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This paper presents the dynamic modeling and the control strategy of an interesting three degrees-of-freedom (DOF) variable-reluctance (VR)
spherical motor which presents some attractive possibilities by combining pitch, roll, and yaw motion in a single joint. Both the forward
dynamics which determine the motion as a result of activating the electromagnetic coils and the inverse model which determines the coil
excitations required to generate the desired torque are derived. The solution to the forward dynamics of the spherical motor is unique but the
inverse model has multiple solutions and therefore an optimal choice is required. The implementation issues in determining the optimal

control input vectors in real-time are also addressed.

1. INTRODUCTION

An increasing need for high performance robotic
applications has motivated several researchers to investigale new
actuator concepts for improving the dexterity of robotic wrists.
Examination of the existing mechanical joints reveals that the ball-
joint-like spherical actuator is an attractive alternative to the three
consecutive-rotational joint configuration. The interest in spherical
motor as a robot wrist is triggered because of its ability in
providing the roll, yaw, and pitch motion in a single joint, isotropic
in kinematics and kinetics, and its relatively simple structure.
Also, it has no singularity in the middle of workspace except at the
boundary. The elimination of gears and linkages enables both high
positioning precision and fast dynamic response to be achieved by
a properly designed spherical motor. These attractive features have
potential applications such as high-speed plasma and laser cutting
where the orientation must be achieved rapidly and continuously in
all directions.

Recently, several design concepts of spherical motor were
proposed. A spherical induction motor was conceptualized in [1]
for robotic applications and the detailed analysis was given in [2].
However, it is difficult to realize a prototype of its kind because of
its complexity in mechanical and winding design and
manufacturing, which requires inlaying all three transversing
wirdings on the inner spherical surface of the stator. Laminations
are required to prevent movement of unwanted eddy currents.
Complicated three phase windings must be mounted in recessed
grooves in addition to the rolling supports for the rotor in a static
configuration. These and other considerations have led Lee et al.
[3] to investigate an alternative spherical actuator based on the
concept of VR stepper motor which is easier to manufacture.
Hollis et al. [4] has developed a six DOF direct-current (DC)
"magic wrist" as part of a coarse-fine robotic manipulator. An
alternative DC spherical motor design with three DOF in rotation
was demonstrated by Kanedo et al. [5], which can spin
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continuously and has a maximum inclination of 15°. Although the
control of a DC spherical motor is relatively simple, the range of
inclination and the torque constant are rather limited, Foggia et al.
[6] demonstrated an induction type spherical motor of different
structure, which has a range of motion characterized by a cone of
60°. Since the control strategy of the induction motor [6] has not
been reported, no results were given on the ability of the motor to
realize any arbitrary motions.

As compared with its DC counterpart, a VR spherical motor
has a relatively large range of motion, possesses isotropic
praperties in motion, and is relatively simple and compact in
design. The trade-off, however, is that sophisticated control
scheme is required. For this reason, in this paper we discuss both
the dynamic model and the control strategy of a VR spherical
motor. For motion control of the VR spherical motor, both the
forward dynamics which determine the motion as a result of
activating the motor coils and the inverse model which determines
the coil excitations required to obtain the desired torques are
needed. The solution to the forward dynamics of the spherical
motor is unique but the inverse model, however, has multiple
solutions and therefore an optimal choice is required.

The remaining paper is organized as follows: Section 2
begins with the derivation of the torque prediction equations.
Section 3 presents the motion control strategy of the spherical
motor, which consists of the control of the rotor dynamics and the
determination of the optimal input vector. The real-time
implementation of the optimization method is addressed in Section
4. The conclusions are given in Section 5.

2. DYNAMIC MODEL
The VR spherical motor referred to in this paper is a ball-
joint-like device similar to that conceptualized by Lee and Kwan

[7].



2.1 Description of a VR Spherical Motor

The VR spherical motor is shown in Fig. 1 and an exploded
graphical view is given in Fig. 2. The VR spherical motor consists
of basically three mechanical assemblies; namely, a spherical rotor,
a hollow spherical stator, and a orientation measuring system. The
spherical rotor is constrained but allows to roll on the bearing
gimbals which are mounted on the inner surface of the stator.

