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Abstract

In machine vision applications, accuracy of the image far
outweighs image appearance. This paper presents physically-accurate
image synthesis as a flexible, practical tool for examining a large
number of hardware/software configuration combinations for a wide
range of parts. Synthetic images can efficiently be used to study the
effects of vision system design parameters on image accuracy,
providing insight into the accuracy and efficiency of image-processing
algorithms in determining part location and orientation for specific
applications, as well as reducing the number of hardware prototype
configurations to be built and evaluated.

We present results illustrating that physically accurate, rather
than photo-realistic, synthesis methods are necessary to sufficiently
simulate captured image gray-scale values. The usefulness of
physically-accurate synthetic images in evaluating the effect of
conditions in the manufacturing environment on captured images is
also investigated. The prevalent factor investigated in this study is
the effect of illumination: the significance of ambient lighting effects
on the captured image and, therefore, on camera calibration was
shown; if not fully understood, these effects can introduce apparent
error in calibration results. While synthetic images cannot fully
compensate for the real environment, they can be efficiently used to
study the effects of ambient lighting and other important parameters,
such as true part and environment reflectance, on image accuracy.
We conclude with an evaluation of results and recommendations for
improving the accuracy of the synthesis methodology.

1. INTRODUCTION

For machine vision system applications such as part
presentation, the accuracy of image gray-scale pixel values far
outweighs image appearance [Lee, 1991]; in this paper, we present
physically-accurate image synthesis as a rational basis for designing
both hardware and software components of a vision system. This is a
very complex task, since such systems consist of many parts and the
most proficient systems are designed by considering the integrated
hardware/software arrangement. Numerical simulation is a flexible,
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practical tool for investigating a large number of hardware/software
configuration combinations for a wide range of parts.

Prior machine vision research includes the use of photo-realistic
synthetic images as an aid in testing model-based vision algorithms
[Wu et al, 1990]; however, these images were generated with the
simple image synthesis algorithms available with most commercial
CAD systems, which assumed idealized or nonphysical reflectance
models, limited light source models and unrealistic camera optics.
While the images obtained with these packages were useful in
gaining some insight into algorithm performance, their usefulness
was limited [Chen and Mulgaonkar, 1991]. These photo-realistic
images were generated based upon work developed in the area of
computer graphics, where appearance of the image to the viewer is
generally the primary concern. Meyer et al [1986] modeled the
generation of a physically-accurate synthetic image. In their model,
the environment description includes the scene’s reflective and
emitting properties, in addition to geometrical information and is
processed via a simulation based upon the physics of illumination,
instead of the idealized or nonphysical reflectance and illumination
models used to produce photo-realistic images.

It was, in fact, attempts to improve the realism of photo-realistic
images that resulted in the development of highly accurate methods
for calculating illumination, which supported the development of
physically-accurate synthesis methods {Goral et al, 1984; Nishita and
Nakamae, 1985; Sillion er al, 1991, Kajiya, 1986; Ward et al, 1988].
The use of such physically-accurate images in an iterative method for
improved image understanding was proposed by Gagalowicz [1990].
Some researchers, while agreeing that understanding the illumination
problem is important, felt that most physically-accurate synthesis
methods were too computationally expensive to be useful in vision
system design [Cowan, 1991]. Rushmeier er al [1992] have developed
an efficient methodology for generating physically-accurate synthetic
images that predict the gray-scale values of images captured by a
computer vision system. Results from this research confirm that
physically-accurate image synthesis methods, rather than those
methods currently available with standard CAD packages, are



Figure 2. Model of radiance leaving a surface

The incident radiance, 1(9 ¢, ). may originate at light sources
or be due to multiple interreflections within the environment. A light
source visible in direction (G ¢ ) contributes an incident radiance
equivalent to the emitted radiance of the source in that direction. If
something other than a light source is visible in direction 6., %)
this equation is recursive and its complete solution accounts for all
possible geometric illumination effects, e.g., shadowing, highlights,
etc.

