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Physically Accurate Synthetic Images
for Computer Vision System Design

Abstract

The design of a computer vision system for part presentation is a complex
hardware/software problem. In the past, standard renderings of parts available from CAD
systems have been used as aids in the design process. However, such standard renderings
are very limited because of the simple illumination models they employ. We present
preliminary results of a study of the utility of physically accurate synthetic images in the
design of vision systems. Physically accurate images can potentially be used both for the
hardware lighting and sensing design, as well as for template design for model-based
matching for part location. We describe how state-of-the-art computer graphics global
illumination algorithms can be used to generate images for the vision problem. We present a
comparison of a variety of synthetic images to images captured using the GRIPPS
retroreflective vision system under development at Georgia Tech.

keywords: computer graphics, computer vision, global illumination, part presentation,
retroreflection, synthetic image generation



Physically Accurate Synthetic Images for Computer Vision System Design
1. Introduction

Designing a computer vision system for determining part location is a complex
hardware/software problem (Lee, 1991a.) The final design consists of many components
including the selection and placement of light sources to illuminate the part, the selection
and placement of the sensing elements used to capture the image of the part and the
development of software to determine part location and orientation from the captured image.
In this paper we consider the use of physically accurate synthetic images in the design of
hardware and software for a low cost computer vision system currently in development at
Georgia Tech. Synthetic images can potentially be used to reduce the number of hardware
configurations to be built and tested, and can provide insight into efficient image processing
algorithms for accurate part location.

Synthetic images are frequently used as an aid in testing image processing algorithms (e.g.
Wau et al., 1990.) Usually simple image synthesis algorithms, available with many
commercial CAD systems, are used to generate these images. These simple algorithms
generally assume idealized (i.e. Lambertian) or nonphysical (i.e. Phong) reflectance models,
limited light source models (i.e. parallel or isotropic point light sources) and do not attempt
to model true camera optics (an ideal pinhole camera is generally used). Such images can be
useful in gaining insight into algorithm performance, but they are extremely limited (Chen
and Mulgaonkar, 1991.) They cannot, for example, be used reliably to compare the
performance of an algorithm in locating a part for two different configurations of the
hardware lighting/camera system.

In the field of computer graphics, attempts to generate "photorealistic" images have resulted
in the development of highly accurate methods for calculating illumination. The use of such
physically accurate methods in an iterative method for interpreting images has been
proposed by Gagalowicz (1990). Other researchers, while maintaining that understanding
the illumination problem is important, feel that physically accurate images are too
computationally expensive to be of use in a vision system (Cowan, 1991). In this paper we
present preliminary results from a study of the utility of highly accurate computer graphics
synthetic images in the design of a vision system. '

We begin by describing the particular vision system design which we ultimately seek to
improve. Next we present the methodology used to compute physically accurate synthetic
images. Then we present preliminary results comparing synthetic images generated using
various methods to images captured by the existing vision system. We conclude with
recommendations for improving the accuracy of the synthetic images and tests that can be
performed to evaluate alternative configurations of the vision system.



2. The Computer Vision System

The system under study is the computer vision component of GRIPPS, the Generic
Retroreflective Integrated Part-Pickup System. GRIPPS has been developed specifically as
a low cost part-pickup system. GRIPPS is described in greater detail in Lee, 1991b, and in
Lee et al. 1991. Here we review just the basic vision system design, and specify the
parameters which we hope to optimize with the aid of synthetic images.

A diagram of the vision system is shown in Fig. 1. The light sources and camera used to
illuminate and image the parts are mounted a distance D above a flat horizontal surface on
which the parts will be placed. To obtain high contrast between the parts and the
background, the horizontal surface is covered with a retroreflective coating. The
retroreflective surface has the property that the peak of reflected light energy is in the
direction of the incident light, as shown in Fig. 2. When a sensor is collocated with the light
source, the radiance reflected by the retroreflective surface is over 300 times that which
would be received from a Lambertian surface with a reflectance of pg =1.

