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Intelligent Vision-Based 
Part-Feeding on Dynamic 
Pursuit of Moving Objects 
The paper addresses the problem of picking up moving objects from a vibratory 
feeder with robotic hand-eye coordination. Since the dynamics of moving targets on 
the vibratory feeder are highly nonlinear and often impractical to model accurately, 
the problem has been formulated in the context of Prey Capture with the robot as a 
"pursuer" and a moving object as a passive "prey." A vision-based intelligent 
controller has been developed and implemented in the Factory-of-the-Future Kitting 
Cell at Georgia Tech. The controller consists of two parts: The first part, based on 
the principle of fuzzy logic, guides the robot to search for an object of interest and 
then pursue it. The second part, an open-loop estimator built upon back-propagation 
neural network, predicts the target's position at which the robot executes the pick­
up task. The feasibility of the concept and the control strategies were verified by two 
experiments. The first experiment evaluated the performance of the fuzzy logic control­
ler for following the highly nonlinear motion of a moving object. The second experi­
ment demonstrated that the neural network provides a fairly accurate location estima­
tion for part pick up once the target is within the vicinity of the gripper. 

1 Introduction 
Dedicated fixtures are often used with vibratory feeders to lo­

cate and orient small parts for subsequent robot handling. For 
small volume production, the success of a specially designed 
feeder is often achieved at the expense of operational cost and 
flexibility [1], An alternative method is to eliminate the object-
dependent fixture by having parts circulate continuously on the 
vibratory feeder and to use a vision system to guide the robot to 
pick up moving parts on the vibratory feeder. The approach has 
potential applications for flexible manufacturing and/or demanu-
facturing of short production runs where a large variety of product 
sizes and component types are encountered. We present here a 
method to kit moving parts from vibratory feeders into a loosely 
palletized waffle pack by using hand-eye coordination. The prob­
lem of picking up moving objects from the vibratory feeder is 
formulated in the context of Prey Capture with the robot as a 
"pursuer" and a moving object as a passive "prey." 

To maintain sufficient position accuracy in transport would 
often require excessive packaging costs and result in a lack of 
flexibility. It is desired to have parts transported in separate, 
regularly-spaced locations in totes, pallets, or kits without main­
taining sufficient dimensional accuracy to permit loading or 
assembly by a totally pre-programmed robot. Lee [2] developed 
a low cost vision-based method to locate parts in regularly-
spaced totes for machine loading and assembly, which elimi­
nates the need to maintain dimensional accuracy in transporting 
parts between work cells. In this case, parts to be assembled or 
loaded on machines are only required to be kitted in separate, 
regularly spaced pallets. His efforts have further led to the devel­
opment of a/lexible integrated vision system (FIVS) at Georgia 
Tech [3] , which provides a means to process images without 
the limitation of the TV video standard established in the 
1950's. Since FIVS provides a means to process a partial image 
without having to pre-store the complete image, it allows high­
speed image processing in real-time. The creation of FIVS has 
motivated us to examine the feasibility of developing an intelli­
gent vision-guided controlled system to pick up moving parts 
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on a vibratory feeder in real-time. In this paper, we discuss the 
use of FIVS as a real-time visual feedback element to kit moving 
parts from vibratory feeders by an industrial robot. 

The concept of prey capture has only been explored in robotics 
in recent years. Sharma and Aloimonos [4] investigated the prob­
lem of a mobile robot tracking a moving object. They modeled 
the motion control as a differential game [5] of pursuit and eva­
sion, and used a camera on a mobile robot to obtain the informa­
tion about a moving target from a sequence of its images. How­
ever, their emphasis was on the use of qualitative information 
for motion control. Detailed control strategy and implementation 
problems were not discussed. The problem of docking mobile 
robots using a bat-like sonar system was considered by Kuc and 
Barshan [6] in the context of prey capture in two dimensions. 
By constraining the prey motion to be linear, the lower bound for 
the capture time was determined from game theory. However, 
complete information about the prey was assumed. 

