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Abstract - The ever increasing cost of energy and advance in
permanent magnet technology have the incentives to develop
geometrically compact and energy-efficient electro-magnetic
(EM) actuators for robotic and automation applications. Design
automation of these actuators often involves solving a magnetic
field problem. This paper presents an adaptive meshless method
(MLM) that inherits many advantages of FEM but needs no
explicit mesh structure for design of EM actuators. Specifically,
this paper offers a technique to estimate the distribution of
numerical errors and a scheme automatically inserts additional
nodes to improve computational accuracy and efficiency. Five
examples are given; the first three are numerical examples,
where exact solutions are available, provide a means to validate
the adaptive MILM and evaluate its effectiveness against MLM
with uniform node distribution. The other examples, where the
magnetic forces are computed from the Lorenz’s law, illustrate
the use of adaptive MLM for the pole design of a three-DOF EM
actuator. We also verify the results by comparing the computed
forces against published experimental results.

Index Terms - electromagnetic, adaptive meshless method,
finite element, magnetic field, actuator design.

1. INTRODUCTION

Rapid growing interests in developing mobile and
intelligent robots for applications in non-traditional industries
(such as agriculture, food processing, medical service and
entertainment industries) coupled with advance of low-cost
high-coercive permanent magnet (PM) technology have
motivated the development of novel -electromechanical
actuators that are geometrically compact and highly energy-
efficient. The trends have been further accelerated by the ever
increasing cost of energy. Design automation of the PM-based
EM actuators involves solving a magnetic field problem.

With the advent of computational technologies, many
engineering problems can be solved with numerical methods
such as finite element method (FEM), boundary element
method (BEM) and finite difference method (FDM). Among
these, FEM has been most widely used as it can handle
complicated geometry with the help of a mesh generation
program. However computation accuracy of FEM depends on
the quality of the mesh. Despite considerable effort has been
devoted to improve the design of the mesh and the algorithm
to generate it, the creation of a proper element structure
remains a challenge; human involvement is still unavoidable
for most of engineering analyses with FEM. Furthermore, the
need to model both the dimensionally very small air-gaps
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where energy conversion takes place and the remaining
electromagnetic structure presents a significant challenge.

Recently meshless methods (MILLM), which inherit many
advantages of FEM and yet, they need no explicit mesh
structure to discretize geometry, have been proposed [1] and
applied to some magnetic field computation [2]. The MLM
method based on a similar theoretical framework as FEM has
some unique advantages: firstly, it requires only scatter nodes
(instead of elemental structure to discretize geometry, which
significantly eases the preprocessing task. Secondly, it uses
smooth shape functions to interpolate the field variables at a
elobal level, which results in a smooth solution requiring no
post-processing. Last but not least, it is an ideal method for
adaptive computation since no element reconstruction is
needed in the process of nodal insertion.

Most of earlier researches in MLLM focus on proposing
new methods for constructing basis functions. Little attention
has been put on solving practical applications which exploit
the advantages of MLLM. Recently, some research efforts have
been seen in solving two technical problems related to
adaptive MLLM. The first is to estimate computational error in
MLM using methods such as residual technique in [3] and
recovery technique in [4]. Although they are effective and
efficient methods, these methods are mathematically difficult
to derive and are complicated to apply in practice. The second
is the development of a nodal insertion algorithm, which is
needed to reconstruct integration cells after the nodes are
inserted. Most adaptive MLM’s use the background cell
technique, which requires additional computation time
particularly when the nodal distribution becomes irregular.
Methods (such as quadtree technique) have been proposed to
improve the efficiency of the reconstruction process [5, 6].
However, the additional computational load cannot be totally
eliminated. In [7], a stabilized conforming nodal integration
technique has been proposed to avoid the need for
constructing background cells. This method has some
successful applications in adaptive computation, for example
[8] but its extension to three dimensional computations
remains a challenge.

For these reasons, we offer an adaptive MLM for
magnetic field computation for designs of electromagnetic
actuators. The remainder of this paper offers the followings:
1) We offer an error estimation technique for adaptive MILM.