To take advantage of the dramatic contrast between the retroreflective background and the
part to be located, the camera must be essentially collocated with the light sources used to
illuminate the part. In the GRIPPS system, the light sources are a set of N light emitting
diodes (LEDs) mounted in a ring of diameter w around a pinhole camera. Each LED emits
light in a narrow cone angle £. The CCD imaging sensor is located a focal distance f from a
pinhole of diameter d. Images are produced by capturing an image for exposure time 7. The
signal from the CCD imaging sensor is amplified and electronically sampled through an
analog to digital processor, and the resulting array of integer values is sent to an on board
digital-signal-processing (DSP) chip.

The design parameters which affect the accuracy of part presentation using computer vision
may be broadly divided into two types; namely, the intrinsic and extrinsic parameters. The
former characterize the optics f and d, and the illumination w, N, £, and D for a specified
sensor geometry and field-of-view; and the latter describe the relationship between the
camera coordinate frame and the scene coordinate frame (T sai, 1987). One goal of this
ongoing project is to determine the intrinsic parameters that would result in images from
which the position and orientation of a wide variety of parts could be obtained more
accurately.

The software used to process the image uses a model-based matching approach, described
in more detail in Lee and Janakiraman, 1991. The processing begins by identifying the
prespecified features such as fiducial marks on the part or simply the sharp curvature on the
edge of the part. Features of the part are then matched against that of stored templates of the
object. After matching to the template, the location of the center of mass of the object and its
orientation can be computed. The template design can be characterized as two distinct
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Figure 2: (a) A retroreflective surface reflects most incident energy back into a cone
of directions centered around incident direction. (b) A plot of the variation of
retroreflectance for normal incidence with the observation angle measured from the
surface normal.
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Figure 1: Schematic of vision system showing design parameters.
(Not to scale.)



processes. The first process determines a representation of the geometric charateristics of
the parts so that the features can be uniquely and reliably identified in the presence of
highlights due to specular reflections introduced by the collocated source or the general
ambient lighting. The second process determines an accurate set of geometric data to be
used by the image processing software so that the location and orientation of the part can be
calculated from the matched features.

A second goal of this project is to develop a template design method using photorealistic
CAD representations, taking into account the specific illumination effects (e.g. shadows, -
specular reflections,etc.) and optic effects (e.g. depth of field, perspective, etc.) which
would result when this particular vision system is used.

3. Synthetic Image Generation

In this section we review the basic theory of physically accurate synthetic image generation,
and the implementation of a particular image generation system for this project.

3.1 Theory

In computer graphics, the generation of a physically accurate synthetic image has been
modelled as a two step process (Meyer et al., 1986), as shown in Fig. 3a. A description of
a scene's geometric and optical properties, along with the specification of the viewer
position and and image plane is used to simulate the scene illumination, and to determine an
array of radiances (i.e. energy/time-projected area- solid angle). These radiances are mapped
to the limited dynamic and spectral range of the display monitor. This mapping is specified
by a model of human perception (e.g. Tumblin and Rushmeier, 1991) for the computer
graphics problem. The output of the perceptual mapping is the array of values of 0-255 to
be displayed on the computer monitor.

For the computer vision problem, the process in Fig. 3a must be revised to the process
shown in Fig. 3b. The output from the illumination model needs to be energy/area, rather
than radiance at each pixel. The mapping based on human perception must be replaced by a
model of how the system sensor converts incident light energy into a 0-255 value.

Computer Graphics

To understand how to use computer graphics methods for vision simulations, we begin by
looking at the illumination simulation step in the graphics problem. The geometry of the
illumination at each image pixel is diagramed in two dimensions in Fig. 4. In most graphics
methods, an infinitesimal pinhole is assumed, and a solution is found for the rendering
equation (Kajiya, 1986) for each image pixel for each wavelength band:

plxel = fpixel - areaI i (e

0 I,y )dA

p.i’ pixel €))
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Figure 4: Geometry of image synthesis for an infinitesimal pinhole camera.
The radiance incident on a sensor pixel is equal to the radiance leaving the
real world object visible from the sensor through the pinhole.



where:
Loixel 18 the average radiance incident on the pixel, calculated using f(xp,yp,) asa

weighting function over the pixel area, [ f(Xp,¥p) dApixel = 1. In the graphics
problem the form of f(xp,yp) depends on the sensitivity of the human eye.
(xp,yp) is a point on the pixel
Ii(ep,i,cbp,i) is the radiance incident through the infinitesimal pinhole

(6p,1,:0p,1) is the direction to the infinitesimal pinhole in spherical coordinates

pii’
based at (xp,yp) Op ;» is the polar angle, (bp ; is the azimuthal angle

explicit dependence on the wavelength A is omitted.