We investigate the use of linguistic rules based on ' 'rules-
of-thumb" experiences and engineering judgments to specify 
control laws, and apply experimental or heuristic knowledge as 
a basis for logical inference. Such a formulation mimics the 
function and capability of a natural being to pursue its prey. 
This approach does not require an accurate description of the 
dynamics of the pursuit process and the motion of moving 
objects, which often are highly nonlinear and impractical to 
model analytically and reasonably accurately. In addition, it 
does not require the goals and constraints of the system to 
be quantified by a single numerical value, provided that the 
"pursuer" can approach the object within the reach of the robot 
gripper. 

The remainder of this article is organized as follows: An 
overview on the system design is presented in Section 2. The 
problem of dynamic pursuit of moving objects is then defined 
and an alternative approach, based on fuzzy logic theory and 
neural network technique, is developed in Sections 3 and 4. 
Next, the experimental results are presented in Section 5. Fi­
nally, conclusions are drawn, and the advantages of the design 
are summarized. 

2 Overview 
The vision-based part-pickup system that does not require 

object-dependent tooling consists of three major subsystems; 
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Fig. 1 Schematic illustrating the intelligent vision-based feeder 

namely, a robot, a vision system, and a vibratory feeder that 
separates objects circulating on its surface. The vision system 
may either be fixed in space or attached onto the robot gripper. 
The latter setup provides a higher flexibility and is used in this 
design. As shown in Fig. 1, parts to be picked up circulate 
continuously on the vibratory surface. The approach eliminates 
the need of a part-specific fixture which traps a part in order to 
allow pick up by a pre-programmed robot. A typical cycle of the 
dynamic pursuit is as follows: The vision system is positioned at 
a prespecified location above the vibratory feeder such that the 
optical axis of the camera is perpendicular to the vibratory 
surface. The vision system would locate a moving object on a 
vibratory feeder once it appears in its field of view (FOV). 
The robot is then commanded to pick up the moving object. 
Alternatively, the robot is commanded to ' 'pursue'' the object 
of interest with an attempt to approach its vicinity as quickly 
as possible. As soon as the object is within the reach of the 
gripper, the robot will pick up the object before it "escapes." 

Mathematically, the problem can be expressed as follows: 

||x„ - xr\\ s llrj, (1) 

where x0 and xr are the state vectors of the moving object and 
the robot respectively; xf is the desired final state difference 
between the robot and the moving object; and the notation ||*|| 
denotes the norm of vectors: 

\\x\\ = {x] + xi + ... + xiy2. 

In Eq. (1) , the state vector is defined as follows: 

*(•) = [P(-)V(.)<?(.)]
r 

where p (.), v ( . j , and 0C.} are the position, velocity and orienta­
tion vectors of o and r respectively, and where x C R", and x 
= (xi, x2, ..., xn)

r. Equation (1) represents the condition the 
pursuit process must satisfy in order to pick up a moving object 
of interest. The general constraints imposed by the robot, the 
object, and the environment are as follows: 

(1) The speed and acceleration of the robot are limited: 

l|vr|| =s umax, (2a) 

\\a,\\ =s amax, (2b) 

where umax and amax denote the maximum values of the 
speed and acceleration of the robot respectively. 

(2) The robot can only move without hitting any obstacle 
within a certain workspace, whereas moving objects will 
not venture into a certain area. This can be expressed as 

PrSPrO, (3d) 

Po^Poo, (3b) 

where Pro denotes the range of pr (or the difference be­
tween the robot workspace and the solid obstacles within 
the workspace), and/?o0 the range ofp0 (or the area where 
objects can move around). 

(3) The robot must pick up the object within a specified time 
or within a specified range of pursuit in certain area, 
namely: 

n 

I U ^ T, (4) 

WPoW^PoO, (5) 

where n denotes the number of pursuing steps, tt the time 
the pursuing step / takes, and T the upper bound on the 
time spent on pursuit process. 

The challenges in vision-guided dynamic pursuit of moving 
objects on vibratory feeders are as follows: (1) As will be 
shown experimentally in Section 5, the objects' dynamics on 
the vibratory feeder are position and object dependent and often 
impractical to model. (2) Often, the view is obscured or blocked 
by the robot gripper, particularly at the instant prior to pick up. 
(3) Since the system requires a finite amount of processing 
time, there is a significant delay between sensing and pick up. 