The non-linearity of the gray-scale response of an imaging sensor
is specified by an exponent “gamma A“ and thus, the sensor for a
computer vision system is modeled here as a power law [Lee, 1994]
as follows:

Y
pxxel = {I pxrel()‘)s(}‘)d)t] +G, €))
where
Gpizet = pixel gray-scale value,
G, = dark-current (zero illumination) value, and

Epizet (M) = pixel energy/area value.

Equations (2)-(5) provide an analytical model for generating the
output signal for a computer vision system characterized by sensor
sensitivity K and system response linearity y . K and y are
empirically-determined constants and s(A) characterizes the sensor as
a function of wavelength for a given sensor. A gamma of unity yields
a linear response, whereas less than unity compresses the bright end
and greater than unity compresses the dark end. In Equation (5), the
average energy incident over the pixel area is calculated from
Equations (2) and (3), which require the solution to Equation (4).

At this point, it is worthwhile to point out the primary
differences between the photo-realistic and physically-accurate image
generation processes, using the governing equations given above:
Photo-realistic images are usually generated using limited light
source (e.g., parallel or isotropic point light sources) and optics (i.e.,
infinitesimal pinhole) models, idealized or nonphysical (i.e.,
Lambertian or Phong) reflectance models, and spectral dependence is
usually ignored. Physically-accurate synthesis methods, on the other
hand, are able to incorporate finite aperture and lens effects
[Equation (3)], include spectral dependence [Equation (2)] and sensor
non-linearity [Equation (5)], as well as model reflectance properties
(e.g., specular, diffuse, anisotropic) and illumination distributions
realistically [Equation (4)].
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3. PHYSICALLY-ACCURATE IMAGE SYNTHESIS

Figure 3 compares the processes used to generate synthetic
images for (a) photo-realistic and (b) physically-accurate synthetic
images for vision system applications. As shown in Figure 3, an
accurate mathematical model is needed to describe the physical scene
and the vision system used to capture that scene. This model is used
to simulate scene illumination, which is represented as an array of
[pixel] radiances. This array of radiances is then converted to
energy/area values, which are transformed by a mapping based on a
model of the system sensor and how it converts incident light energy
into gray-scale values.
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Vision Sensor
Model °

Simulated Vision
System Output

(a) Photo-realistic

(b) Physically-accurate
Figure 3. Model of the synthetic imaging process

The physically-accurate synthetic image is simulated in a two
step process. In the first step, RADIANCE, a freely-distributed
software package from the Lighting Systems Research Group of the
Lawrence Berkeley Laboratory, is used to solve the radiative heat
transfer equation, Equation (4). In the second step, the sensor model
for the computer vision system is modeled using the power law given
in Equation (5).

The specific Monte Carlo solution method used in RADIANCE
has been validated by both physical measurements and comparison
with other software packages written to calculate illumination
[Grynberg, 1989]. However, both the sensor pixels and pinhole,
though small, have finite size that can not be accurately approximated
by the infinitesimally small pixels and pinhoie assumed by
RADIANCE. This problem can be separated into two parts, and each
solved separately. The first problem, that of finite pixel size, is
minimized in RADIANCE by assuming an infinitesimal pinhole,
shooting many rays through each pixel (i.e. sampling over the pixel
area) and averaging the radiance values calculated for each ray.
RADIANCE software does\not have an explicit mechanism for



The effects of ambient illumination are illustrated in the
following captured images and image histograms (Figure 7). The
(wood) background is indiscernible from the board background for
the controlied lighting case (in which ambient lighting was blocked
with two layers of black felt); however, it can be seen for the ambient
lighting case, showing the influence of additional illumination on the
captured images. Note that the image histograms also clearly reflect
this difference.

(a) Controlled,

(b) Ambient Lighting
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(c) Controlled, (d) Ambient Histograms
Figure 7. Captured images and image histograms

The effect of ambient illumination on camera calibration was
shown by performing a camera calibration in ambient lighting and
then using that information to determine the image accuracy for both
ambient and controlled lighting conditions. Twenty images were
captured for both lighting configurations; the centroids of the 25
retroreflective dots in each image were then calculated using image
gray-scale values. The average vertical center-to-center distances for
both the ambient and controlled lighting cases are given in Table 1.

