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This paper presents a practical approach to character-
ise and optimise a ball-joint-like three degree-of-
freedom (DOF) variable reluctance (VR) spherical
motor which has potential applications as a direct-
drive robotic wrist. Unlike the conventional single-
axis (1-DOF) motor, the 3-DOF VR spherical motor
is characterised by its multiple independent inputs
and the direction-varying and orientation-dependent
torque output. The design and control of 3-DOF
spherical motors are significantly different from that
of 1-DOF actuators. In order to characterise the
torque of a 3-DOF spherical motor, a maximum
torque-to-input power ratio is derived to describe
explicitly the relationship between the torque output
and the electrical power input. This relationship,
along with the presentation of the numerical tech-
niques, provides an effective means to characterise
and optimise 3-DOF spherical motors, which is .
essential to integrated design and control of the
motors. Several typical applications are illustrated
here, including the estimation of the maximum
payload, proof of the non-singularity property, choice
of an objective function for design optimisation, and
determination of the characteristic orientation where
a global design optimisation can be accomplished.
Results showed good agreement between the theoreti-
cal and actual maximum torque outputs. Some new
and unique concepts for 3-DOF devices are also
addressed in the paper.
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1. Introduction

The ability to characterise the specifications of an
actuator is essential in design and control strategy
development. There are well developed and widely
accepted specifications and associated theories for
characterisation of 1-DOF motors, which include
the rated maximum torque output. Maximising
output torque capacity has well been recognised by
researchers as one of the major objectives in
designing 3-DOF direct-drive actuators. A properly
designed actuator (motor) with maximum torque
output capacity will improve the starting character-
istics, and hence the system performance, by effec-
tively overcoming system inertia and unexpected
load.

The goal of maximising torque output can be
achieved by hardware (structure and parameters)
design optimisation and by software (control
algorithms) development. One typical example in
designing 1-DOF motors is to choose the geometric
parameters so that the torque constant (torque-to-
current ratio) is maximised. The maximum torque
output of a 1-DOF motor can be described by a
relatively simple and explicit relationship between
the output toruge and the input. Most conventional
1-DOF motors generally have only one independent
input, and the torque output is in a constant,
specific direction. However, 3-DOF ball-joint-like
motors usually have multiple independent inputs,
and the output torque is direction-varying and
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circuit to saturate. Therefore, the actual torque
output is lower than the predicted value.

To understand fully how the maximum torque-
to-input power ratio varies with the torque direction
variables, a torque profile, namely a surface plot
of T,yp/luf? in terms of ¢ and 9, is plotted at the
characteristic orientation based on the following
formula:

Top _ oo A3 A2 M
[ulP "t [2|cos ¢|’ 2|sin ¢ sin 9|’ 2|sin ¢ cos B]

where A;"(i = 1,2,3) is defined by Eq. (24), and A;"

is the matrix at the characteristic orientation.

One may observe from the plot (Fig. 5) that the
minimum value of Ty/ul?, corresponding to the
payload-to-input power ratio, occurs at ¢ = 0 or
«. The plot is symmetrical about ¢ = #/2 and ¥ =
w/2, which reflects the symmetrical structure of the
motor. Furthermore, the plot is small-valued and
flat where ¢ is away from w/2, but relatively steep
in the adjacent vicinity of «/2. This indicates that
the motor has a bigger output torque potential in
that region. The torque profile gives an overall
insight into the output torque capacity, which is
very useful and important to future designs.

6. Conclusions

This paper has presented a practical approach to
characterise and optimise a 3-DOF VR spherical
motor. The formula derived for predicting the
maximum torque provided an effective means to
determine the characteristic orientation analytically
and to prove numerically the non-singularity prop-
erty without calculating the exact maximum torque
output, a solution of a non-linear optimisation

- problem. This, along with the numerical techniques

developed in the paper, greatly reduced the compu-
tation. Although the actual maximum torque output
can be numerically calculated by solving the non-
linear optimisation problem, the maximum torque
output at the characteristic orientation was shown
to be close to the theoretical estimate by using the
anlaytical maximum torque formula. The formula
also offered a more desirable objective function
for design optimisation. Several unique concepts
developed in this paper for 3-DOF actuators are
summarised as: (1) torque direction variables, (2)
characteristic orientation, (3) global design optimis-
ation, and (4) maximum torque-to-input power
ratio. The results of this work formed an essential
basis for further development. The experimental
implementation of the results is currently being
investigated. ‘
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orientation (position)-dependent. These ustique fea-
tures make the characterisation of 3-DOF motors
significantly different from and more difficult than
the 1-DOF case.