Assuming the geometric optics approximation is valid, the value of Ii(ep’i,(bp’i) is equal to
the value of the radiance I1,(8y oy o) for the point (x,y,) on a real object visible along the
ray starting at a point on the pixel in the direction (Gp,i,cbp,i). (Note that the bending of rays
by diffraction through a small aperture can potentially be accounted for by methods such as

described by Nakamae et al., 1990.). For reflective (rather than emitting) surfaces
I,(6y,0,0v,0) is not known a priori and must be calculated. As shown in Fig. 5,

I(8y,0.Py ) depends on the light energy incident on the object. Specifically, I,(6y o.by,o) 1
given by the following equation of radiative transfer (e.g. see Siegel and Howell, 1981):

1,8, 00,0) =[P 40y 00,08, 0, LB 0 )cos 0,40, @

where ppa(By 0Dy 0;0v,1:dy,1) s the bidirectional reflectance of the real world object and
the integral is over the entire hemisphere of directions above the real world object at point v.

The incident radiance Ii((f)v’i,d)v,i) may originate at light sources, or may be due to multiple
interreflections within the environment. That is, if a light source is visible in direction
(Bv,i,cbv,i) , the incident radiance is the emitted radiance of the source in the direction of
point v. If something other than a light source is visible in direction (0y,i,$v,0) , the radiance
of that object must be calculated by reapplying Eq. (2). In other words, Eq. (2) is recursive
for multiple interreflections. Solving Eq. (2) accounts for all possible geometric optic
illumination effects -- i.e. shadowing, highlights, caustics, color bleeding, etc.

Methods for efficiently solving Eq. (2) have been studied extensively in computer graphics
over the last decade. Radiosity (e.g Goral et al. 1984, Nishita and Nakamae, 1985, Sillion
et al. 1991) and Monte Carlo path tracing (e.g. Kajiya 1986, Ward et al. 1988) are the major
techniques which have been developed for solving Eq. (2). In radiosity methods the
problem is discretized in object space, while in Monte Carlo methods the problem is
discretized in image space. Radiosity methods are useful for calculating the overall global

8



Figure 5: The radiance leaving a surface on a real object in a direction
(80,d0) depends on the radiance incident on the surface from all
directions. The incident radiance may be from light sources, or may be
from secondary reflections off of other surfaces in the environment.



illumination of an environment, while Monte Carlo methods are useful when highly
accurate high spatial frequency components of an image are required (Chen et al., 1991).

c Visi
For the computer vision problem, the captured image values are related 10 Epje, the
average energy /areaincident, not on the average radiance Iyixe) - TO calculate Epiye) the size
of the finite pinhole in the vision system must be used. Epiye) is found by replacing the

incident radiance I, in Eq. (1) with the incident energy per unit area E;:

J

pixel = pixel _area

B0, .0, (LY )dA -

In our work, we assume the spatial sensitivity of each sensor pixel is uniform, and so
f(xp,yp) is simply 1/Apixe1- Ei(GP,i,d>p’i) is equal to the integral of the incident radiance times
the unit projected area of the pixel in the direction of the pinhole and the sample time T over
the solid angle subtended by the pinhole:

E i(e p,i’q) p,i) - fpinholeli(e'P’i 9 P,i)COS o' p’i'cdo)

pinhole (4)
where the direction (6'p,i,d)'p,i) is in the solid angle subtended by the pinhole, and the center
of the pinhole is in direction (Bp’i,cbp,i) . As before, the incident radiance Ii(ﬁ'p’i,d)‘p,i) is
equal to the radiance leaving the visible real world object as given by Eq. (2).

