operat ion, both tubes vibrate at the same frequency 

but opposite in phase (with motion perpendicular to the mid  

plane between the two tubes). With no flow through the VTs 

(fluid velocity v=0m/s), every parts of the single tube vibrates 

synchronous (in phase). Any existence of the mass flow causes 

the tubes to twist slightly due to the action of Coriolis force FC, 

which exerts a pair o f forces equal in  magnitude (linearly  

proportional to the mass flow velocity) but opposite in direction 

at the upstream and downstream “arms” of the tubes. The 

out-of-plane twisting causes the upstream arm to  lag  behind and 

the downstream arm to lead ahead in the vibratory motion. The 

out-of-sync phase shift is  a measure for the amount of mass 

flowing through the tubes, and is monitored by the pair of EMSs 

(installed at upstream and downstream as shown in Fig. 1(a)) 

which output voltage signals proportional to the local vibrat ion 

velocities. The motions measured by the EMS pair are 

contributed by the two forces; Coriolis force FC and Lorentz 

force F. The latter generated by the EMA can be adjusted to 

compensate for changes in operating conditions if the magnetic 

field (and hence the Lorentz force) can be accurately  

determined. 

The magnetic force of the EMA acting on the tubes can be 

calculated from the Lorentz force law [16] with the aid of Fig. 

2(a). The current I flows through a differential cross-sectional 

area ds=ddz can be written as  J(ddz), where J is the current 

density. From the Lorentz force law, the differential force 

exerted on a differential length segment (d l=ρdθeθ where eθ 

denotes the unit vector in the θ direction) o f the current carry ing 

conductor in the external magnetic field B is given by (1): 

  d d d dJ z    F e B  (1) 

Only 
ρB e (orthogonal to the direct ion of the current flowing in  

the coil) is required  in  the calcu lation of (1) due to 
z  e e e , 

where eρ, eθ and ez denote the unit vectors in ρ, θ and z 

directions respectively. Thus, the magnetic force in the z 

direction can be obtained by integrating (1) over the entire 

volume covered by the coil (rc≤ρ≤ rc+hc and (lc+zc) ≤z≤zc as 

shown in Fig. 2(a)): 

2π ( ,z) d d
c c c

c c c

z r h

ρ z
l z r

J B ρ z 


 
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(a) Curved-tube CMF (b) Illustration of the EMA 

Fig.1 CMF with double curved-tubes  
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Fig. 2 Computational regions for force and potential field   

Magnetic field reconstruction of PM  

Precise calculation of the Lorentz force relies on accurate 

B(,z) distribution. For this, a closed-form analyt ic solution, 

which solve the Laplace’s equation using the separation of 

variables, is derived to reconstruct the Bp(,z) distribution from 

measured boundary conditions. 

Lorentz force calcu lation only requires the magnetic field  

distribution B(,z) in  the reg ion covering the co il, i.e ., [rp ≤ ρ ≤ 

∞, L ≤ z ≤ L] defined in Fig. 2(b). Here, L >>lc is set to ensure 

the field strength is negligible as long as beyond the boundary 

z=±L. In the absence of the coil, the region around the PM is 

current-free (J=0) where the magnetic field  can be characterized  

by a Laplace’s equation
2 0  . The scalar magnetic 

potential is defined in (3): 

     B H  (3) 
where is the magnetic permeability of the material (air) in the 

reconstruction region. In cylindrical coordinates, the Laplace’s 

equation (with the assumption that ∂ψ/∂θ=0) and boundary 

conditions for the EMA are g iven in (4): 
2
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The Neumann boundary condition (NBC) in (4a) specifies the 

normal magnetic flux density at the boundary ρ=rp. The 

Dirich let boundary condition (DBC) in (4b) and the NBC in  (4c) 

assume that the infinitely far field and the normal magnetic flux 

density passing through the boundaries z=±L are neglig ible. 

Based on the separation of variables, the general solution to 

the Laplace’s equation has the following form:  

0
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where the two square brackets  are the general solutions for the 

independent functions Ζ(z) and R(ρ) respectively; I0(ωmρ) and 

K0(ωmρ) are zero-order modified Bessel functions of first and 

second kinds; and Am, Bm, Cm, Dm and ωm are the coefficients to 

be determined from the BCs (4a-c).  

The odd symmetry of the field about the z axis implies that 

cos(ωmz) must be omitted, and hence Am =0. Since I0(ωmρ)→∞ 

as ρ→∞, this, together with the DBC (4b), fu rther implies that 

Cm =0. From the homogeneous NBC (4c), we have 

π

2
m

m

L
  , m=2k+1, k=0, 1, 2, … (6) 

Thus, the general solution (5) reduces to (7) with the unknown 

coefficient ξm=BmDm to be determined form the NBC (4a):   
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Noting the orthogonal characteristics of the sine function, 
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where
0 ( )m pK r  is the derivative of the zero-order v irtual 

Bessel function of second kind; and
0 1( ) ( )K x K x   .  