In order to advance the development of 3-DOF
actuators, specifications and associated theories for
characterising 3-DOF motors are necessary. We
present here a new approach to address some
fundamental issues in design and control of a 3-
DOF variable reluctance (VR) spherical motor. The
major contributions of this paper are summarised
as follows: (1) The paper derives analytically an
explicit formula for predicting the maximum torque
output of a 3-DOF VR spherical motor. (2) The
results of this analytical investigation form an
essential basis for integrated design/control and
characterisation of 3-DOF VR spherical motors. (3)
Methods of using these results have been illustrated
to estimate the maximum output torque capacity
(payload) of a VR spherical motor over the entire
workspace, to verify numerically the non-singularity
property, and to determine the characteristic orien-
tation upon which a global design optimisation can
be accomplished. (4) The paper explores and
develops some unique concepts of 3-DOF actuators
as compared to 1-DOF devices.

The remainder of the paper has five sections.
Section 2 briefly describes the VR spherical motor.
Section 3 presents first a spherical coordinate
representation of the constraints and a maximum
torque formulation for design and control of the
VR spherical motor. An analytical maximam torque
formula is then developed to relate the maximum
torque output potential to the electrical power input
of the motor. Section 4 illustrates four typical
applications of the maximum torque formula derived
in Section 3; namely, payload evaluation, numerical
verification of non-singularity property, character-
istic (global) design optimisation, and optimal sol-
ution to the maximum torque formulation for
control strategy development. Numerical results and
discussion are given in Section 5. Conclusions are
drawn in Section 6.

2. A VR Spherical Motor

A number of mechanisms have been proposed in
designing unusual three DOF direct-drive devices.
Among the developments is a ball-joint-like VR
spherical motor that combines three DOF rotation
in a single joint. As shown in Figs 1 and 2, a
prototype design of the VR spherical motor consists
of four basic assemblies: (1) a solid spherical rotor,
(2) a hollow spherical stator, (3) a bearing system,

and (4) an orientation measurement system. The
rotor consists of n iron poles embedded in a round,
smooth sphere following the pattern of a regular
polygon. The rotor poles connected at the rotor
core provide a return path of magnetic flux. The
stator consists of a hollow sphere constructed of
iron and m stator poles with coils wound on
ferromagnetic cores. The stator sphere provides a
magnetic flux path for linking stator poles and
serves as a mechanical structure for supporting the
stator poles, transfer bearings, and orientation
measurement system. The stator poles are evenly
located on the inner stator surface and at the
vertices of a regular polygon. The stator and rotor
spheres are concentric and are supported one on
the other by bearings in the airgap. The bearings
are threaded externally to the stator such that a
constant airgap can be calibrated between the
poles of the rotor and the stator. The orientation
measurement system consists of two arc-shaped
guides, one sliding block, and three encoders. The
two guides are mounted orthogonally on bearing
pins attached to the outside stator shell. The sliding
block is confined to move along the slot of the top
guide. A hole in the sliding block allows the output
shaft to extend through.

Once currents are applied to the stator coils,

magnetic fluxes flow through the magnetic circuit
and create magnetic energy in the airgap. The
created energy is a function of the currents and the
reluctance of the airgap between the rotor and
stator poles. The motion of the rotor is thus
generated as the magnetic system tends to minimise
the energy stored in the airgaps. The reluctance of
the airgap is a function of the relative position
between the rotor and the stator. It varies as the
rotor moves, hence the name ‘variable reluctance’
motor.
- The torque model that describes the electromag-
netic interaction of the VR spherical motor has
been derived and experimentally verified by Lee et
al. [1] using the energy conservation principle. The
model has been éxpressed in rotor-fixed Cartesian
coordinates by the following quadratic form:

T, = %uT Au (i=123)

where T; denotes the torque components acting on
the rotor in the x, y, and z directions, respectively;
u represents the control vector (magnetomotive
force), and A; is real-symmetric and indefinite

matrix whose elements are functions of rotor
orientation and airgap permeance [2].
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Fig. 1. A variable reluctance spherical motor prototype.
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Fig. 2. An exploded assembly view of the prototype.