Conceptually, the pursuit process can be broadly divided into 
two sub-control problems once a moving object of interest is 
identified. The first is to pursuit the moving object found. Lin­
guistic rule-based control strategies based on the fuzzy logic 
theory [7] are developed to search for a moving object of inter­
est and then guide the robot to pursue it. The second is to locate 
the object for the robot to pick up. Here, a control strategy 
based on the neural network technique is developed to estimate 
the object position such that the robot will catch it before it 
"escapes." In general, a typical industrial robot has its own 
controller. In this context, the neural network estimator and the 
robot controller are essentially working at the execution level 
while the fuzzy logic controller works at a higher level or the 
process controller level which mimics the mind of a human 
operator. It is expected that in some instances, the neural net­
work itself may perform alone to accomplish the task. 

3 Fuzzy Logic Control for Object Pursuit 
A fuzzy rule-based controller is designed for the phase of 

pursuing an object. The purpose of the controller, as shown in 
Fig. 2(a) , is to apply the appropriate control action Avr to the 
robot and direct it to the vicinity of the object based on the 
feedback of the vision system. A fuzzy logic controller, as 
shown in Fig. 2(b), consists of a fuzzifier, an inference engine 
made up of a data base and a rule base, and a defuzzifier. Since 
the underlying principle of fuzzy logic control can be found in 
other literature [ 8 ] , only those issues related to the fuzzy con­
troller design for dynamic pursuit are discussed in the following. 

(1) Input and Output Variables. A "pursuer" deter­
mines its action based on how far a "prey" is away from it, 
how fast the "prey" is fleeing, and in which direction the 
' 'prey'' is going to flee. Therefore, the displacement and veloc­
ity differences are chosen as the primary motion parameters in 
describing the relationship between the robot and the object, 
and are used as the input variables to the controller. Likewise 
the change to the velocity of the "pursuer" is to adjust the 
motion of the "pursuer," which determines if the "pursuer" 
should accelerate or decelerate in a certain direction, so that it 
is chosen as the output variable. 

(2) Description and Transformation of Variables. The 
three input and output fuzzy variables are defined over the fixed 
universes of discourse. The library of fuzzy sets to describe the 
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Fig. 2(b) Schematic of a fuzzy logic controller 

fuzzy states of the three variables is defined as (NL, NM, NS, 
ZE, PS, PM, PL), where N means negative, P positive, L large, 
M medium, S small, and ZE zero. The characteristics of these 
fuzzy sets are described by their membership functions over 
the universe of discourse of each variable. The membership 
functions are defined in Fig. 3. The lengths of the upper and 
lower bases provide design parameters to be tuned for satisfac­
tory performance of the controller. All the information is stored 
in the data base (Fig. 2) which is a part of the Knowledge Base: 

The actual inputs to the controller are real numbers defined 
over their physical variation range. They are scaled and normal­
ized first to the fixed universe of discourse of the corresponding 
fuzzy variable. They are then transformed into fuzzy sets in 
order to describe the state of the physical input variables in 
linguistic terms. The reverse process is performed by the defuz-
zifier to generate the physical output from the results of the 
inference engine, a fuzzy set. The centroid-of-area method is 
used. 

(3) Fuzzy Inference Engine for Control Action. The 
control rules which relate the output variables to the input vari­
ables are derived intuitively based on the understanding of the 

-10 -8 - 6 - 4 - 2 0 2 4 6 8 10 

Fig. 3 Definition of the membership functions 
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Fig. 4(b) Control rules base 

process behavior and on human experience. The basic idea here 
is to find the action of the "pursuer" in order to reduce the 
position and speed differences between the robot gripper and 
the moving object to a level that is desired or specified. The 
intuitive rules are as follows: When the position difference is 
large, the emphasis is to reduce the position difference, so that 
the strongest control action is used by a "pursuer" to effectively 
get itself close to its "prey" quickly. However, when the "pur­
suer" approaches the final desired state, the emphasis is to 
maintain the speed as close as possible to that of its "prey" 
while keeping the target within the specified vicinity of the 
robot gripper. 