Table 1. Effect of lighting conditions on average calculated center-to-
center distances.

Lighting Average Standard
Condition Distance Deviation
Ambient 19.052 mm 0.199 mm
Controlled 19.196 mm 0.215 mm

As expected, the average distance for the ambient case is
essentially equivalent to the board center-to-center distance;
additionally, the standard deviation concurs with the average RMS
error reported by the FIVS calibration (x-error = 0.262, y-error =
0.274). The slightly high average distance reported by the images
captured in controlled lighting illustrates the influence of ambient
illumination on the image accuracy and, therefore, camera calibration.

941

Determination of Vision System Parameters

To determine the values of K and y for the system, a single
AiGaAs LED (with a 7° cone angle) was chosen as the illumination
source and positioned as shown in Figure 4. Subsequent captured
images represented a wide range of exposure times, ensuring that a
full range of experimental gray-scale output values (from the dark
current value to saturation) was obtained. The dark current gray-
scale value was 22 and the saturation value, Gy was 181. The
values of K and y were determined using the method of least squares.
yielding a K value of 3.38 x 10* and a y of 0.85.

Synthetic images of the retroreflective background were
generated and compared to a captured image of the retroreflective
field (Figure 8). As seen in Figure 9(a), a CAD-generated image
assuming an ideal diffuse surface results in an image which is ncarly
black. Figure 9(b) illustrates RADIANCE ‘s ability to model the
retroreflective background; however, the illuminated area is too small
and too sharply defined. Incorporation of the finite aperture (Figure
9(d)) results in an image with a more acceptable transition between
the illuminated and non-illuminated areas, but the illuminated area is
still too small. The importance of accurate source emission
distribution modeling is shown in Figure 9(c).

Figure 8. Captured Image of Retroreflective Field

Figure 9. Synthetic images of Retroreflective field — Clockwise tfrom
upper-left-hand corner: a) generated with a CAD-package reflectance
model, b) RADIANCE-generated image, using infinitesimal pinhole
and cone-angle illumination model, c) image with finite pinhole
model and Gaussian illumination distribution, d) finite pinhole. cone-
angle illumination model.



Sobel operator to perform poorly. [A factor is determined to be
significant if the absolute value of its t-value is greater than t s =
2.12] Note that part reflectance was not significant in determining
algorithm performance, further substantiating the use of
retroreflective materials to facilitate reliable image capture.

5. CONCLUSIONS

This paper discusses a method for generating physically accurate
synthetic images for manufacturing applications where accurate
location and orientation of the object outweigh its appearance. The
synthesis method is able to incorporate finite aperture and lens
effects, includes spectral dependence and sensor non-linearity, as
well as models reflectance properties (e.g., specular, diffuse,
anisotropic) and illumination distributions realistically.

The physically-accurate synthetic image is simulated in a two
step process. In the first step, RADIANCE, a freely-distributed
software package from the Lighting Systems Research Group of the
Lawrence Berkeley Laboratory, is used to solve the radiative heat
transfer equation. In the second step, differences between photo-
realistic and physically-accurate images are highlighted, and methods
to overcome limitations for generating physically accurate images are
discussed: Physically-accurate pixel values are related to the
energy/area falling on the sensor pixel and must be transformed by a
mapping based on the vision sensor model. Modeling the
relationship between pixel gray-scale and energy/area values as a
power law, and using the empirically-determined sensitivity constants
for the FIVS system results in synthetic images which more correctly
predict captured image values. Furthermore, the results show that
both the sensor pixels and pinhole, though small, have finite size that
can not be accurately approximated by infinitesimally small pixels
and pinholes; as demonstrated, the finite pinhole sampling method
produces significantly improved images. Additionally, the
significance of ambient lighting effects on the captured image and,
therefore, on the camera calibration was shown; if misunderstood,
these effects can introduce apparent error in calibration results, which
include the focal length, lens distortion and the transformation to
determine part location and orientation. While synthetic images
cannot fully compensate for the real environment, they can be
efficiently used to study the effects of ambient lighting and other
important parameters, such as true part and environment reflectance,
geometric alignment, etc. on image accuracy.