3. Maximum Torque Formula

The VR spherical motor has potential applications
as a direct-drive device. For robotic wrist appli-
cations, it is desired that the VR spherical motor
be designed with large torque-to-weight and torque-
to-input power ratios. Ideally, an actuator should
be able to generate an infinite torque, and should
have an instantaneous dynamic response to its input.
The modification of the torque characteristics of a
practical actuator to approach that of the ideal
actuator requires that the maximum torque output
capacity be explicitly specified. To achieve this goal,
a maximum torque formula derived from a maximum
torque formulation of the VR spherical motor is
developed in this section.

Conceptually, the maximum torque formulation
for the VR spherical motor is defined here as
finding a set of control inputs such that the
magnitude of the generated torque in a specified
direction is maximised. To formulate this optimis-
ation problem mathematically, it is convenient to
represent the constraints (specified torque direction)
in spherical coordinates. This can be done by
transforming the torque model in Cartesian coordi-
nates to spherical coordinate representations first,
then by taking the ratios of the torque components
to eliminate the torque magnitude. Also, the
objective function, namely the torque magnitude,
must be expressed in spherical coordinates.
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3.1. Spherical Coordinate Representation of the
Torque Model

As shown in Fig. 3, an arbitrary torque can be
represented by its spherical coordinates (T,9,¢).
We are seeking control inputs which will maximise
the torque magnitude T for given ¥ and ¢. From
the basic trigonometry, the torque components can
be written in spherical coordinates as

Tsingcosd =T, = —12-uT Aju , 1)
L .
Tsingsind =T, = 2 Axu 2
1 T
Tcoso=T;= U Asu A3)

Since T # 0, suppose T5.# 0, then from Egs (1),
(2) and (3), we have

_ T, uTAu
tan ¢ cos 9 = T, = wTAu O]
and
. _ T2 _ IITA;;ll
tan @ sin 9 = T, = wiAu (5)
By defining
as = tan ¢ cos & - (6)
bs = tan ¢ sin ® 0

the torque direction constraints in spherical coordi-
nates are given by

Fig. 3. Spherical coordinates.

uT(A]_ + a3A3)u =0 | (8)
uT(A; + bsAz)u=0 )

Note that the square of the magnitﬁde of the
torque is given by

T=Ti+ T3+ T3,

and that T, and T, can be expressed in terms of
T; from Eqgs (4) and (5), we have

T?=(a3+ b3+ 1)T3.

Hence, by substituting T; from Eq. (3) to the above
equation, the magnitude of the torque can be
represented in spherical coordinates as

T= C3 |uTA3u| ) (10)
where
al .
= §(a§ +b3+1)>0 (11)

In general, the parameter c; is a function of the
torque direction variables, ¥ and ¢, and is constant
for a particular torque direction. It is worth noting
that T is independent of the choice of the non-zero
torque component. In other words, the assumption
T; # 0did not lose the generality of the formulation.
However, the advantage of choosing T; # 0 to
illustrate the derivation is that there are fewer
chances that T; can be zero than T, or T,. This is
because T is a function of T and ¢, but not 9.
Furthermore, T5 = 0 only corresponds to ¢ = 7/2
and 3w/2.

3.2. Problem Statement

Based on the spherical representations of the torque
magnitude and the torque direction constraints, the
maximum torque formulation can now be stated as
the following static constrained non-linear optimiz-
ation problem.