For a two-input system, position and velocity differences, 
each of which has seven fuzzy values, there are 7 x 7 = 49 
possible input combinations. Therefore, if the rule base is to be 
fully populated, there will be 49 rules. Figure 4(a) shows the 
control strategy for the pursuit operation, where the unshaded 
region is a mirror image of the shaded cells. The completed 
rulebase is shown in Fig. 4 (a ) , where the central cell is the 
desired system state. The output from the controller can be 
obtained from the inputs by using the compositional rule of 
inference [8], 

The typical control action for the dynamic pursuit is illus­
trated as follows: Consider if there is a large positive difference 
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in position (PL), as indicated in shaded region B in Fig. 4(a). 
The robot speed is commanded to increase using a linguistic 
rule such as: 

IF Position_Difference is PL AND SpeedJDifference is ZE, 

THEN Robot_Speed_Change is PL. 

The corresponding speed difference will then become more and 
more negative. Finally the speed difference reaches NL and the 
control action will gradually be lowered to ZE as shown on the 
upper right cell of the rulebase matrix in Fig. 4(b). When the 
position difference reduces, the control action reverses to NL 
reducing the speed of the robot as the system enters region C. 
With the reduction of the robot speed, the speed difference is 
increasing. The system then moves through region C and to­
wards region D of Fig. 4 (a ) . The rules for the three cells in 
region D are 

IF Position_Difference is NS AND SpeedJDifference is ZE 

THEN Robot_Speed_Change is NM; 

IF Position_Difference is NS AND Speed_Difference is PS 

THEN Robot_Speed_Change is ZE; 

IF Position_Difference is ZE AND SpeedJDifference is PS 

THEN Robot_SpeedJJhange is PS. 

Finally, the system is further dampened in toward cell A which 
is the desired system state. Note that the heavy black line below 
region D is a boundary the response cannot pass, because the 
unshaded cells in Fig. 4(a) must be the mirror image of the 
shaded cells to respond to a negative large position difference; 
that is, they must have identical amplitude but opposite polarity 
actions. If the system response crosses the black line during the 
last stages of the operation, it will act as if it were in the middle 
stages of a negative position difference response. The completed 
rulebase is shown in Fig. 4(b). 

4 Neural Network Estimation for Pick Up Operation 
As the robot moves closer towards the vicinity of the target, 

the field-of-view of the vision system becomes smaller, and 
often the visibility of the vision system must give way as the 
gripper adapts itself to perform a pick up task. An alternative 
technique is presented here to estimate the location at which 
the object must be picked up once the target is within the 
vicinity of the robot gripper. 

Consider that the moving object is at location p , at time h 
and the robot is commanded to pick the object up. The robot 
requires, however, a finite reaction time to compute and execute 
the pick up command in addition to the time needed for commu­
nication among the subsystems. The location p2 at which the 
object must be picked up at time t2 = H + At is estimated using 
a trained neural network. Unlike the closed-loop fuzzy logic 
controller for the phase of pursuit, the neural network is used 
in an open-loop sense, as shown in Fig. 5, to estimate the 
position of moving object for the robot to pick up. That is, 

where At is specified as a constant value larger than the sum 
of all the incremental times needed between the computation 
of the last object location and the execution of the pick up task. 
The goal is to adapt the parameters of the network so that for 
any input (pu At) in real time, it will perform a sufficiently 
accurate on-line estimation of the object position p2. 

The object motion, though nonlinear, exhibits certain com­
plex patterns over a certain area. This makes it suitable to apply 
an adaptive neural network to recognize the complex motion 
patterns and perform the nontrivial nonlinear mapping between 
(Pi> h - t\) and p2. The basic learning rule of the adaptive 
network is the well-known steepest descent method, in which 
the gradient vector is derived by successive invocations of the 
chain rule. A back-propagation neural network is used to find 
a mapping network which compute a functional relationship 
between their inputs and outputs from a representative collec­
tion of sample training data. Back-propagation is chosen since 
this most popular network has been proven to work well in 
many applications, is easy to learn and is powerful. In addition, 
it requires a relatively fewer operations to calculate gradient 
than do other methods and it can be relatively easily imple­
mented by parallel digital hardware [9 -10] . 