We extend the posteriori error estimation technique to
MIM. This technique originally developed on the observation
that the FEM results at certain locations (such as nodes) are
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more accurate than at other locations has achieved some
successes in FEM [9, 10]. However, the basis function in
MILM is, in general, not a polynomial; the posteriori error
estimation technique developed for FEM can not be directly
applied to MLLM. In this paper, we present a modified error
estimation built on two different support sizes of a basis
function. As will be illustrated with a one-dimensional (1D)
example, this modified error estimation characterizes the true
error remarkably well, and its computation in MLLM is simpler
than in FEM.

2) We discuss practical issues related to the nodal insertion.

We present an automatic node insertion method based on
a Voronoi plot technique along with the partition unity
integration [11] scheme for obtaining the discretized system of
weak-form formulated equations.

While the MLLM does not need elements to perform
numerical integration as in FEM, most of ML methods divide
their computational domain into small numerical integration
cells (called background cells) to ensure its accuracy. When
the nodal density increases at a local area, it 1s desired to
increase the density of the background integration cell at that
area to ensure the accuracy, which makes MLLM lose some of
its advantages. For this reason, we introduce a different
numerical integration scheme, called the partition unity
integration, in which the density of integration cells simply
increases with the number of nodes.

3) The adaptive ML computation is validated.

Three numerical examples, where exact solutions are
available, are given to validate the computation of adaptive
MLM. These examples illustrate the processes of error
estimation and automatic node insertion. They also show the
effectiveness of the adaptive MLLM on the convergence by
comparing the results against that those computed with
uniform node distribution.

4) We illustrate design applications of EM actuators.

Two examples (Examples 4 and 5) illustrate the use of
adaptive MLLM for design of electromagnetic actuators with
high coercive permanent magnets. In these examples,
magnetic forces are computed using the Lorenz’s force law.
Example 4 compares the computational results against a set of
published experimental results. Example 5 shows how the
MILM can be used to analyze the pole design of a three DOF
spherical motor to improve the torque-to-weigh performance.

II. ERROR ESTIMATION IN MLM

One of most common methods to improve the accuracy of
the numerical approximation is to reduce the nodal space (or
increase the density of nodes). The simplest way is to
uniformly increase the nodal density in the whole
computational domain. However, if the large numerical errors
occurs only in certain local regions, this method is inefficient
since extra nodes in small error regions do not help improve
the overall computational accuracy but they would simply
slow down the computational speed. Thus, it is desired to have
an estimate of the overall error distribution of the computation
so that additional nodes can be effectively inserted into large
error regions accordingly.

The exact numerical error e can be defined as follows:

e(x) =@, (x)-D,(X) )
where _and | are the exact potential field distribution and the
approximated solution using the MLLM respectively. However,

. 1s often unavailable in practice. Thus, a modified form is
used to estimate the numerical error:

e(x)=D,(x)-@;(x) )

where | and | are both numerical results but | is numerically
more accurate than . As an example, , is a numerical
solution obtained with nxn number of nodes, and |, is a
solution of 2nx2n nodes. However, it is desired that , can be
computed without recalculating with the denser nodes for
computational efficiency.

For the above reason, we present an alternative error
estimation based on two different support sizes of a basis
function to locate regions of large numerical errors for the
adaptive MLLM:

é(x)= Z\Pi,d(x)q)i,d - Z\Pmd (X)D; 54 3
i=1 i=l

where |, and ,, denote the basis functions at the i” node with
a support size d and 2d respectively; |, is the solution solved
by initial computation; and ,, is the fitted result using the
basis function with a support size of 2d. As an example, we
include a commonly used MLLM basis function (known as the
reproducing kernel particle, or the RKP) basis function in the
appendix. If the basis function is non-interpolating (as often
the case in MLM), ,,, can be solved from the following
system of linear equations:

®,, =E"'®, “)

where the elements of the matrix E are given as
&, =Y, 04(%;) &)

Once the error is estimated from (3), locations of large errors
are identified as follows:
VX, te(x,)>e, (6)

where x, is the tested location; and e, s a specified error
threshold.