Sliding Block Z-encoder

Y-encoder

Rotor

Stator

Fig. 1

Structure of a VR Spherical Motor

Fig. 2

Assembly View of a VR Spherical Motor
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The coils with ferromagnetic cores are evenly located on the
rotor and the stator, and each coil can be energized individually. In
order to maintain geometrical symmetry for simplicity in control,
the stator and the rotor poles are of circular shape and are evenly
spaced on the stator and the rotor following the pattern of regular
polyhedrons. Each vertex of the polyhedron corresponds to the
location of one pole. Pythagoras and Plato [8] have shown that a
complex polyhedral angle must be made up of at least three faces
and must be less than 360° to form a closed polyhedron. Using
these principles, it can be shown that the maximum number of
coils which can be evenly spaced on a sphere is 20, the figure
corresponding to the number of complex angles of a dodecahedron.
The influences of the design configuration on motion feasibility
and the methodology of selecting the patterns has been discussed
in reference [9].

The rotor poles meet at the center of the rotor, and the stator
cores are connected by the magnetic conductor layer in the stator
shell to form a magnetic circuit with the airgap. In the operation of
the VR spherical motor, the stator coils are energized individually
using the control circuitry. A magnetic field is established which
creates magnetic energy in the airgap. The created energy is the
function of the relative position of the rotor and the stator. The
motion of the VR spherical motor is thus generated as the rotor
tends to move to a position such that the energy in the airgap is
minimized.

The measurement mechanism consists of two circular
sliding guides mounted on two orthogonal axles attached to the
stator. The sliding guides confine a sliding block which houses an
encoder for measuring the spin ungle ot the rotor, 8,. When the
rotor <haft rotates relative to the stator, the corresponding ungles
rotated by the x- and y- sliding guides are measured by the
encoders as 8, and 6,. The detailed kinematic relationship which
describes the orientation of the rotor as a function of the three
encoder readings has been given in reference [9].

2.2 Rotor Dynamics

A base Cartesian coordinate frame XYZ is fixed at the
center of the spherical stator with the X and Y axes pointing
towards the x- and y- encoders and the Z axis pointing toward the
open-end of the spherical socket. Similarly, a coordinate frame
123 is assigned to the center of the spherical rotor with the 3 axis
pointing along the rotor shaft. As it will be discussed later, the
structure of the spherical motor has certain symmetric propertics
with respect to Z-Y-Z Euler angles, which are greatly exploited in
solving the optimal control input for a specified torque. Thus, the
orientation of the spherical motor is specified using the Z-Y-Z
Euler angles. Given an actuating torque T = [T, T, T3IT. the
rotor dynamic equations described in terms of Z-Y-Z Euler angles
q=1[y,8, ol T is given as follows:

M(Q)q + h{q.q) = T, (mn

where M(q) is the 3x3 inertia marrix of the rotor; h{q, q) is a 3x1
vector of centrifugal and Coriolis terms; and T is the actuating
torque of the motor.

The actuating torque of the spherical motor is derived by
using a linearized model based on a lumped-parameter approach.
The linearized model allows the flux flowing through the
reluctance of airgaps 1o be considered separately, and yet permits a
wide variety of coil excitations to be analyzed.

Electro-magnetic system

In the derivation of the analytical model, the reluctance of
the iron core is assumed to be negligible as compared to that of the
airgap and thus the energy storage occurs solely in the air gap. The
error introduced by this assumption depends on the geometrical
dimensions of the structure and the permeability. This error, in
general, can be significantly reduced with magnetic materials of
high permeability and with small airgap. The spacing between any
adjacent rotor poles and that between any adjacent stator poles is
assumed to be much larger compared to the airgap. This




assumption implies that no leakage flux occurs between adjacent
stator (or rotor) poles.

The electro-magnetic system of the VR spherical motor is
modelled as shown in Fig. 3 for the derivation of the torque
generation. The VR spherical motor consists of m active stator
coils and n active rotor coils. In Fig. 3, M and M. denote the
magneto-motive-forces (mmf’s); which are the electrical inputs to
the i'" stator coil and the jlh rotor coil respectively; R;; denotes the
reluctance of the airgap between the i'™ stator coil and the '™ rotor
coil; and @;; is the corresponding flux flowing through Ry. The
magnetic potential at the stator shell with respect to that of the
center of the rotor is denoted as V in Fig. 3.
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Fig. 3 Magnetic Circuit of the Spherical YR Motor

With the aid of Fig. 3, the magnetic flux q’ij can be
determined from Equation (2).