Here, the objective is to train the network so that it will learn 
an approximation/^ = /(Pi> At) using sample trajectories of 
moving targets pre-determined off-line using a vision system. 
The basic concept is as follows: Starting with an initial set of 
weights and bias set to small random numbers, an input vector 
(Pi» h - t\) is then presented to the network. It sweeps forward 
through the network to generate an estimated output response 
vector p 2. The algorithm computes the errors at each output. 
Next, the effects of the errors are propagated backward through 
the network to associate a "square-error derivative" 8 with 
each node and compute the weights of each node based on the 
corresponding gradient. A new pattern is then presented and 
the process is repeated. The process is repeated until the error 
is within a specified tolerance. 

Figure 6 shows a three-layer network with N inputs, M out­
puts and two layers of hidden nodes. The sizes of the input and 
output layers which deal with numeric input data are dictated 
by the applications. The preprocessing of the images is one of 
the keys to the network's ability to handle many different tasks. 
The system must be simple since with a neural network a person 
on the factory shop-floor doesn't have to be a programmer to 
train the machine. Thus, in the case of a vision-based part-
feeder where the vibratory surface can be pre-determined, we 
choose the inputs to be the x and y coordinates of the object 
position derived from vision images and the reaction time (t2 

— h) of the system. The outputs are the estimated x and y 
coordinates of the object. 

The linear output s)l) of the7th node in layer i (see Fig. 6) 
is given by 

n ( i - l ) 

I W}PxP + bj, (7) 

where Wjp is the weight between /th node in layer (' - 1 and 
;'th node in layer ;'; x\l) is the /th input of the node j in layer 
i; n(i — 1) is the number of nodes in layer i — I; and bs is the 
bias term for node j in layer i. In general, given a set of vector-
pairs, ( x h yi), (x2, y2)> . . . , (xp, yp) characterized by a func­
tional mapping y = <£(*): x £ RN, y G RM, the back-propaga­
tion training is to find an approximation y' = 4>'(x) by using 
an iterative gradient algorithm. This algorithm is designed to 
minimize the sum of the squared error between the actual output 
of a multi-layer feed-forward network and the desired output: 

M M 

e2 = I ej = I (y, - y[)\ (8) 

where y, and y\ are the desired and the actual output of the 
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Fig. 6 A three layer neural network 

neural network, respectively; M is the number of the neural 
network output nodes. 

The goal is ultimately to minimize the error between the 
desired output and the current output sample by continuously 
modifying the weights using supervised learning. With super­
vised learning, it is necessary to "train" the neural network 
before it becomes operational. Training consists of presenting 
input and output data, often referred to as the training set, to 
the network. That is, for each input presented, the corresponding 
desired output is presented as well. In many applications, actual 
data are used. The training procedure can be organized as fol­
lows: 

Step 1: All the weights and node biases are set to small ran­
dom values. 
Step 2: The input vector, xp = (xpl, xp2, . . . , xpN)T and the 
desired outputs, yp = (ypl, yp2, . . . , ypM)T are specified. 
Step 3. Starting from the first layer, compute the output of 
each node through the system to generate the actual system 
outputs, y'p = (y'pi, y'p2, ..., y'pM)T. For example, we can 
compute the output of node j in layer i as follows: 

*y> =/(*)"), (9) 
where / i s the transfer function of the node, and sj0 is the linear 
output of the node. 
Step 4. Use a recursive algorithm starting at the output nodes 
to propagate back to the first hidden layer. Adjust weights by 
using the following equation, 

w(t + 1) = w(t) + Aw(t) (10a) 

Aw(t) = -r]8(t)x(t) + pAw(t - 1) (10b) 

where r\ is a constant or learning rate and p is a momentum 
constant. In Equation (106), the square-error derivatives are 
computed by 