The rationale for (3) can be explained with the aid of Fig. 1,
which compares two different support sizes of a RKP basis
function. As shown in Fig. 1, the larger the support size the
smoother is the basis function. In general, it is more difficult
for the basis function with a larger support size to approximate
a function with an abrupt change in their solution. Thus,
regions of potential large errors can be located by comparing
the approximations obtained the solutions of two different
basis functions. Numerical experiments have confirmed this
finding.
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Fig. 1 Illustrating RKP basis function with two different support sizes
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In this paper, the weak form equations are derived using
Galerkin method in the MLLM: First, the approximation (A.7)
is substituted into the governing equation. Both sides of the
equation are then multiplied by a test function. In WFF, both
the test and trial functions are from the same functional space.
Finally, the resulting equation is integrated over the entire
domain.

Example 1: 1D problem illustrating the error estimation for
MIM

We illustrate the method here using a 1D problem
characterized by the 2" order ordinary differential equation:

d’y/de* = f(x) )

where f(x)=—6x—¢ /4 [2 —(2x-1)’ /o J /. The

boundary conditions are

9(0)=—* and y(1)=-1
is a constant used to control the shape of solution.
3 2x-1)/40%

To illustrate the error estimation, we solve (7)
numerically using MLLM with weak form formulation (WFF).
The weak form equation is obtained by substituting the ML
approximation

where

The exact solution is given by y =—x" — el

Bx)=D i)y,
i=1
into (7) and integrating the result by parts, which yields

1 d¥ . & d¥, 1
s le Ly =[x ®)
For the purpose of inserting additional nodes, we compare the
estimated error against the exact error with an emphasis on the
error at the mid point between two adjacent nodes. As shown
in Fig. 2(a), the solution has a high gradient region around
x=0.5. The comparison in Fig. 2(b) shows that the results of
the MLM (with a uniform distribution of 21 nodes) has a
relatively large error around the high gradient region of x=0.5.
In order to insert additional nodes efficiently, the error
estimation must identify this large error region faithfully with
reasonable accuracy. As compared in Fig. 2(b), the estimated
error characterizes the true error remarkably well, and its
001111putati0n in MLLM is simpler than in FEM.
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(a) Exact and computed solutions (b) Exact vs estimated Error
Fig. 2 Comparison between exact and estimated errors

III. ADAPTIVE NODE INSERTION FOR MLM

Additional nodes can be inserted into the computational
domain using the Voronoi plot [12] technique that constructs
one Voronoi cell for each node.

Node Insertion Scheme:

An example Voronoi plot for a 2D computational domain
is shown in Fig. 3, where the solid dots represent the nodes
and the dash lines are boundaries of the Voronoi cells. As
shown in Fig.3, a Voronoi cell is a polygon containing all the
points closest to the node that it surrounds. The error at the
vertexes of each Voronoi cell is computed from (2). If the
error at a corner point satisfies criterion (6), a new node 1is
created at that point as illustrated in Fig. 3. The three triangles
at the comners of a Voronoi cell are example regions of large
numerical errors.

[ 8

Fig. 3 Voronoi plot with 3 large error point

Support Size:

The support size of inserted node is calculated using (9)
as the maximum distance from the node to its surrounding
nodes whose voronoi cell is adjacent to this node:

B= ap-max("xj —xi”) )

where r, is the support radius for i node; x, is the coordinate of

i" node; x, is the coordinate of /" node. The voronoi cell of j*

node is adjacent to the Voronoi cell of i node. In (9); a,isa

constant coefficient, which is normally taken as 1~3. For the

newly inserted node, the support size of its basis function must

be chosen carefully considering the following trade-off:

1.The support radius must be sufficiently large to cover
enough nodes for constructing the ML basis function. On
the other hand, it is desired to localize the effect of the
newly inserted nodes, and thus the support radius should be
kept small.

2. Computational load increases as the support radius increases.

Partition unity integration:

The method of partition unity integration performs
numerical integration based on the support of basis function.
When a new node is inserted, a new integration cell is
automatically created with no additional effort and thus, this
numerical integration scheme is very suitable for adaptive
computation.