For a specified torque direction, ¢ and 9, at a
given rotor orientation, find a control input u €
R™, which maximises the torque magnitude

T=2c |T3| =¢C3 |“TA3“|,

. subjected to the following constraints

uT(A; + aA3)u=0 (12)
uT(Az + b3A3)|l =0 (13)
wfu<P (14)

where a3, b;, and c; are defined by Egs (6), (7),
and (11), and P is the limit of uTu which is directly
proportional to the consumed input power. In the
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following discussions, uTu will be referred to as the

consumed input power of the VR spherical motor
without loss of generality. It is worth noting that

the constraint given by Eq. (14) is equivalent to |u,|

= Upax if P = (Unax/|ti|max)?, Where

= max |u,|

uu=1

|ui|max

3.3. Maximum Torque Formula

To achieve an isotropic torque property, the VR
spherical motor has been designed to generate an
arbitrary torque (below certain limit) in any direction
at any rotor orientation, which means mathemat-
ically that A, (( = 1,2,3) is mdeﬁmte, namely,

Amin(A;) < 0, and A, (A) > 0.

Since A, (i = 1,2,3) is real-symmetric (Hermman),
by the Rayleigh-Ritz theorem [3]

Amin(A2)[ul? < uTAzu < \pex(As)[Jul? @15)

Two cases with different signs of the third torque
component T; are discussed as follows.

Case I: T; > 0, or uTA;u > 0. Since \,;n(A)) < 0,
the left-inequality of (15) always holds. From Eq.
(10) and the right-inequality of (15), we have

T = C3hmax(As)[ul?

Therefore,
supl T3>0 = c3)\max(A3)“““2 : (16)
where Tsup sup T is the superior limit of the

torque output, which represents the maximum
torque output potential of the VR spherical motor.

Case II: T; < 0, or uTAzu < 0. Notice that \,,..(A))
> 0, therefore, the right-inequality of (15) holds.
From Eq. (10) and the left-inequality of (15), we
have

T = ¢3|Amin(As)] 0] = —CAmin(As)][ulP -
that is, in this case,

cSlxmm(A3)| ““"2 - —c3>\min(A3)|||i||2

su T3<0 —
ol

(17)
To summarize cases I and II,
Touplswo = c3|N*(As)| [fulf et
where

N (A3) = Mnax(A3)(T5) + Ain(A3)(—T3)

and p(e) is a unit step function.
It can be shown by similar derivation that when
T; (i =1,2,3) is chosen to be the non-zero component
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in formulating the magnitude and the direction
constraints of the torque in spherical coordinates,
the potential maximum torque output

TsupIT,--ﬁO = cil)‘*(Ai)I "“"2
wherev ,
A(A) = Mnax(A)M(TY) + Amin(A)(—T))
(S IVATHTI>0

a; and b; are defined by Egs (6), (7), and the

following equations:
a,=cotd, b,=
a; = tan 9,

cot ¢/sin ¥
b, = cot ¢/cos ¥

Taking into account of all the three possibilities of
choosing T (i = 1,2,3) in formulating the magnitude
and the direction constraints of the torque, the
maximum torque potential then becomes

Toup = min { Toup| 7,0} = min {cA*(A,)|HiulP
19
where i = 1,2,3.

Several remarks should be made about the
maximum torque formula, Eq. (19).

Remark 1. The T, /|lu|? is a function of the torque
direction variables and the rotor orientation. Unlike
the 1-DOF devices, the output torque of a 3-
DOF motor is direction-varying and orientation-
dependent.

Remark 2. From Eq. (19), we conclude that in a
given torque directon at a certain rotor orientation,
the maximum torque output capacity is directly
proportional to the input electrical power, that is,

Il 1 = T 1 orup § = T |

which physically makes sense. Equation (19) also
indicates that the maximum torque output and the
minimum power input are competing requriements.
Therefore, a tradeoff between these two is necessary
in control strategy development.