6 = £/ ' (*) , (11) 

where e = y, — y\ is the output error associated with the node, 
/ ' is the derivative of the transfer function of the node. The 
node output is computed by Eq. (7). The learning rate has an 
effect on the convergence speed and stability of the weights 
during learning. A slower learning rate means a lot more than 
time is spent in accomplishing the off-line learning to produce 
a trained system. A typical learning rate 77 is between 0 and 1. 
If the learning rate is greater than 1, it is easy for the learning 
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Fig. 7 Experimental setup for flexible robotic part-feeding 

algorithm to "overshoot" in correcting the weights, and the 
network may oscillate. The addition of the momentum term 
smoothes weight updating and tends to resist erratic weight 
changes due to gradient noise. However, use of the momentum 
term does not always seem to speed up training; it is typically 
application dependent. A practical guide to select the learning 
parameters can be found in [11]. 
Step 5. Compute the error term with Eq. (8). The quantity is 
the measure of how the network is learning. When the error is 
acceptably small for each of the training-vector pairs, training 
can be discontinued. Otherwise, go back to Step 2. 

5 Experimental Investigation 
The vision-based controller was experimentally implemented. 

Specifically, two experiments were designed to examine the 
control strategies. The first experiment was to tune the fuzzy 
logic controller for the process of target pursuit. The second 
experiment was to evaluate the target position for the purpose 
of part pick up. 

5.1 System Setup. The experiments were performed in 
the Factory-of-the-Future Kitting Cell at Georgia Tech, where 
multiple vibratory feeders are used to handle kits of all sizes 
and types and to prepare kits for transporting between assembly 
systems. In a typical industrial layout, the feeder system receives 
parts in bulk on a vibratory resilient surface where parts are 
separated and directed to a nest position (part-specific fixture) 
at the end of the feeder for pick up by a pre-programmed robot. 
The robot then places the parts on a generic (or egg-crate style) 
tray. As shown in Fig. 7, the specific system used in the experi­
ments consists of a six degree-of-freedom (DOF) Cincinnati 
Milacron T3 industrial robot, a re-circulating vibratory feeder 
as shown in Fig. 1, a flexible integrated vision system (FIVS), 
and a vision-guided controller which has been implemented on 
a Intel 486-25 MHz personal computer. The functional relation­
ship of the vision-guided robot system is shown in Fig. 8 where 
the notation %T defines the transformation of the coordinate 
frame of "b " with respect to that of " a . " In Fig. 8, the intrinsic 
parameters of the camera (focal length / and lens distortion 
coefficient k) and the kinematic relationship among the vision 
system (c) , the gripper (g) , and the vibratory feeder (v) are 
determined off-line using a calibration algorithm based on the 
theoretical framework originally established by Tsai [12] and 
Tsai and Lenz [13]. 

In the system discussed here the robot is treated as a black 
box. In other words, the forward and inverse kinematics, trajec­
tory generation, and motion control of the robot are handled by 
the robot controller. The robot is driven by sensory information 
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Fig. 9 Flexible Integrated Vision System (FIVS) 
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Fig. 10 Schematic illustrating FIVS 

from the vision-guided controller as well as inputs from the off­
line calibration. The function of the vision-guided controller is 
to serve as the host and thus control all system activities. 

A photo of the/lexible integrated vision system (FIVS) and 
its schematic are given in Figs. 9 and 10 respectively. As shown 
in Fig. 10, FIVS has five basic functional modules: (1) an 
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Fig. 11 Typical velocity vectors of moving parts 