Most of the basis functions used in MLLM (including RKP
basis function) have the partition unity property:

i‘{’i(x)=1
i=1

with which the integration for an arbitrary function f{x) in the
computational domain can be computed as follows:

[reonx= [rx) e ixne=Y [rx¥,0de
Q Q i=1 i=1
where  is the computational domain. To exclude points
outside the computational domain, (11) is written such that the

10
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integration is within the support domain S, of i
function:

i j SO, (X ) = Z jf(x)P(x)‘Pi(x)dx (12)

i=1 O i=1 S;
i Pix) 1 whenxe Q
where X)=
0 whenxg Q
Partition Unity

Integration Cell

Fig.4 Partition Unity Integration cells

The global integration for the whole computational
domain 1is divided into 7 sub-integration domains and
performed upon the support domain of n basis functions.
Because the support domain of the basis functions, in general,
has a regular shape, the conventional numerical integration
scheme such as Gaussian quadrature can be applied casily.

Example 2: Effect of adaptive node insertion on converging
speed

Consider the 2D problem Viu= VzuA(x,y) 13
with the following boundary conditions:
u(x,0)=0; u(x1)=0;u(0,y)=0; u(l,y)=0 (14)

The exact solution is given by

wy(x,9) =58P (1= x P (1= p (&% =)™ 1) (15)

We investigate the effects of adaptive node insertion on
converging speed by comparing it against a typical weak-
form-formulated MLLM (with a globally uniform distribution
of nodes). In other words, the nodes of the uniform-node
MIM are increased uniformly in the computational domain
while adaptive MLM increases its nodes according to the
estimated error. Both methods start with an initial computation
of 6x6 nodes. Three successive insertions are performed for
each method. For the uniform-node MLM, the three
successive node distributions are 8x8, 9x9 and 13x13. The
node insertion of the adaptive MLM is automatically
generated using the estimated error criterion (6) and 1is
demonstrated in Fig.5.
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(a) initial nodal distribution (36) (b) 3 time nodal insertion (146)
Fig. 5 Process of adaptive nodal insertion
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Fig. 6 the exact solution of example and error comparison
For the purpose of comparison against the exact solution
plotted in Fig. 6(a), we define the computation error as
follows:

error = Jﬁ (ucnmputed - uexact )2 dQ (16)

Since the computational time is directly proportional to the
number of nodes, the comparison is made by plotting the
computational errors versus the number of nodes in Fig. 6(b).
The followings can be observed from the converging process
of two methods:

1. Both methods tend to converge to the exact solution as the
number of nodes increase. However, the adaptive MLLM
has a significantly higher converging rate.

2. The adaptive algorithm can effectively identify regions of
large errors, which often occur around high gradient
region.

3. The first two nodal insertions result in rapid error reduction
as compared to the third insertion. As the number of nodal
insertions increase, the error caused by highly irregular
nodal distribution may gradually outweigh the benefit
eenecrated by additional nodes- this may hint that the
number of nodal inserting iterations should not be too high
in order to maintain the efficiency of algorithm.

Example 3: Handling the Discontinuity of Magnetic Field
The interest here is to demonstrate the use of adaptive
node insertion to approximate discontinuities that often occur
around the material interface of a magnetic circuit. For this
purpose, we use the adaptive MLLM to solve for the magnetic
field intensity H=-V® around a cylindrical permanent

magnet (uniformly magnetized along its axis, M =M_i_) in

free space, where @ is the magnetic scalar potential. In
cylindrical coordinates, @ can be solved from the Laplacian
equation:

2. 2

VZCIJ:li pag +L28 q2>+a q2>:
pop\ dp) p 36" 9Z

where p=r/R, Z=7/R, and R is the radius of the magnets. For

this axi-symmetric problem, o®/06=0 . The BC at the infinity
far boundary is

an

(17a)

At the material interface, H s continuous along the tangential

direction; and the flux density B is continuous along its

normal. In terms of scalar potential functions,
q)P = q)q

O =0

X—>

(17b)
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(ﬂquCDq -4, VO, )-n =(Mq -M, )-n (17¢)

where the subscripts, p and ¢, denote as two different regions.
In addition, for the symmetry
o00/dr=0 atr=0.