Using (3) and (7), the magnetic flux density distribution in the 

ρ direction can be computed from (9):  
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where ωm and m are given in (6) and (8) respectively. Only  the 

radial component B  is required in the calcu lation of the Lorentz 

force. Bz is given here for completeness. It is also worth noting 

that no detailed PM geometry is required in reconstructing B. 

Closed-form Lorentz force equation 

Once  ,pB r L z L       in the DNC (4a) is measured, 

the B  distribution can be determined from (9). For a specified  

coil (geometry and position) of the EMA, the Lorentz force can 

be calculated from the integral from (2) leading to (10): 
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In (10), the Meijer G-function is evaluated as a hyper-geometric 

series of gamma function Ã in (11): 
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      (11) 

where the gamma function Г and  contour T are set up to lie  

between the poles of Г(1-aj-s) and those of Г(bj+s) [26]. 

Although the Meijer function in Eq. (10) and (11) cannot be 

reduced to a simple analytical expression, the function can be 

conveniently calculated using off-the-shelf software (such as 

Matlab and Mathematica, which have specific  functions to solve 

this problem). Since the parameters, rc  and hc, are g iven 

constants for an actual CMF, the values of the Meijer G-function 

can be pre-calculated (and stored as look-up table) for use 

directly in actual force computation. As shown in (10), the 

Lorentz force is linearly proportional to the current through the 

coil but a non-linear function of the relative position zc between 
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the PM and coil. This relative position  zc is a net effect of both 

Coriolis and Lorentz forces.  

In practice, table look-up methods can be used to obtain the 

parametric values needed in the model, such as the G function in  

(11) and ξm in  (8). Furthermore, the required  terms to calculate 

the force according to equation (11) will not exceed 30. Thus, 

the force calculat ion can be completed in about 1ms, 

significantly shorter than the vibration period of a  CMF 

(typically in the range of 80 to 100 Hz) by an order of 

magnitude.   

Electromagnetically induced vibration 

With the closed-form solution (10), the position-dependent 

Lorentz force can be explicit ly calculated for simulating the VT 

vibration using a FE model. According to [12], the governing 

equations of the FE model can be derived by Hamilton’s 

variation principle as fo llows: 
2

1

( ) 0
t

p k
t

W W dt    (12) 

In (12), the total potential energy Wp and kinetic energy Wk of 

the moving solid structure given by the integrals (13) and (14): 

1
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(14) 

where Ωs and Гs denote the domain and its boundary of the VT 

structure with velocity field  Vs; s  and 
s  are the strain and 

the stress tensors in the structure respectively; ps is the surface 

tractions acting upon the moving boundary through the 

respective displacement field us; F is the EMA force applied at  

the driving point; and rp is the position vector describing the 

driving point; and ρs is the density of the structure material. 

with the in itial and boundary conditions as follows: 
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 (15) 

For a g iven design, Equations (12) to (13) can be formulated and 

solved using commercial FEM software (such as ANSYS). 

III. RESULTS AND DISCUSSION 

Experiments were conducted to determine the coefficient  ξm 

in (8) and hence the magnetic field  (9) and the Lorentz force (10)  

for the CMF shown in  Fig. 1, where the geometrical d imensions 

of the EMA are listed in  Table 1. These experimental studies 

provide a basis to validate the magnetic field  reconstruction 

around the PM (without the coil) and the force model using the 

analytical solution with measured boundary conditions. Once 

the computational results are verified, the force model can be 

effectively  employed to investigate the effect of the relative 

position zc on the Lorentz force; both static and time-vary ing 

changes in zc are considered. In typical commercial CMFs, drive 

currents are generally limited in 100mA; and VT vibrat ion 

amplitudes do not exceed 1mm. However, for the purpose of 

experimental validation, the model and drive current are allowed  

to exceed 100mA (but with a very short duration) during the 

process of adjusting the vibration amplitude [9][11]. Thus, the 

test current is limited in 0.25A.  