The values Epye; are the appropriate input to the sensor model. Note that although some

computer graphics methods have accounted for the depth of field effect resulting from a
finite aperture (e.g. Cook et al., 1984), these methods do not calculate Epjxej-

The sensor model for a computer vision system is much simpler than the perceptual model
based on human vision used in computer graphics image synthesis. Explicitly denoting the
spectral dependence of the incident energy per unit area by Epixel(h), the sensor model for

the computer vision system can be modelled as a power law:

= Y
et = K B g Ms(Mdh)” + G,

o)

where :
Gpixel is the output gray scale value,
s(A) is the spectral sensitivity of the sensor
K and y can are parameters which characterize the camera system
G, is the background gray scale value

10



The spectral sensitivity s(A) is given with the manufacturer's data for the sensing element.
K and y need to be calibrated for the system as a whole to account for the non-linear effects
of the analog to digital signal conversion, as well as the sensitivity of the sensing element.
Equation (5) holds for values of Epixe] up to a saturation value Epixel,sat, for which Gpixel is
equal to Gpax-

3.2 Implementation

Both the graphics problem and the computer vision problem require the solution of the
radiative transfer equation given in Eq. (2). Since high spatial frequency variations in
illumination are important in the part location problem, a Monte Carlo path tracing approach
is more suitable than a radiosity approach. We selected the public domain software package
Radiance from the Lighting Systems Research Group of the Lawrence Berkeley
Laboratory to solve the transfer equation at each pixel location. The specific Monte Carlo
solution method used in Radiance is described in Ward et al. 1988. The Radiance software
was originally developed as a tool for illumination design, but has gained wide usage as a
computer graphics image synthesis package. Because it was developed as a design tool, the
output of Radiance has been validated by physical measurements, and by comparisons with
other software packages written to calculate illumination (Grynberg, 1989).

One of the useful features of Radiance is that, unlike many other computer graphics
software packages, it requires physically feasible definitions of the bidirectional reflection
distribution functions pyg. Radiance uses the specular-like plus diffuse-like model for
reflectance which is common in radiative transfer. The specular-like reflectance is modelled
as a Gaussian function centered around the mirror direction, with the spread of the
distribution specified by a "surface roughness" parameter. The diffuse-like reflectance is
modelled as ideal Lambertian. Radiance uses "texture" maps (more commonly referred to as
"bump" maps in graphics literature) to define perturbations of the surface normal to
simulate larger scale surface roughness (such as the bumps on the skin of an orange).
Within this framework, Radiance can accommodate retroreflectance. The retroreflective
surface is defined as a specular-like (i.e. Gaussian) reflectance with a bump map which
always turns the surface normal towards the viewer. In effect, the "mirror” direction is
always back in the direction of the viewer. The result is that the value of pyq is calculated

by the following equation by Radiance.

Pba(00:bo:01:0) = Ps exp(-DY4aP/4naZcosd; (6)

where 3 is the angle between the view direction (8,,,) and the direction of incident
radiation (8;,0; , and « 1s the parameter specifying "surface roughness.”

11



Radiance also requires physically feasible definitions of light sources. Sources are
modelled as finite surfaces, rather than as points. The emitted radiance across each light
source surface can vary spatially. The directionality of the emitted radiance may also vary.
One way the directionality can be specified is giving a light source direction, and the size of
the cone angle € around that direction. Another way is to give a list of relative light source
intensities for directions specified in spherical coordinates.

For a given viewpoint, view frustum and image resolution RxQ (R pixels by Q pixels),
Radiance returns a radiance value for each pixel assuming an infinitesimal pinhole and
infinitesimal pixels (i.e. only one location (xp,yp) is considered for each pixel). The average
radiance over each pixel can be calculated by calculating an image at a higher resolution
MRxMQ. At this resolution each pixel is jitter sampled -- i.e. the location (xp,yp) for each
pixel is chosen randomly. An RxQ resolution image with average pixel radiance is formed
by filtering down the high resolution MRxMQ image. Using this jittering and filtering
technique then, Ip-lxel as given in Eq. (1) is calculated by Radiance.