Future work includes investigating improved reflectance and
illumination modeling; this provides significant opportunities for
improvement: It is unlikely that the simple reflectance modeling used
to represent the board background or the retroreflective dots is
sufficient to adequately predict captured-image performance. Also,
the light sources chosen for the FIVS system are unlikely to be
identical and may vary significantly from the typical pattern used in
the simulations shown above (e.g., the distribution pattern may not be
symmetrical). Distribution of ambient lighting sources may vary
similarly. After addressing these issues and sufficiently validating
the methodology, simulated images will be used to study a variety of
hardware design parameters and their effects on image accuracy.
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necessary to sufficiently simulate captured images. Highly-accurate
methods of calculating illumination establish the basis for generating
the array of pixel radiances representing scene illumination. Most
graphics methods, however, assume an infinitesimal pinhole to find a
solution for the rendering equation [Kajiya, 1986], which calculates
the average radiance incident on each image pixel for a wavelength
band.

The benefits of this research are three-fold: First, it provides a
rational basis for designing the hardware and software components of
a machine vision system. Secondly, this research introduces a
methodology for comparing algorithms and predicting the optimal
algorithm (and optimal performance) for a specific application.
Additionally, it provides an opportunity to perform an in-depth study
of the factors that can significantly degrade the performance of image-
processing algorithms and aid in the determination of critical design
parameters. A third contribution is the ultimate development of a
well-designed CAD-tool which utilizes physically-accurate synthetic
images to accurately and inexpensively predict the performance of a
proposed vision system design prior to implementation or the
construction of a prototype, minimizing the need to build and test a
large number of hardware configurations. Such a tool also allows
necessary changes in part design to be made earlier in the design
phase, significantly reducing implementation time and improving
industrial reliability.

The remainder of this paper is organized as follows: the theory
of physically-accurate synthetic image generation, which includes a
discussion of the governing equations necessary to generate
physically-accurate images is followed by a detailed comparison of
the differences between photo-realistic and physically-accurate
synthesis methods. The Experimental Investigation section begins
with a description of the hardware testbed, followed by a discussion
of the computational model for radiative transfer, which provides the
foundation for physically-accurate image synthesis. This is followed
by the results of the specific experiments performed to better
understand the effect of parameters, especially [source and ambient]
illumination; the paper concludes with a discussion of the results and
recommendations for future work.

2. FUNDAMENTAL EQUATIONS
The geometry of the illumination incident at each image pixel is
diagrammed in two dimensions in Figure 1. Radiance incident on the
sensor pixel is equal to the radiance leaving the real-world object that
is visible to the sensor through the pinhole. The solid angle of the
cone rays leading to the patch on the object is equal to that
corresponding patch in the image. Thus, it can be shown that the
irradiance (or the power per unit area) incident on the surface of a
pixel is given by
Ii(ep,i’ ¢p,i): [n(ep.i’ ¢p.i)cosep,i dw (1

where

0, ¢ = spherical coordinates (8 is the polar angle and ¢, the

azimuthal angie) specifying the direction in three
dimensional space,

5;0,p,, ¢ p,i) =irradiance falling on a point (xp, yp) on the pixel

along the ray from the object, and
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1,0 pi» $p,i) = radiance (or the power per unit area per unit solid

angle) from the object in the direction toward the
pinhole.

point, v, on
real-vorld object

point. p
on pixel

pinhole

Sensor pixels.
image plane
Figure 1. Geometry of illumination simulation for
an infinitesimal pinhole camera.

In machine vision, captured image values are proportional to
Epixd()»), the average energy/area incident on the sensor pixel, or

Epixer(h) = Ipixel—area Ei®pis 0p)/(xps yps MdApizer  (2)

where E;(@ ,;, ¢, ) is the energy/area incident on the sensor pixel
at that point along that direction and f(xp, Vp» A) is the spatial

sensor sensitivity for a given wavelength band at that point on the
pixel. The energy/area incident on the pixel for a specified period of
time 1 can be solved by integrating the irradiance over the pinhole
area as follows