@ = Py M, + M, - V] @
where the permeance Pij is the reciprocal of Rij' Since
I X oa=0 ®)
=l j=l

the magnetic potential V can be derived by substituting {’ij from
Equation (2) into Equation (3), which leads to

m n
L I P (M + My
i=1 j=1

3

M=

Py

i=1 j
Governing equations of energy conversion
The torque generated by the electro-magnetic system is
derived by using the principle of conservation of energy:

En(0) = B - T « o) (5)
where

iE.m = time rate of magnetic energy stored,

]‘E, = electrical power input,

T = resultant torque acting on the rotor, and

@ = angular velocity of the rotor.

Since

Tew di = T, do, + T,d, + Tdo,, (6)
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where dg,, dq)y and d¢, are the infinitesimal changes of angles
with respect to the stator frame. Using the result from Equations
(5) and (6) and noting that the differentials of Py qb),, and ¢, are
independent of each other, the torque generated by the magnetic
system is given by

T =V (B~ Eg)s (M

where

o) 1+ fa]

V=[8%>,] i+

and i, j, k are the unit vectors along the X, Y, Z axes of the stator
coordinate respectively. The electrical power input to the system is
given by

* m n .
Ec= £ T (My+ My d (8)
i=1 =1
and the total magnetic energy stored in the system is
m n
En=3 I I @R, ®

=l =1

From Equation (8) and the time-derivative of Em obtained from
Equation (9):

. - m
E,~Ey=5 X
=l

% (M + My - VP by (10)

1
Z
Thus, the torque can be derived by Equation (11) by combining
Equations (1), (6), and (10) and noting that ¢, ¢y and ¢, are
independent:

m n

Lz (Msi+Mrj‘V)2 VPI} an

1
T =
Pt

2.3 Permeance Function

Both numerical computation [10] and experimental results
[7] have indicated that a typical permeance model P(x), where x is
the relative displacement between two poles, has the following
properties:

L P(x) is even, positive, and monotonically decreasing to zero
as the displacement increases.

2. The derivative of P(x) has a local maximum or minimum at
x = *x_., where x, is a constant for a given geometry.

3. The value of P(x) at the origin (i.e. when the poles are fully

overlapped) can be determined by

Mo S(x)
4

P(x) = (12)

where p, is the permeanability of air; # is the shortest path length
between two parallel pole-faces; and S(x) is the overlapping area
between the stator pole and the rotor pole. For a given geometry, a
typical permeance curve which satisfies the above conditions is
given as follows:

(13)

Px) _ 1
Px=0) 1+ %

where x = x/x,, where x, is a constant to be determined. By
noting that the corresponding maximum permeance occurs at X, =
x/\3, the value of x,, can be determined experimentally or from
numerical computation such as using finite element method.
However, the following additional condition must be satisfied in
modeling the permeance function for the spherical motor: P(x)
must be periodic with a period 2m. Thus, using Fourier series
expansion on [-7, 7] and retain the first N terms, the following
periodic permeance function can be obtained.

N
P(x) =a, + I a, cosk x (14)



where the coefficients (ag, ay, .. . ay) can be determined from
experimental data or from numencal computauon Note that P(x)
is an even function and therefore the sine terms vanish.

2.4 Torque Prediction Model

The torque prediction model determines the torque
generated by the spherical motor for a given set of input currents
applied to the electromagnetic coils. For a specified geometry, the
permeance between any pairs of adjacent stator and rotor poles is a
funcnon of the angle between the position vectors characterizing of

stator and the j th roror poles, ®ij- Let

Py =P (¢y). (s

Let Cﬁl(xSP Ysipr 251) and C J(xlj, yr zr ) be the pesition vectors of
the i'™ stator and the jt" fotor po]cs respectively. The angle
between any pairs of stator and rotor poles can be determined

from the dot inner product of the position vectors Cg; and er; that
is
Csi o Cy
cos (b)) = -—Rz—” (16)