The Radiance package does not have an explicit mechanism for integrating over a finite
pinhole. In this project we use the following approximation for Eq. 4:

= 0 8

i,ave  p,i pinhole (7)

where:
L ave(©pi:dp,p) is the average radiance incident through the pinhole obtained by

sampling the radiance through many points on the pinhole.

Qpinnole is the solid angle subtended by the pinhole

L ave(0p,;:dp,) is found by taking the weighted average of the radiances calculated using
several different positions for the infinitesimal pinhole, taking into account the shift in pixel
registration when the pinhole is moved. We chose a sampling pattern which requires only
integer pixel shifts, and which samples the pinhole area relatively uniformly. The weight
associated with each sample is equal to the fraction of the pinhole area that sample
represents.

Qpinhole in Eg. (6) is equal to the area of the pinhole projected in the direction of the sensor

pixel, divided by the distance squared from the sensor pixel to the pinhole. For a sensor
plane parallel to the pinhole, Qpinhole can be expressed in terms of the pinhole size d and

the focal distance f:

12



p.i ®

Combining Egs. (7) and (8) gives:

4 2 2
Ei(ep’i,(pp’i) 51i,ave(ep’i,¢P,i)cos 9p,.17td t/4f ©

The value of Epy in Eq. (3) is found by calculating values of I;4,.(6,;,¢p,) from images
in which several samples per pixel were taken.

For our initial implementation we considered averaged values for a single wavelength band.
The method for producing a simulated captured image using Radianceis summarized in the
following pseudocode:

/* Find Average Pixel Radiances for X Pinhole Locations */
For each pinhole sample location X

{
Calculate the array of radiances I[X][RM][RN];

Filter the result of the supersampled image down to I[X][M][N];

}

/* Find Composite Image for Radiance Averaged over the Pixel and the Pinhole */
I_AVE = 0;
For each filtered image X

{

Shift I[X] so that pixels line up with image centered around pinhole;

I_AVE += weight[X]* I[X];

}
/* Calculate Average Energy/Area E from Average Radiance I_AVE*/
/* And Compute Gray Scale G from E */
For each pixel [0][0] to [M-1][N-1]

{

Efm][n] = I_AVE[m][n]*cos 46 [m][n]* nd2v/4fZ;

If (E[m][n] < Esaturation)

G[m][n] = K*E[m][n)Y+G,;
else G[m][n] = Gpaxs

}

13



4. A Comparison of Captured and Synthetic Images

In this initial investigation, we compared a series of synthetic images generated by
increasingly physically accurate methods to images captured by an existing vision system.
Our goal was to examine whether there were meaningful differences in the accuracy of the
various synthetic images.

The vision system of the type described in section 2 was used with D =0.48 m, f= 6.75
mm, d= 0.1 mm and w = 2.54 cm. The illumination system consisted of N=12 AlGaAs _
LEDs (Hewlett Packard model HLMP-8104), which are designed to concentrate the
luminous flux into a cone of = 7 degrees. The typical relative angular intensit&
distribution for the LEDs is shown in Fig. 6. The LEDs have a peak intensity at a
wavelength of 650 nm. The LEDs were chosen as low cost, low power consumption, long
life sources with spectral characteristics matching the imaging sensor. The imaging sensor
was a Texas Instruments CCD TC-211, the output of which was sampled at 4 MHz using a
Motorola MC 101319, an 8-bit analog-to-digital flash converter. 3M Scotchlite Reflective
Sheeting (#3870), a commercially available retroreflective material, was used as a
retroreflective background.

The camera energy/area to gray scale transfer function defined in Eq. (5) was calibrated by
shining one of the LEDs directly into the camera from distance D, and recording the gray
scale values obtained by averaging over the 35 brightest pixels for various exposure times
7. The values obtained were K = 33,844, y = .85, Go = 12 and Gpax = 161.

Two images captured by the system were used for comparison -- an image of the plain
retroreflective background and an image with a shiny stainless steel washer. The images
were captured with low ambient light. The captured images are shown in Figs. 7 and 12.
(Note: Figs. 7-14 can be found on the two 35 mm slides accompanying this paper.)