Remark 3. Unlike the conventional three-consecu-
tive-rotational-joint motor system which typically
uses three 1-DOF motors in the x, y, and z
directions to realise three-dimensional motion, the
current loads of the spherical motor can be distrib-
uted among m(>3) coils due to the multiple choices
of the control vector. This will reduce the load on
each coil and hence the heat dissipation. In other
words, for a same power input, the 3-DOF motors
can generate larger torque output than the 1-DOF
motors.
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Remark 4. In order to have a larger isotropic output
torque capacity while the power consumption is
kept the same, it is more desirable that the motor
(structure and parameters) is designed such that
)‘max(Ai) = —)\min(Ai)'

4. Applications of the Maximum
Torque Formula

The maximum torque formula, Eq. (19), can be
applied to characterise and optimise the VR spheri-
cal motor. Four typical applications are discussed
in the following subsections.

4.1. Payload Evaluation of the VR Spherical
Motor

Payload is one of the important specifications in
characterising a motor. Payload determination for
the VR spherical motor is essentially a minimax
problem, namely, the evaluation of the minimum
T.up Over the whole torque space and the entire
orientation space. Theoretically, the payload of a
VR spherical motor can be calculated by using the
maximum torque formula, Eq. (19). The main
difficulty of the evaluation in practice, however, is
that the computation is very numerically demanding,.
since both torque and rotor orientation spaces must
be searched. The torque space denoted by T is
determined by 0 = 9 = 2w and 0 < ¢ =< 2, while
the rotor orientation space represented by O is
given in terms ZYZ Euler angles by 0 = ¢ = 2,
0<0 =<4, and-0 =< ¢ = 2w. If the partition
resolution of the torque and rotor orientation spaces
is r points/radian, the number of points (steps)
where the possnble maximum torque output need
to be computed is 4 X (wr)’. If an Intel IBM PC
486 (25 MHz) is used, and the computation time
for each point (step) is 200 ms (from simulation),
the total computation time would be 800 X (wr)’ ms.
Even for a one-degree partition (r = 180/w), the
computation would take 4793 years; such an under-
taking is far beyond the computing environment
used for this research. In order to overcome the
computational problem in characterising a motor,
two approaches, namely elimination of the torque
direction variables in the torque space and use of

the geometric (structural) symmetry of the rotor

orientation space, will be used in determining the
payload.

4.1.1. Elimination of Torque Direction
Variables in the Torque Space

As we shall see, the torque direction variables
appear as bounded functions in the maximum torque
formula; therefore the torque direction variables
can be eliminated explicitly from the formula by

means of minimisation. This will significantly reduce

the computation, hence improve the computational
efficiency.

By substituting c; in terms of ¢ and ¥ using Eqs
(11), (6), and (7) into Eq. (18), we have

Tou 1
w‘;— - = —[(tan ¢ cos §)?
3
+ (tan ¢ sin '&)2 + 1]} Ih*(Aa)l
_ IM(A9)|
~ 2|cos g

Since |cos ¢| = 1, therefore

T, T. 1
5 = min {ﬂp- }=min{—)\*}
ol w0~ 20 | Tulf gy of ~ 80 12!

(20)

where Tl,/||u||2 denotes the payload to mput power
It has been shown in Sectlon 3 3 that

TsuplTpﬁO = C2|)\*(A2)| "11”2

when T,(#0) is chosen as the non-zero component
in the maximum torque formulation of the con-
straints and the objective function. Furthermore,

T, 1[(cot ¢ cosd2 T

Lsup .

llull? | 7,0 2[(s1n ﬁ) +(sin a) +1] IN*(A2)]
_ @)
= 2Jsin ¢ sin 9] (21)

Since |sin ¢ sin 9| =< 1, therefore -
T suj

1
T = min {—P- }=min{—)\*}
|0~ 20 | Tulf g0 ~ 780 122!

Similar to the case T, # 0, when T; (# 0) is
chosen to be the non-zero component in formulating
the constraints and the objective function of the
maximum torque formulation, we have the following

T5%0

results:
B, e[
+ (Z‘;‘Z,)’ + 1]*|x*(A1)|
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‘and -
T, T. 1
s = min {l‘P— ]=min[—)\*}
Tl o~ Pt | Tl |0 ~ "0 |2

To summarise,

u .1 1 1
ok = min W§]=ngn {§|xr|,5|x;|,5|x;|}
@3
where

l)‘x*l = min {I)\min(Ai)lr I)‘max(Ai)l} (i = 1’2’3)