E@®pi ¢pi)= Ip,',,ho[elo(e pir $pi)cost it d® pinhote (3)

where t represents exposure time to scene illumination and ® is the

solid angle subtended by the pinhole. The irradiance, 7;(9 pis ® pi)

is equal to that leaving the visible real-world object and depends on
the irradiance falling on the surface from all directions. This
irradiance may be from light sources or from secondary reflections
from other surfaces in the environment. For reflective surfaces, the
object radiance is not known a priori and must be calculated; its value
depends on the light energy incident on the object (Figure 2) and is
given by the equation of radiative transfer [Siegel and Howell, 1981]:

1,® vior Pvo) = Ipbd(ev,o,‘bv,o; ev,ird’v.i)[i(ev,i’ byi) cosev,idwi
m
4
where

pw(ev o Pyt 9”. ¢,,) = bi-directional reflectance of the object, and

v

Ii(B”, ¢v,) = incident radiance on the real-world object at point x,y)
© 7 on the object, and the integral is over the entire
hemisphere of directions above that object at that point.



integrating over a finite aperture; therefore, the array of radiances for
the finite pinhole is found by taking the weighted average of
radiances calculated for an infinitesimal pinhole at several different
positions within the finite pinhole.

To transform the array of irradiances determined by the
computational model into predicted gray-scale values corresponding
to a particular system, K and y, are calibrated experimentally for the
system which accounts for the system non-linearity. Figure 4
suggests a general technique for calibrating K and y, where a known
illumination source of a single wavelength band is sampled.
Therefore, the spectral sensitivity function s(A) is constant in
Equation (5) and its contribution can be absorbed into the value for
K. Note that the uncertainty in the value of the power output for the
LED does not affect the value of y; however, it would "scale” K,
shifting the histogram of gray-scale values left or right. For a
specified source of intensity S (power per unit solid angle) with an
included angle of € degrees, the small planar patch of area on the
sensor at a distance D from the source subtends a solid angle of
mtan’(/2). Over an exposure time of 1 seconds, the intensity of the
source on the sensor is

E = Sntan’(e/2)t. (6)
A series of images can be obtained over a wide range of exposure
times, ensuring that a full range of experimental gray-scale output
values (from the dark current value to saturation)is obtained.

Sensor
R

Pinhole

ZNNT™NE
_ Qo

Figure 4 Calibration experimental setup

Figure 5 shows a schematic of the experimental setup where the
imaging sensor, signal conditioning amplifier, and A/D converter are
treated as an integrated unit. The relationship between the average
gray scale value and the average energy of the source over the
exposed area on the sensor can be determined from Equation (5),
which can be rewritten in the following form to facilitate the
determination of K and y:

In(G-G,) = yInE + InK. ©))
r-— == -7 = = - = = — = = — = = 1
E ” [
Iilumination ccp |, Signal AsD
| Amplification, Converter |
|
I |
| |
[ Video |
Ran
[ '
L e i vt it e i i o i e, e P I |
G
Image

Figure 5. Calibration of System Response
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4. EXPERIMENTAL INVESTIGATION

While the opportunity to increase image accuracy by studying
and understanding the parameters which influence image accuracy
exist in many areas, the most important parameters include
ilumination distribution and ambient lighting, part reflectance. and
geometric alignment. This study concentrated on the effects of
illumination distribution and ambient lighting on image accuracy and
repeatability. Three experiments were conducted to examine the
effects of design parameters on image accuracy: First, the effect of
ambient lighting on captured images and thus on system accuracy was
studied experimentally. Next, the sensor/system sensitivity and
linearity (required in Equation 5) were empirically determined.
Finally, experiments were conducted to study the sensitivity of a
specific image-processing algorithm to four major design parameters
using synthetic images (which were generated using the sensitivity
constants determined in the second experiment).

The vision system chosen for this study is the FIVS (Flexible
Integrated Vision System) developed at Georgia Tech [Lee and
Blenis, 1994]. The configuration as shown in Figure 6 utilized a
structured, co-located illumination system consisting of twelve
AiGaAs LED’s (with a 7° cone angle) placed circumferentially (in a
25 mm diameter) around the lens (focal length = 10.59 mm).