on-board computer which consists of a microprocessor and its 
associated electrically erasable programmable read-only-mem-
eory (EEPROM), scratch random access memory (RAM), and 
communication hardware, (2) a video head which includes the 
imaging sensor - a charge coupled device (CCD), a high-band­
width signal-conditioning-amplifier, an analog-to-digital (A/D) 
converter, and video RAM, (3) an optic system to house the 
lens (or simply a pin-hole) and its associated illumination, (4) 
an off-line host-interface for a user to carry out off-line calibra­
tion, perform image analysis, and implement application-spe­
cific software through a host computer, and (5) a real-time 
video record/playback to analyze failure-modes off-line. The 
main kernel of FIVS provides a user interface whereby a user 
can reprogram the EEPROM of the processor board. This allows 
the user to customize the image processing for a particular task, 
from a library of algorithms. Based on the hardware design, the 
software is able to control the CCD array scanning and integra­
tion time, and the intensity of the collocated illumination. With 
the CCD under software control, partial frames can be "cap­
tured" instead of the customary full frame, reducing the cycle 
time required to capture and process an image. The ability to 
shift out partial frames is ideal for high speed tracking applica­
tions where the approximate location is known from a prior 
image. By reducing the time to capture an image, the effective 
frame rate is increased. For example, shifting out 3 of an image 
can increase the frame rate up to 480 fps, not including the time 
required for illumination and image processing. 

5.2 Experimental Results and Discussions. A compo­
nent part used in car steering mechanisms was chosen as a 
target to demonstrate the concept. The part has a flat inner 
surface of 24 mm diameter. The suction gripper with a vacuum 
pad of 10 mm was used for the pick up operation. Provided 
that the difference between the centers of the suction gripper 
and the moving object is no more than 5 mm on the vibratory 
surface of known height, the object can be picked up. Thus, the 
final desired position difference between the robot gripper and 
the moving target was selected to be ±5 mm in both x and y 
direction. The speed difference was determined experimentally 
to be 5 mm/s. Figure 11 shows the typical motion of the objects 
moving on the vibratory feeder, which were captured at a rate 
of approximately 25 frames per second. The data were obtained 
with the image plane of the FIVS vision system positioned in 
parallel to and at 1 m from the surface of the vibratory feeder. 

Figure 12(a) shows typical position tracking results of the 
fuzzy logic controller. Figure 12(b) displays the corresponding 
velocity of the target (indicated as " o " ) and the robot (indi­
cated as " + " ) in x and y directions. The gains of FLC were 
tuned experimentally and are given in Table 1. As shown in 
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Fig. 12(a) Position tracking results of FLC-based pursuit operation 
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Fig. 12(b) Robot and target velocity data of FLC-based pursuit opera­
tion 

Table 1 Parameters of fuzzy logic controller 

K P KD Ku 
x-direction 20 40 24 
y-direction 40 20 12 

Fig. 12(a), the FLC successfully guides the robot to "pursue" 
the object to within its vicinity defined as ±5 mm in both x and 
_y directions in about 0.6 second. However, since there was a 
significant difference in velocity between the target and the 
robot, the FLC continues to command the robot to pursue the 
target until the final velocity difference was within 5 mm/s. 
The complete tracking operation took about 1.5 seconds. 

In the case of grasping, there will come to a point in which 
the view of the object being tracked will become obscured by 
the actuating mechanism as the gripper approaches the object 
in the z-direction in an attempt to pick up the object. Thus, it 
is necessary to predict the future state of an object that is desired 
to be grasped since the system essentially becomes an open-
loop system. Unlike the learning algorithm proposed by Miller 
[14], which commands the robot through joint velocity servo 
loops to track an object on a non-vibratory moving conveyor 
at a constant velocity, the method proposed here has been based 
on end-point position command in Cartesian space. In other 
words, the robot and its controller has been treated as a "black 
box." 
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Fig. 13 Actual and estimated part trajectories 

A three layer back-propagation neural network structure is 
adopted with the tangent sigmoid transfer function used for 
neurons in the first two layers and the linear transfer function 
for neurons in the final output layer. The inputs to the back-
propagation network are the position of an objectpi(xu ys) at 
time t\ and the time interval At, the outputs are the position 
Pi(x2, y2) of the object at time tx + At. The trajectories of the 
moving objects, which were used to train the network, were 
monitored and recorded by the FIVS vision system. Each of the 
iterative processes include capturing and processing an image, 
computing the location of the object, and sending the computed 
location through a serial communication to the host computer 
which stores the data in a data file. The data acquisition was 
performed off-line between the FIVS and the host computer 
with a sample object moving on the vibratory feeder. With a 
486-25 MHz PC, the typical cycle time is in the order of 0.25 
second. A total of 584 input data (xu ylt At) and the same 
number of desired output data (x2, y2) were constructed with a 
range of At in the training. The training data are then used to 
find a mapping function using the back-propagation network. 
Once trained, a neural network can operate in software, hard­
ware (special chips), or a combination of the two. 