where R is the mean radius of a spherical surface separating the
pole faces of the stator and rotor. The position vector of the j'
rotor coil with respect to the stator coordinate frame is defined by

o= [7]
1 | XYZ 1 [123

where [T] is a homogeneous transformation describing the rotor
frame with respect to stator frame, and ¢, describe the position
vectors of j! th roror pole with respect to the rotor frame. From
Equations (7) and (11), it can be shown by using differential
geometry that the torque is given by

m n
T L [M, + M, — V) « IE()
I ot Sgl

a7

i=l j

where eu is an unit vector perpendicular to the position vectors C
and C

€ = w (19)
R” sin ¢y
where Cg; x C; denotes the vector cross-product of Cg; and C ¢

Thus, Equanon (18), along with Equations (2) and (19) and a
permeance model given by Equation (14), defines the torque
generated by the spherical motor for a given set of inputs in terms
of the magneto-motive-forces (mmf’s) of the coils.

3. CONTROL INPUT OPTIMIZATION

The motion control of the VR spherical motor consists of
two parts. The first part is to determine the actuating torques of the
VR spherical motor so that the motor follows the desired
trajectory. The second part determines the optimal electrical inputs
to generate the required actuating torque determined by using the
control law for tracking the desired trajectory. The computed
torque method commonly used in the robot control is used in the
first part of the control strategy. The control input optimization is
addressed as follows.

The control input optimization is essentially an inverse
problem to torque prediction model. The solution to the inverse
problem is to compute a set of coil excitations, which is denoted
here as a control input vector U, that is required to generate the
desired torque. Unlike the forward torque prediction model which
yields an unique torgue vector for a specified set of coil
excitations, there are generally infinite solutions to the inverse
problem of the torque prediction model of a spherical VR motor
for a specified torque. For clarity in illustrating the inverse torque
model, the following additional assumptions are made: (1) Only
current sources are used and the mmf’s of the coil are treated cs
system input variables. (2) In practice, it is desired to have no
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wiring in the moving parts and thus, only simple iron cores with no
excitation coils are assumed as rotor poles (i.e. Mrj =0,j=1..,
nj.
3.1 Formulation for Inverse Torque Model
In order to obtain an optimal solution to the inverse torque
model, the torque equation is presented in quadratic form using the
following notations:

U=[M, .. .M, R, 20)
a=fa ..oa. ) 21
and
n
;El Plj m
4= L=l (22)
L %o i=1
i=1 j=1

i.e. except the ith element which is equal to 1, all other elements of
¢; are equal to 0. Hence, using the notations defined by Equations
(20) 10 (22), the torque can be written in matrix form as follows:

T, =5 UT [A] U [=1,23 (23)
where
m n Q)
(A] = Z [ ;Z lq;mzpu (e '_'_-‘IJ (a-c¢)(a-c)f (24)

=1 Yy

and C;=[00...010...00]

-
where (uy, 1=1,2,3) is an unit vector along the axes of the rotor
body frame. The matrices (IA]]. 1=1,2,3) vary with the orientation
of the spherical motor.

Given the desired torque, U may be determined from
Equation (23) by solving the algebraic equations. However, since
U e R™ where m is the number of stator coils and is designed
larger than three, there are generally infinite numbers of solutions
to the inverse problem. The generalized reduced gradient (GRG)
method [10] [11] is used to solve for the optimal input vector U,
which minimizes the following cost function:

f(U) = (25)

|uf?+ ™ iz-l (FUT AU - T
where the weighting factor M > 0 is generally a factor very large
real number. The first term in the cost function is due to the
current amplitude or the consumed electrical power, and the second
term is a penalty term which takes into account the system
constraint represented by Equation (23). Typical values of p are 1
and 2. When p is chosen as 1, the sum of the current amplitude is
minimized. If the consumed power of the electrical circuit is to be
minimized, p is setto be 2. The minimization of the cost function
(25) is an unconstrained problem. It has been numerically found
that the GRG method works well in minimizing the functional
represented by Equation (25).