For comparison with the captured image of the plain retroreflective background, the
following series of synthetic images were produced:

Fig. 8: Background modelled as Lambertian with pq = 1, camera modelled with
infinitesimal pinhole and light source modelled as 7 degree cone.

Fig. 9: Background modelled with ppq given in Eq. (6), with ps = .086 and a = .00612
(parameters chosen to fit data for Scotchlite), camera modelled with infinitesimal pinhole
and light source modelled as 7 degree cone.

Fig. 10: Background modelled with ppq given in Eq. (6), with ps = .086 and a = .00612,
camera modelled with finite pinhole and light source modelled as 7 degree cone.

14
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Fig. 11: Background modelled with ppq given in Eq. (6), with ps = .086 and a = .00612,
camera modelled with finite pinhole and light source modelled with the directional
distribution shown in Fig. 6.

Figures 8 to 11 represent increasingly accurate simulations of the image. Figure 8 is the
grade of output that would be obtained using a standard CAD package. Clearly the image,
which is nearly black, is useless for camera system design. In Fig. 9 the use of the correct
retroreflectance results in realistic gray scale values, but the illuminated area is too small,
and too sharply defined. In Fig. 10, the averaging over the finite pinhole removes the sharp
edges, but the illuminated area is clearly still too small. Finally, using the more accurate
directional light source distribution in Fig. 11 results in a larger illuminated area. ’

For comparison with the image with the washer two synthetic images were produced. In
each the washer is modelled as ideal specular (i.e. perfectly smooth) with a reflectance of ps
= 8.

Fig. 13: Background modelled with ppq given in Eq. (6), with ps = .086 and o = .00612,
camera modelled with infinitesimal pinhole and light source modelled with the directional
distribution shown in Fig. 6.

Fig. 14: Background modelled with ppq given in Eq. (6), with ps = .086 and a = .00612,
camera modelled with finite pinhole and light source modelled with the directional
distribution shown in Fig. 6.

Comparing Figs. 13 and 14 to the captured image Fig. 12 shows that averaging over the
finite area of the pinhole is important in accurately simulating the appearance of the edge of
the washer, and the contrast between the washer and the background.

While the synthetic images show that the correct reflectance distribution, light source
distribution and pinhole model are critical in accurately simulating the captured images,
none of the synthetic images matched the captured images perfectly. The illuminated area in
the captured images Figs. 7 and 12 is more sharply defined than in Figs. 11 and 14. This
may be because a Gaussian does not adequately model the sharp fall-off in the
retroreflectance, and that another function should be used. The geometric alignment of the
camera system, which resulted in the captured image being off-center, needs to be simulated
more accurately. The retroreflective coating used was a flexible sheet that may not have
been perfectly smooth, possibly causing some of the irregularities in the illuminated area.
There was a subtle pattern on the Scotchlite sheeting which is visible in the image which
needs to be modelled in the simulation. Also, the Scotchlite has a specular sheen which
should be modelled. The washer in Fig. 14 does not have the same shape as in the captured
image. This may be due to the precise placement of the washer, or because the reflectance
of the washer needs to be modelled more accurately.

16



5. Conclusions and Future Work

Synthetic images have the potential to be useful in designing computer vision
hardware/software systems. We have presented a methodology for generating physically
accurate synthetic images for simulating the images captured for a computer vision system.
We have shown some preliminary comparisons that indicate physically accurate image
synthesis methods, rather than the synthesis methods used with standard CAD packages,
are necessary to simulate captured images. -

In the next phase of comparisons between captured and simulated images we will consider
the reflectance modelling and geometric alignment issues mentioned in Section 5. We will
go on to test images of many more objects. We will consider a variety of ambient lighting
conditions, rather than simply the effect of direct lighting by the vision system itself. Rather
than just visually comparing the images we will compare the performance of image
processing algorithms on the synthetic and captured images. Once we have completed the
validation of the synthetic imaging process, we will go on to use this process to test various
intrinsic hardware design parameters, and to develop a template design methodology for
feature matching.
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