The weak form of this is shown in (18):
¥, (M, ~M, )ondl ¢, V¥, (x)V[i&‘“i(x@ide =0 (18)
T, Q i=1

17d)

The magnetic scalar potential and field intensity along the
7 axis are obtained by the adaptive MLLM and compared
against the closed form solution in Figs. 7(a) and 7(b)
respectively. The results of uniform-node MLLM are obtained
with 41x41 nodes. The adaptive MLLM starts with a uniform
nodal distribution of 221 (uniform 13x17) nodes and increases
to 658 nodes after three successive insertions. Similar as in
Example 2, all additional nodes are inserted into large gradient
region which is the region around magnet pole in this case.

135 i 15

'\ """" ClozedForm || | [ Close Form

A - MLM'WFF — - — - MLMWesk
1 b Adaptive ML 1 Adaptive MLM

xiind
\f
3
IR

I=
-

0s L " ps

0

o 005 o1 015 02 025 08§ 06 -04 02 0 02 04
Magnetic Potertial slong z axis RH_ (8]

(a) magnetic scalar potential (b) magnetic field intensity
Fig. 7 Effect of adaptive node on handling of discontinuity

While the result of uniform-node MLLM offers a very
good overall prediction but exhibits some oscillations near the
discontinuous interface. As compared in Fig. 7, the potential
and field intensity computed by the adaptive MLLM with only
658 nodes (less than half of the number of nodes used by the
uniform-node MLLM) match the closed form solution very
well at the material interface. With a higher nodal
concentration at the material interface, the adaptive MLM is
able to approximate the discontinuity satisfactorily with a
continuous basis function. This suggests that the adaptive
MLM 1is a good alternative for solving problem with field
discontinuity.

IV. POLE DESIGN OF ELECTROMAGNETIC (EM) ACTUATORS

An important step in designing EM actuators is to predict
the field interaction between the stator and rotor poles. The
following two examples illustrate the application of the field
results obtained using the adaptive MLLM in Example 3 for
practical design of EM actuators. Example 4 verifies the
computational results against published experimental data.
Example 5 analyses the pole design of a three DOF spherical
motor for improving the torque-to-weigh performance.

Example 4: Force between EM and PM

This example is selected from one of T.E.A.M. problems
[13], where the experimental setup is shown in Fig. 8. The
forces between coil and magnet are computed from the
Lorenz’s law for two configurations with the dimensions listed
in Table 2. Once the magnetic ficld is computed, the force on
the current volume can be obtained by integrating the force
density exerted on the current carrying conductor by its
interaction with the magnetic field:

5457

F= J'V(JxB)rdrdedz 19)

where J is current density; and V is the volume of the current
conductor. Fig. 9 compares the computational result with
experimental result. The computed restoring force matches the
experimental results very well while the computed axial force

is slightly larger than measured force.
Table 1: Dimensions of Example 4

1.524mm 5
Configurations  Large Small
cooocooool| K Pemenent | | o | d, (mm) 3.048 1.524
anet N S d, (mm) 3.962 3.175
5 | e | L d, (mm) 2.998 1.6
core) L (mm) 1.6 0.8128
SSessssee Coil res. () 57 32
A2 mm=s Wire length (m) 3 1.68
Fig. 8 Experiment configuration Samarium-Cobalt magnet; 4 M =1.02 T

2 04

exp: large coil x exp large coil
- 2l r?nﬁn slmall coil +  exp: smal cail pes
Vi B WL e ol 03| —— —MLM: large coil e
'ig L R L MLM: smail coi N LM smal ol e
iz} = A
@ o i
z 20z o
o £ %
2 z #
3 : ¥
w 01 4
e T o
AR
0 ‘ . ! ; . e
0 01 02 03 04 05 oditepp : : :
Air gap between coil and magnet (mim) 01 0z 03 0.4 0s

Distance hetweem coil and magnet (mm)
(a) Axial force (b) Restoring force
Fig. 9 Comparison between computed and experimental results
Table 2 Parameters used in simulation