The data not used in the training were used as a basis for the 
performance measurement of the trained network. The positions 
of the object estimated by the network were compared with its 
actual positions at different times, which were graphed in Fig. 
13. The successful estimation is defined as within ±5 mm of the 
desired position in both x and y directions and the corresponding 
success rate for each test trajectory is shown in Table 2. 

It has been found that the back-propagation neural network 
can estimate the motion of a moving target in most cases. Based 
on the data sets which were not used in the training, the success 
rate was found to vary from 86.67 percent to 93.75 percent. In 
general, the trajectories of moving targets over the entire region 
need to be collected as the training data. With the FIVS vision 
system and an appropriate data collection and preparation algo­
rithm, this is not a major problem. Therefore, the accuracy of 
the estimation can be further improved. More detailed discus­
sion and experimental data can be found in Reference [15]. 

Table 2 Success rate for part position estimation 

Trajectory a b c 

Success Rate 88.24 86.67 93.75 
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The eye-on-hand vision-guided part-feeder effectively elimi­
nates a part-specific nest which is otherwise needed in the case 
of hard automation. Since the vision system is attached on the 
end-effector of the robot, the system must execute the estimation 
and grasping tasks sequentially. It is expected that a finite 
amount of vision processing time can be effectively eliminated 
if the vision system can be fixed in space instead of attached 
onto the robot end-effector, which would allow the vision and 
robot systems to function in parallel. 

6 Conclusions 
The concept of applying the principle of dynamic pursuit to 

locate moving objects for flexible part kitting applications has 
been discussed. Since the dynamics of moving parts on the 
vibratory feeder are highly nonlinear and are impractical to 
model accurately, the problem has been formulated in the con­
text of Prey capture with the robot as a ' 'pursuer'' and a moving 
object as a passive "prey" or "evader." By incorporating a 
real-time machine vision system to guide the robot, the system 
gains the ability to locate parts and feed them intelligently to 
subsequent processes. Such a formulation mimics the function 
and capability of a natural being to pursue its prey, which opens 
the opportunity to apply experimental or heuristic knowledge 
as basis to do logical inference and linguistic rules based on 
"rules-of-thumb" experiences and engineering judgments to 
specify control laws. 

The vision-based intelligent controller consists of two parts: 
a tracking controller and an open-loop estimator. The controller 
has been developed and examined in the Factory-of-the-Future 
Kitting Cell at Georgia Tech. The tracking controller is based 
on the principle of fuzzy logic to guide the robot search for an 
object of interest and then to pursue it. The open-loop estimator 
is based on a back-propagation neural network to predict its 
position at which the robot gripper picks up the object. The 
feasibility of the concept and the control strategies were verified 
by two experiments. The first experiment showed that the fuzzy 
logic controller could command the robot to successfully follow 
the highly nonlinear motion of a moving object and approach 
its vicinity. The second experiment demonstrated that the neural 
network could estimate its position fairly accurately in a finite 
period of time after the command of pick up operation was 
issued. 

As compared to traditional control in part feeding, the system 
structure and control strategies developed have the following 
advantages: (1) By providing a means to estimate the location 
of the moving objects, the need of an object-dependent fixture 
for each part family can be eliminated. (2) The multi-phase 
intelligent controller can be separately designed for different 
phases. (3) It does not require the specific analytical model 
of a system and can successfully deal with highly non-linear 

problems. (4) The control parameters of the system can be 
easily adjusted to different applications or different objects 
without having to change the system hardware. Thus, the tech­
nique can not only be readily applied to integrating off-the-
shelf components, but it can also make the resulting system less 
structured and more flexible to deal with different parts. It is 
expected that the system has a significant potential to improve 
the flexibility for quick model changeover and to reduce the 
cost of implementation. 
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