3.2 Ilustrative Example

An example is illustrated here by using a design
configuration where the stator and the rotor are arranged at the
vertices of an icosahedron and a tetrahedron, respectively. The
coordinates of four vertices of a tetrahedron for an unit sphere are
described in TABLE 1. Similarly, the twelve coordinates
describing the vertices of an unit icosahedron are listed in TABLE
2. However, to allow for the motion of the rotor shaft, only eleven
stator poles are used in the design and pole 0 is irrelevant.

The characteristic dimensions of the VR spherical motor
using in the following example are summarized as follows: The
mean radius of the spherical surface separating the stator and the
rotor pole faces are 38.1mm. The radius of the stator and the rotor
poles is 12.7mm and the airgap separating the stator and the rotor
pole faces is Ilmm. The permeance model as a function of the
relative displacement between two circular poles was obtained



experimentally. The value x, in Equation (13) was determined to
be 18mm. With the permeance model and the given pole
coordinates, the matrices (A, I=1,2, and 3) are formed. To
compute for an optimal input mmf’s for a specified torque at a
given orientation, an initial input mmf’s vector is estimated and a
local optimal solution is computed by the GRG algorithm. The
global optimal solution is then searched by comparing the
objective values of local optimal solutions.

Table 1 Coordinate of the stator poles

pole 1 y z
0 0.0000 0.0000 0.0000
1 0.8944 | 0.0000 | 0.4472
2 0.2764 0.8507 0.4472
3 -0.7236 0.5257 0.4472
4 -0.7236 | -0.5257 04472
5 02764 | -0.8507 | 0.4472
6 -0.8944 0.0000 | -0.4472
7 02764 | -0.8507 |[-0.4472
8 0.7236 | -0.5257 -0.4472
9 0.7236 | 05257 [-0.4472
10 -0.2764 | 0.8507 |-0.4472
11 0.0000 0.0000 | -1.0000

Table 2 Coordinates of the rotor poles

pole X % Z
1 0.9428 | 0.0000 | 03333
2 04714 | 08165 | 03333
3 04714 | -0.8165 | 03333
4 0.0000 0.0000 | -1.0000

As a numerical example, the optimal input mmf’s which
generate the torque T = 1 ug (N-m) at the rotor orientation at
(0,0,0) are computed for two cases. In both cases, pissettobe 2
so that the electric power is minimized and by choosing M = 108
the constraint equations are satisfied with the relative accuracy of
10'5. In case (1), all the eleven input mmf’s are independently
excited. The values of the optimal input vector is tabulated in
TABLE 3. The minimized objective value is 17.8601 and that the
absolute value of the maximum input mmf is 3.7816x10° Amp-
turns.

Table 3
pole case 1 case 2
(10*Amp-tums) | (10’ Amp-turns)

1 1.5797 03167

2 0.2390 -31.5868

3 -1.4074 0.6440

4 -0.4429 -3.8087
5 -3.7816 3.6894
6 1.1861 03167

7 -1.5810 3.6894

8 0.1923 -0.6440

9 -0.2322 3.8087
10 34789 -3.6894
11 0.7682 3.0930

Objective

Value 17.8601 46.2815

In case (2), the coil excitations are grouped in pairs so that
the number of power amplifiers are reduced. In each grouping, the
coils pointing towards each other along a diameter are connected in
series, i.e. uj = —lj,5.1=1,2,., 5. The optimal solution of case
(2) is compared to that of case (1) in TABLE 3. The corresponding
objective value is 46.2825 and the absolute value of the maximum
mmf is 3.8087x103 Amp-tumns. Clearly, the additional constraints
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introduced in case (2) substantially increase the objective value as
compared to that in case (I).

It is worth noting that the input mmf's can be effectively
lowered by reducing the airgap. If the airgap is reduced to
0.01mm, the current amplitudes for the same coils are about 1/10
of the the about results.

4. IMPLEMENTATION OF INVERSE MODEL

The average time to compute an optimal input vector using
an off-the-shelf GRG optimization software [12] [13] is about |
minute on an Intel 80386 25 MHz personal computer. For real
time applications where the computation time is in the order of 1
msec, a look-up table must be pre-compiled off-line. The on-line
look-up table should allow the pre-computed optimal input vector
to be determined for a required torque at any given rotor
orientations. If each of the six parameters (three torque
components and three Euler angles) is characterized by N points
over its operating range and two bytes are used to represent each of
the n control inputs and the six parameters, the memory size
required by the on-line look-up table will be 2nN°. For a system
with 11 independently controlled inputs, the required memory size
is over 1300 MBytes even if only 20 points are used to characterize
each of the parameters. Two approaches, namely, parameter
elimination and use of symmetry, are discussed in the following to
reduce the table size reauired for practical implementation.