Rotor Stator Coil PM rotor pole
Design  radius,mm  QDxIDXL (mm) # of ODXL (mm)
turns
1 37.5mm 19.05%9.53x25.4 1050 12.7x12.7
2 46.5 18x4x27 900 25%10, 20%5, 16x6, 12x3,
8x3

Air gap = .5mm; Magnetization g M =1.27T
Example 5: Pole design of a Three-DOF spherical actuator
Figure 10 compares two example pole designs [14, 15]
for a spherical motor capable of providing three degrees of
freedom (DOF) motion in a single joint. The geometry and
layout of the magnetic poles have a significant influence on
the torque performance of the motor. The rotor of Design #1
consists of two rows of 8 small PM’s whereas Design #2 uses
one row of 8 large PM’s. Detailed geometries of the two pole
designs are given in Table 2. Fig. 12 compares the torque
output per unit radius computed using the adaptive MLLM with
Lorenz Law for a single EM-PM pole-pair. The effects of
pole layout on the torque profile for Design #1 are plotted in
Fig. 12.

L Non-
Noixmagnetic

. magnetic
igterial Spherical : s?\ ol
, Gil on i
: i magnetic

! Coil on non- |

| | magnetic core %, 4 cor
Ot !
"o, /
US‘Y’

(a) Design 1 [22] (b) Design 2 [23]
Fig. 10 Comparison of pole designs (not to scale)
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(a) simulated pole geometry
Fig. 12 Effect of pole layout on torque generated
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(b) Torque for different € (6, =26°)

As compared in Fig. 12, the torque-to-radius ratio for
Design #1 is significantly higher although Design #2 uses a
much larger PM rotor pole for a similar input power. In
addition, the compact pole geometry in Design #2 allows for a
larger number of rotor poles to be used and hence further
improve the torque performance for a given volume and input
power. These results illustrate how the adaptive MLLM can be
effectively used to analyse the effects of pole design on the
torque performance.

V. CONCLUSION

A relative complete adaptive computational method for
MILM has been presented and illustrated with five examples,
which offers a solution to overcome two technical difficulties
associated with MLM; namely, error estimation and nodal
insertion. The computed method has been validated by
comparing against exact solutions using three examples.
Additionally, we compare the -electromagnetic forces
computed using Lorenz’s law with the field results predicted
by the adaptive MLLM against published experimental results.
These comparisons show excellent agreement. The
effectiveness of the method has been evaluated by comparing
the converging speed against MLLM with uniform distributed
nodes. Our results show that the method can faithfully locate
large error regions, automatically insert nodes to these regions
without human’s involvement, and improve the computational
efficiency significantly.
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APPENDIX
Reproducing kernel particle (RKP) basis function

The RKP basis function can be expressed as

¥, (0= Clox—x)A(x—x,]/d) (A1)

where A(”x—xi”/ d) is a kernel (or weight) function centered at x; ; the
support size d is a design parameter that influences the effective region of the
kernel function.and C(x;x—x,) is a set of enrichment functions that vary

with the location of approximation x. The following cubic B-spline function
[14] is chosen for the kernel function:

2/3-4p>+4p>  for 0< p<1/2

Alx—x;))=44(1-3p+3p> - p)/3  for 1/2< p<l1 (A2)
0 Jor pz1
where p = ”(x - "i)”/d ; The function C(x;x-x;) is given by [14]:

C(x;x—x;)=h T ()P I (x)h(x —x;) (A3)

where h'(x-x,)= [1 (x,-x,) (x, - xin)”} 5 and
hW'©=[1 0 0 0]:
nll

P(x)= Po(x)+Zh(x—xl~)hT(x—xl~)A(x—xl~) (A4

i=1
where n_ is the number of newly added nodes.
To impose the boundary conditions in WFF, a modified basis function

1
‘i’i(x) that is used: ¥ (x) = ZLIJ;' (X)L;'T (A5)
j=1
where the element L, is defined by Ll.j = ‘Pi (x ]) (A.6)
such that Hiv) — G
d(x)= D ¥ ()P, (A7)

i=1
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