 

 

 

 Table. 1 Characteristic values of the EMA (Dimensions in mm) 

PM  
size 

Coil  

Size Position Ampere-turn 

(rp, lp) (7, 9.5) hc 3 rc 10 I 0.1A to 0.1A 

(a, b) (5, 4.3) lc 15 zc 5 to 5 N 1100 turns 

A. Validation of magnetic field reconstruction 

For the Lorentz force calculation involved in the CMF, the 

distribution of the B(z) required in the NBC (4a) was 

experimentally  determined using a Hall probe (accuracy within  

±0.2%) system shown in Fig. 3. The probe, positioned by the 

computer-controlled scanning servo mechanism and monitored 

by a gauss meter [23], measures the average value of the normal 

component of B passing through the small Hall-effect area 

(1mm diameter) located at the end of the probe. To measure in  

the space taken by the coil along z direction, the PM was 

mounted on a long non-magnetic holder.   

 

(b) BC measurement setup (adapted from [13])

Probe holderProbe holder
Hall probeHall probe

Scanning 
mechanism
Scanning 

mechanism

Gauss meterGauss meter

Motion 
controller
Motion 

controller

PMPMPM holderPM holder

Hall 
prober
Hall 

prober

(a) Measurement 

of Bn(z)
 

Fig.3 Experimental setup for measuring B required in the NBC (4a).  

Guided by a motion controller, the servo system (with  

translational resolution and accuracy of 5μm and 8μm 

respectively) scanned Bρ(z, =rp=7mm) with the hall probe,  

for which 201 measurements covering the range 

100mmz  (or 1mm per step). The results are shown in Fig. 

4(a);  as  Bρ0 for z >50mm, only data in 50mmz  are p lotted. 

Using data in Fig. 4(a), the magnetic field of the PM in the 

region covered by the coil is computed from (9) and plotted in  

Fig. 4(b). To verify the reconstructed data experimentally, three 

additional Bρ(z) measurements at ρ=rc=10mm, ρ=rc+hc=13mm, 

and ρ=17mm are given in Fig. 4(a), where the comparisons 

agree well.  

 

z (mm)

B
ρ
 (

G
)

Reconstructed

Experimental
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(a) Measured BC, and selected comparison of reconstructed and measured data  
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(b) Reconstructed Bρ(ρ, z) of the PM in region  

Fig. 4 Bρ(ρ, z) of the PM in region [7mm ≤ ρ ≤ 20mm, -100mm ≤ z ≤100mm] 

B. Validation of Lorentz force calculation  

With the Bρ at the NBC (4a) in  Fig. 4(a), the coefficient m (8) 

and hence the Lorentz fo rce (10) can be calcu lated in  terms of 

current I and relative displacement zc between the PM and the 

coil of the EMA. The force model has been verified  

experimentally using the setup shown in Fig. 5, where the EMA 

force corresponding to different relat ive positions between the 

PM and the multilayer coil and different input currents were 

measured. An adjustable elevating platform (60mm stroke and 

0.01mm resolution) provides a means to adjust the relative 

position zc between the PM (attached to the elevating platform) 

and the mult ilayer coil (installed on the aluminum holder). The 

zc is monitored by a laser displacement sensor (LDS). An 

electronic scale (with 0.5g resolution) is used to measure the 

force, since the force of this EMA is too small (smaller than 1N 

as given below) to be measured by traditional force sensors. The 

PM along with the elevating platform is putting on the scale, 

then the EMA force can be determined according to the scale 

reading changing when there is static current passing through 

the EMA. 
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Fig. 5 Experiment setup to measure the EMA force  

The following cases were computed and compared against 

experimental measurements in Figs. 6 and 7: 

 Lorentz force as a function of the current I at zc=0mm; this 

relationship is linear as given in (10). The d ifference between 

computed and measured forces for the range [0A, 0.25A] is 

compared in Fig. 6, which shows excellent agreement. The 

maximum relat ive error fo r the range tested is about 3.4%.  

 Lorentz fo rce as a function of the relative d isplacement zc  

with  I=0.1A. Because of the space restriction between  the 

coil and PM, zc is limited to [-5mm, 5mm] in measurements. 

The results are compared in Fig. 7. As expected, the 

force-displacement is nonlinear. The Lorentz force is 

expected to be zero at zc=lc/2 =7.5mm since the magnetic 

field around the PM is an odd symmetry about the z axis. 

The large grad ient of the PM magnetic field (Fig. 4) has an 

effect of “amplify ing” any small geometrical and positioning 

errors of the coil on the force calculat ion; this results in some 

discrepancy between the force model and experimental data 

as observed in Fig. 7, which otherwise agree very well.  
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Fig. 6 Comparison of the calculated force against experimentally measured 

results for different current I=0~0.25A at a specified position zc=0mm 
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Fig. 7 Comparison between calculated force and measured results, I=0.1A 

C. Effects o f vibration amplitudes on Lorentz force 

Fig. 8(a) shows the FE model for the curved-tubes of the 

CMF in  Fig. 1 with the experimental setup given Fig. 8(b). 