Note that T, (i = 1,2,3) is a subset (subspace) of
T corresponding to 7; # 0, and T = T, U T, U
Ts. Since Eqs (20), (21), and (22) are even functions
with respect to ¥ and ¢, the torque space for
calculating T,/|lul? can be reduced to 0 < ¢ =< =«
and 0 = ¥ < . Furthermore, by eliminating the
torque direction variables the amount of compu-
tation for T /fjul? is reduced to 1/(2wr)? of the
original amount. For example, if r is chosen to be
- 180/ radians (1°), then the amount of computation
will be reduced 1.296 X 10° times by the elimination
of torque direction variables.

4.1.2. Use of Geometric (Structural) Symmetry
of the Rotor Orientation Space

After the elimination of the torque direction vari-
ables, the formula for calculating the payload is
only a function of rotor orientations. The payload
computation can be further reduced by considering
the geometric (structural) symmetry of the motor.
Using the symmetry, the orientation space for
calculating the payload is reduced to O,, 0 < ¢ =
2nw/5,0 < 0 < w/4, and 0 < ¢ =< n/2 [4]. Therefore,
the payload computation is further reduced to 1/20
of the amount after the elimination of the torque
direction variables. )

Accounting for both the torque direction variable
elimination and the use of structural symmetry, the
computation time for payload evaluation is finally
reduced to 10(wr)® ms. As an example, for the one
degree (r = 180/m) partition, the time will be
approximately 16 h if the IBM PC 486 is used,
which is quite acceptable in practice.

4.2. Numerical Verification of the Non-
Singularity Property

‘One of the important criteria in designing a 3-DOF
motor is the non-singularity property, i.e. the motor
should be able to generate certain torque in

Z. Zhou and K. M. Lee

all directions at any rotor orientation within the
workspace. Although this characteristic has been
claimed for the VR spherical motor, neither theoreti-
cal nor experimental (numerical) proof has been
given to support the claim. With the aid of the
analytical payload evaluation formula, Eq. (23),
and the numerical techniques developed in Section
4.1, we are able to prove numerically the non-
singularity property of the VR spherical motor.
Since the torque model of the VR spherical motor

is in quadratic form, the non-singularity property

requires that A, (i = 1,2,3) be indefinite, namely,
Amin (A)) < 0 and Ayex (A)) > 0. Therefore, from
Eq. (23), we have

7 T 1,1 1
=5 = mi ZS9P R — min {=| ZIn¥| Sy *

which indicates that the motor can output a non-
zero torque in all directions at any rotor orientation.
By verifying the signs of Ayia(A)) and Apex(A) i =
1,2,3) at any rotor orientation in the payload
evaluation, it can be proved numerically that the
number of singular points of the VR spherical
motor is zero.

4.3. Design (Structure and Parameters)
Optimisation

4.3.1. Characteristic Orientation

Optimisation often plays an important role in design
and manufacturing of a VR spherical motor. A
successful design optimisation will improve the
performance of the system, provide better insight

- into potential applications, and aid in developing

future motor designs. One of the fundamental
differences between 3-DOF and 1-DOF motors is
that the output torque of the former is direction-
varying and -orientation-dependent. This unique
feature of 3-DOF motors leads to a significant
difference in characterisation and optimisation. In
particular, in design optimisation the characteristic
orientation at which the motor parameters are
optimised, needs to be taken into consideration,
which is not necessary in the 1-DOF case. The
characteristic orientation should be the position
where the motor has the minimum torque output
capacity, that is where the maximum payload of
the motor is determined. The determination of the
characteristic orientation is essential, since global
design optimisation can only be obtained at that
orientation. The characteristic orientation can be
determined by tracking the rotor orientation while
the payload-to-input power ratio is evaluated.