Figure 6. FIVS Illumination System

This system as shown in Fig. 6 is an effective prototype for the
validation of the proposed methodology for several reasons: The use
of retroreflective materials in this application enables the capture of
reliable gray-scale images with a high object-to-background contrast
without a detailed prior knowledge of object geometry and surface
reflectance. Retroreflective vision sensing also facilitates the use of
low-power, low cost light sources for part presentation. The chosen
CCD sensor has a strong spectral response at the dominant
wavelength provided by the illumination sources and is reasonably
insensitive to the effects of ambient lighting.

Effect of Ambient llumination

A calibration board containing a 5x5 grid of retroreflective dots
was the subject of captured and simulated images. The dots are
circular areas of 5/8 inch diameter, spaced by a 3/4 inch (19.05 mm)
center-to-center distance. The dots are placed on a background of
partially diffuse black tape. Tsai’s [1987] camera calibration was the
algorithm used to examine the effects of source and ambient
illumination.

The effects of ambient illumination are illustrated in the




Synthetic images of a calibration board were generated and
compared against captured images under both controlied and ambient
lighting conditions; for this study, the board was positioned at an
angle of 34° to the diffuse background. Sample images are shown in
Figure 10. The limitations of infinitesimal pinhole modeling are
shown in image (b); averaging over the finite aperture results in an
image (c) that more nearly reflects the gray-scale values of the
captured image. While the synthetic images illustrate that the correct
reflectance distribution (i.e., the ability to model retroreflective
materials), pinhole model and light source distribution are critical in
accurately simulating captured images, it is clear that much work
remains to be done.

Figure 10. (a) Actual Captured Image (b) Synthetic Image Assuming
Infinitesimal Pinhole, (¢) Physically Accurate Image with Finite
Pinhole.

(a) Captured image

(b) Synthetic Image

Figure 11. Edge Images

An experimental investigation of edge synthesis was also
performed. A comparison of captured and synthetic images of the
transition between a black diffuse surface and the retroreflective
background is shown in Figure 11; an exploded view of the edge
transition (Figure 12) shows the importance of the y (sensor
nonlinearity) calibration for the system. As seen in this figure, an
edge model which doesn’t account for sensor nonlinearity fails to
predict the edge transition accurately. The actual edge shows a
nonlinearity factor between 0.85 (the experimental value) and 0.90.
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Effect of Gamma, Comparison of Reat & Syn. Edges

GS Vaiue
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Figure 12. Effect of Gamma on Synthetic Edge Modeling

Factors Affecting Performance

The primary motivation of this investigation was to study the
effects of four factors — camera angle, LED angle, part reflectance
and part shape — on the performance of a specific image-processing
algorithm. A 2* full factorial experiment was designed to generate
the 16 synthetic images used to study the effects of the chosen factors
on algorithm performance. The specific image-processing algorithm
studied was the Sobel edge enhancement operator, which was used to
enhance the edge locations of each synthetic image. Edges were
extracted from each enhanced image using the same threshold value;
this edge information was then used to determine the apparent length
of the part. Table 2 summarizes the results. For each factor, two sets
of eight samples corresponding to the high and low leve! are
compared.

Table 2. Significance of the Four Design Parameters on Sobel
Algorithm Performance

Factor Description Low Level | HighLevel | ti
A: Illumination angle 0° 5° 0.42
(of LED's)
B: Camera 0° 10° 6.72
(sensor/pinhole) angle
C: Reflectance of part Diffuse Specular -0.13
D: Part Shape Flat Cylindrical | 4.70

To eliminate the confounding of effects due to sensitivity to part
location and size, both the cylindrical object (1 inch diameter and 1
inch length) and flat objects (1 inch by 1 inch square) were designed
with the same projected area and location in the image. Asa
precaution, a ceiling was placed on part length. in case some edges
were undetectable at the threshold value. Even prior to analysis, it
was clear that camera angle (which affected field illumination) was
significant— none of the images generated with a high level of factor
B (a 10° camera angle) could correctly locate the part. Results of the
study (Table 2) showed factors B and D (camera angle and part
shape) and the interaction of BD to be significant in the performance
of the Sobel operator; i.e., high levels of these factors caused the