4.1 Table Size Reduction by Parameter Elimination

This approach is to eliminate the three torque parameters by
introducing three control input vectors Uy, Uy, and Ug such that
these control vectors would generate the unit torques T=(1,0,0),
T=(0,1,0) and T=(0,0,1) about the three independent rotor axes
respectively. For a specified torque at any arbitrary direction, the
input vector U is then computed from Equation (26):

U=a U +B U;+7vU. (26)

where «, B, and y are constant coefficients to be determined for a
specified torque. By substituting Equation (26) into Equation (23),
we have

o
en
Tl By [B;][ﬁ]z i 1=1,23,
Y
where
[ T T i
2 UAU,  UAU,
(B=|UAU, 0 UiA,U,
UjA,U, UlA,U, o |
0 UAu, U, ]
T T
[Ba] = | U,A,U, 2 U AU,
UsAsUy  UsA,U, 0
0 Uy, Uau, |
T T
[lez UIA']UI 0 U2A3U3
UiAU, UsALU, 2

The coefficients («, B, v) are computed from a set of three
nonlinear simultaneous equations (27) and thus the required
control input vector U can be solved from Equation (26). By
storing the three input vectors Uy, Uy, and Uy for a given
origntation in the precompiled table, the torque variables are
eliminated and the memory size required in the look-up table is
6nN°> bytes.

Itis worth noting that the need to compute the coefficients
(«, B, v) from a set of three non-linear simultaneous equations can



be eliminated if six additional constraints are imposed as follows:
Uk [A)] Uy =0 (28)

for I, K # J where I, J, K, =1, 2, 3

which make all cross terms of [B]I equal to zero. Therefore,
without solving for (e, B, ), U can be directly written as

3
U= X JT; Ui (29)
I=1

4.2 Table Size Reduction by Use of Symmetry

Since the torque parameters are eliminated from the table,
the control inputs are tabulated in terms of the rotor orientation
only. Further reduction of the look-up table can be achieved by
using the symmetry of the pole location to reduce the range of
orientation parameters. A scheme was devised to illustrate the
principle using a particular configuration where the stator and the
rotor poles are arranged at the vertices of icosahedron and
tetrahedron respectively. Itis expected that similar arguments can
be readily extended to other configurations where poles are
arranged in the pattern of regular polygons.

The operating ZYZ Eulerian angles are 0 S ¢ S 27, [0 | <
m/4,and 0 S ¢ <27, where ¢, 8, ¢ are the precession, nutation,
and spin angles resoectivelv. If the resolution of the ranee of the
parameters is r points/radian, the memory size of 211(r1r)3 bytes
would be required if two bytes are used to represent a real number.

The rotor has four evenly spaced poles arranged at the
apices of a tetrahedron. The position vectors of the rotor poles for
an unit sphere are listed in TABLE 1. As shown in Fig. 4, since
the three rotor poles, j =1,2,3, are evenly spaced at 2/3 radians
apart at a plane perpendicular to the axis of the fourth pole
(indicated as b in Fig. 4), an input vector U(¢) would generate the
same torque about the z-axis of the rotor as that would be
generated by U(¢ + 2x/3) for any particular (,8). In other words,
U(¢ + 2m/3) = U(9) for a specified torque to spin the rotor about
its z-axis. Thus, the range of the spin angle required in the
formation of the look-up table is 0 < ¢ < 2x/3.

3 1 2
=
y
4,b
3 /2
N e
1

Al

Fig. 4 Rotor Pole Configuration
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Fig. 5 Locations of Stator Poles

Fig. 6 Projection of Stator Pole on X-Y Plane

Fig. 5 shows the location of the eleven stator poles located
at the apices of an icosahedron of unit radius. The position vectors
of the stator poles are listed in TABLE 2, which are evenly spaced
at 2w/5 radians apart in two circular planes perpendicular to the
axis of the eleventh pole. Fig. 6 shows the line projections of the
stator pole axes on the xy plane. The space bounded between two
adjacent projections is denoted as Sy (k=1, .., 10) in Fig. 6, where
b is the projection of the end-point of the 4! rotor pole on the xy
plane.