'
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4.3.2. Objective Function (Optimisation
Criterion)

To design optimally a VR spherical motor with
uniform torque characteristics, the objective func-
tion should be chosen to meet the following
requirements: (1) the objective is independent of
the electrical inputs; and (2) the minimum torque
output capacity over the torque and orientation
spaces is maximised. The explicit formula for
evaluating the payload-to-input power ratio, Eq.
(23), provides such a formulation, namely

J = max {T;/|ulf}
Cfro a1 1
= max {n(x)lsn {EIM ls EI)\z ls §|)\3 |}}
Such an objective function, associated with certain
constraints [2], forms a maximum torque formulation
for design optimisation. The results (optimal geo-
metric parameters) of the system will ensure the
uniform torque characteristics and guarantee a

maximum torque output capacity for the particular
configuration.

4.4. Optimal Solution to the Maximum Torque
Formulation

The maximum torque formula, Eq. (19), states that
the maximum torque output of the VR spherical
motor is always bounded. The actual maximum
torque output and the corresponding optimal control
inputs can be further obtained by solving the original
optimisation problem formulated in Section 3.2.
There is, however, no closed form solution to the
problem in general. To solve for the optimal control
inputs, various numerical techniques can be used. A
typical example is the generalised reduced gradient
(GRG) method [5]. It has been found numerically
that the GRG method works well in solving
the optimisation problem off-line. For  real-time
implementation, a small lookup table compiled off-

line and an optimal on-line estimation algonthm;.

can be employed [4].

5. Results and Discussion

A computer simulation has been carried out, based

on Eq. (23), to compute the maximum payload-to-
input power ratio, the corresponding characteristic
orientation, and the number of singular points. The
following is part of the printed results.

The payload-to-input power ratio is 0.057007
X 10~¢ Nm/(amper-turns)?.

Table 1. Theorencal and actual payloads at the character-
istic orientation.

(Mg 1 44 99 176
T, 0.6271  2.5083  5.6437  10.0332
1, 0.6197.  2.4788  5.5773 9.8712

[lu[? in 10° (ampere-turns)?, T, and T, in Nm.

The corresponding characteristic orientation
in degrees is ¢ = 8, 6 = 32, and ¢ = 39.
The number of singular points is 0.

Using the payload-to-input power ratio obtained
in the simulation, absolute payload values of T,
representing the output torque capacity can be
calculated by spec1fy1ng [l?. Some of the typical
values are listed m Table 1. For example, one -
observes from Tablé 1 that if |[ul? is specified as 44
X 108 (ampere—-turns)2 then the maximum payload
of the motor is approximately 2.5083 Nm.

Also listed in Table 1 is the actual maximum
torque output at the characteristic orientation in a
specified direction ¢ = 0 or m, T,. The corresponding
optimal control inputs are given in Table 2. The
optimal control inputs and the maximum torque
output are computed using an off-the-shelf GRG
optimisation package with a 10* ampere—turns input
limit to each coil and a constraint tolerance of 10~4.

The theoretical and actual payload values are
plotted in Fig. 4. From Table 1 and Fig. 4, one
observes that when the power consumption is small,

~ the actual maximum torque output is close to the-

theoretically predicted superior limit. But the error
becomes larger when the power input goes. higher.
This is due to the fact that when the electrical input
power is high, the inputs (e.g. currents) to stator
coils become large, which causes the magnetic

Table 2. Optimal control inputs at the characteristic
orientation.

i 1 4 9 176

w 0.1399 0.2789 0.4197 —0.4264
Uy -0.9072 -1.8144 -2.7216 3.2994
us 2.6876 5.3751 -4.4569 7.0061
Uy 0.1441 0.2883 0.4324 - —0.5333
us . —0.1628 —-0.3256 —0.4883 +0.3203
Us 0.1462 0.2925 0.4387  —0.4536
u; ~ —07796 —-1.5592 —2.3389 3.6355
Ug ~1.4857 -2.9713 8.0627  —9.9999
uy - 0.1441 0.2883 0.4324  -0.5333
Uo -0.0811 —0.1623 —0.2435 —1.2327
U 0.1544 0.3089 0.4633  —0.4909

u in 10° (ampere~turns).
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Fig. 4. Characteristic curves — maximum torque vs. power input.
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Fig. 5. Torque profile — maximum torque-to-input power ratio vs direct variables.
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