Since the two tubes have the almost same vibrat ion magnitude, 

only one tube (rigid ly connected at both ends) is modeled in the 

calculation. The fluid in VT is treated as a vibration load; and 

both the EMA and EMSs are also considered as added mass es. 

The deformation caused by the vibrat ion is s mall enough; thus 

the linear elastic theory is adopted in this FE model. The 

vibration displacement between the PM and the coil of the EMA 

was measured in real time using two h igh-precision laser 

displacement sensors (LDS), with 0.05μm resolution and 20ns 

response time. 
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Fig.8 FE model and experiment set up to calculate and measure the VT vibration 

Two sets of results are presented here. The 1
st
 set investigates 

(experimentally and analytically) the effect of v ibration load on 

the displacement of VT vibrat ion. The VTs were filled with two 

different fluids, kerosene and water, for simulating different 

loads. In the experiment, the tubes are open-loop driven by 

sinusoidal currents with same amplitude from a signal source; 

and both tubes vibrate at their fundamental frequency 

respectively. To isolate the Lorentz force from the Coriolis 

effects, the flowrate through the VT was kept at  zero. Computed 

vibration displacements are compared against experimental 

results in Fig.9, where the small d ifferences between the 

calculated and measured data well validate the method presented 

in this paper. In addition, kerosene has a lighter density than 

water and thus, there is a  small d ifference between the 

fundamental frequencies corresponding to the two loads. Even 

though the tubes are driven by an amplitude-fixed current 

(50mA) at their fundamental frequency respectively, an 

accompanied difference about 6% in the vib ration amplitude can 

still be observed in Fig. 9. This difference implies that the CMF 

is sensitive to the vibration load and thus the excit ing current 

must be changed accordingly to maintain the designed 

amplitude. As current is often limited due to drive power 

saturation for a given design, appropriate vibration amplitude 

must be pre-defined when designing a CMF based on the drive 

capability and potential load conditions.  
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Fig.9 Comparison of the calculated and experimentally measured displacement 

The 2
nd

 set numerically examines the influences of vibration  

amplitudes on the Lorentz force depending on the relative 

displacement zc  given in (2), where reconstructed magnetic field  

data in the region [rc≤ρ≤rc+hc, lczc≤z≤zc] are required to 

calculate the Lorentz force during vibration. In this numerical 

examine, a sinusoidal drive current with fixed amplitude (which  

ensure EMA force with the same amplitude) is supposed to pass 

through three EMAs fixed on d ifferent tubes. Correspondingly, 

three tubes will show vibrations with different amplitude, and  

then their influence on the EMA force is examined in this set. 

Fig. 10(a) shows the computed response of the Lorentz force 

(normalized to its amplitude) to a same sinusoidal input current 

but with three different vibrat ion amplitudes (VA) , 0.25, 0.75 

and 1.25 mm. As the vibration amplitude increases, harmonic 

distortion on the Lorentz force becomes more and more 

noticeable as shown in Fig. 10(a) where the differences of Fz 

(normalized to its amplitude) from a perfect sine function are 

compared. This observation has been confirmed by analyzing 

the corresponding frequency spectrum in Fig. 10(b), which  

shows the fundamental frequency at about 90Hz and a 

noticeable harmonic component around 270Hz. Special 

attention should be pay to this phenomenon, which further 

confirms that it is reasonable to limit  the vibrat ion amplitude 

under 1mm; while larger vibration amplitude may bring better 

signal-to-noise ratio (SNR) for the EMS, the trade-off is the 

increased losses due to harmonic distortion. 

IV. CONCLUSIONS 

An analytical model to calcu late the driv ing force o f the EMA 

for a CMF has been presented. Different from other force 

calculation methods, the model employs a coupled 

measurement/calculation approach (that relaxes the assumption 

of knowing property of the PM) to reconstruct the magnetic 

field around the PM from its measured boundary conditions for 

calculating the Lorentz fo rce of the EMA that drives the 

vibration. The model which provides a basis for design of a 

CMF has been experimentally validated by comparing the 

calculated results against measured data (which agree within a 

maximum relat ive error of about 3.4%). The findings in this 

paper have offered some insightful insights useful for improving 

the design of a CMF, particularly tradeoff between the vibration 

amplitude for better SNR and the tolerance to energy losses due 

to harmonic distortion. Some other applications are also possible 

based on the precise determining of the EMA force, such as 

real-t ime evaluation of tube dampings  which is closely related to 

the CMF performance.  
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(b) Spectrum obtained by FFT  

Fig.10 The non-sinusoid of the EMA force as the vibration amplitude of the VT 
becomes more and more large 
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