Define the notation UK) to be an input vector U required to
generate T when b € §;.. The range of the precession angle
required in the table formulation is such that b e S;. When b is
outside the region S, the input vector U/ to generate the desired
torque T can be deduced from the tabulated input vector Ul for
the same torque by means of the transformation:

o [®a o0
Ul wmalo
0" 100 B

The «etermination of the transformation [Rk] is separated into two
covacs nomals an ad | and an even number of k.

k is odd

Let (¢, 8) denotes the position of b when b € Sy. The
corresponding position of b in 84 is indicated as b” in Fig. 3, which

um (30



can be written as [y + (2#/5), 8]. To generate a desired torque
when the position of the fourth pole is at b’ S5 using the lookup
table, the input vector u i determined from the lookup table for
the same desired torque at b and the input vector U'?) is then
obtained by shifting the index of the stator coils of the input vector
UM in the counter-clockwise direction, or equivalently by means
of the transformation [R3I = [R] defined as follows:

000

01
00
[R] = 00 (31)
00
10

c oo -
(==
o -0

In general, for any positions of b Sk defined by [y + 27/5)k, 6],
the input vector UM/ to generate the desired torque T can be
deduced from UL for the same torque using the Equation (28)
where the transformation [Ry ] is given by

[Rk] - [R] =107 (32)
k is even
Similarly, the input vector utk) required to generate the
desired torque T when b € § (k is even) can be deduced from
U for the same torque by means of Equations (28) and (29) or

U% = [R® g, (33)

However, for any point b with its position denoted by (¢, 8, ¢) €
Sy, the point b" is a mirror image of b about the x-z plane. The
position of b" can be written as (—y, 8, —¢) or (27—, 8, 27—¢) €
Sl()' Since the symmetry between §y and 810 is mirror-like, the
mirror image of the required torque when the position of the fourth
pole is at b" € §y can be generated in terms of the input vector
U when the position of the fourth pole is atb € 8. The mirror
image of the torque can be produced by the input vector 0 -
[Rypl UD) where transformation [Rgl = [R’] is defined as
follows:

10000
00001
Rl=(00010 (34)
00100
01000

Denote the mirror image of the required torque T (when b" & Sm)
as T, (when b € §)) which is given by

-1 0 0
T.= |0 1 0| T (35)
0 0 -1
In general, for an even number of k,
[R,] = [RI**[R']. (36)

The ranges of the Eulerian angles required in the formation of the
table are reduced to

precession: 0sy<a/s,
mutation: 0=<6=a/M, and
spin: 0=¢s2n/3.

For the icosahedron/tetrahedron configuration, the required
memory size is n(rfr)3/}5 bytes, which represents 1/30 as the
original range. Itis expected that the memory size required by the
table can be reduced to the order of 100 Kbytes.

5. CONCLUSIONS

The dynamic model and the control strategy of a three
degrees-of-freedom VR spherical motor have been given in this
paper. The dynamic model of the VR spherical motor consists of
the rotor dynamics and the torque prediction. The torque
prediction model has been derived as a function of the
electromagnetic coil excitations and a permeance model as a
funcrion of the relative position between the rotor and the stator.
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The inverse model of a VR spherical motor, which
determines the coil excitations for a specified torque, is
characterized by its infinite solutions. It has been shown in this
paper that for a current controlled spherical motor, the relationship
between the output torque and the input currents are algebraic and
quadratic. The torque prediction model of a current controlled VR
spherical motor is decoupled from the dynamic equations of the
system, and therefore allows the determination of the optimal
clectrical inputs to be separated from the motion control of the
spherical rotor.

Along with the formulation of input vector optimization, the
method of designing a lookup table for the practical
implementation of the optimal solution in real-time has also been
discussed in this paper. It has been shown that the memory size of
the lookup table can be effectively reduced by parameter
elimination and by making use of the symmetry property of the
pole configuration.
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