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Meshless methods have some advantages over their counterparts such as the finite-element method (FEM). However, existing meshless
methods for computational electromagnetic fields are still not as efficient as FEM. In this paper, we compare two meshless methods of
discretizing the computational domain of Poisson-like problems; namely, the point collocation and Galerkin methods (which use the
strong and weak forms of the governing equation respectively), and their effects on the computational accuracy and efficiency of the
magnetic fields. We also discuss methods of handling discontinuities at the material interface. We present several examples, which also
provide a means to validate and evaluate both meshless methods. Exact solutions and/or FEM are used as a basis for comparison. In
addition, we also verify the results by comparing computed magnetic forces against those measured experimentally.

Index Terms—Element free, finite element, Galerkin methods, magnetic field, meshless method, strong form, weak form formulation.

I. INTRODUCTION

RECENTLY, considerable research has been devoted to the
development of meshless methods (MLMs) for magnetic

field computation [1]–[9]. Compared to its counterparts, such as
the finite-element method (FEM), MLM has some advantages. It
discretizes the physical domain into a scattered set of points and
uses shape functions to interpolate the field variables at a global
level. The fact that MLM does not need explicit meshes greatly
reduces the dependency on a mesh generation program. In addi-
tion, computed results using MLMs are generally smooth; there-
fore, it requires no post-processing as often needed in FEM.
With few exceptions [2], most of the MLMs in magnetic field
computation have been based on Galerkin (global weak form)
formulation, which generally require higher order numerical in-
tegration. In addition, the shape function in MLM, which does
not have interpolation property, often makes the direct applica-
tion of essential boundary conditions difficult. The interest to re-
duce computation cost has motivated us to investigate the effect
of numerical formulation on the computational accuracy and ef-
ficiency of MLMs.

The first MLM, known as the smooth particle hydrodynamics
method, was developed in the late 1970s [10], [11] but it did
not attract much attention until the 1990s. Nayroles et al. [12]
developed the diffuse-element-method for structural analysis,
which was later improved leading to a relative complete el-
ement-free Galerkin method [13]. The Galerkin-based MLM
is similar to FEM in that they both require numerical integra-
tion to discretize the system equations. However, unlike FEM,
where the basis functions are simple piecewise polynomials, the
basis function for MLM is often highly nonlinear and not in
closed form as it must satisfy a number of stringent require-
ments [14]. These requirements include the following: 1) it must
be nonzero within the support region; 2) its zero-order function
can be reproduced; and 3) it has a unity partition. Commonly
used basis functions include moving least squares [13], repro-
ducing kernel particle method (RKPM) [14], and point interpo-
lation method [15]. In general, Galerkin-based MLM requires
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higher order numerical integration and a background mesh for
the global integration, which tends to increase computational
cost. More recently, the Petrov–Galerkin method [16] has at-
tracted some interest as the formulation uses a local integration
scheme (local weak form) that does not require the background
mesh. However, the drawback of Petrov–Galerkin method is
the difficulty in handling of the numerical integration near the
boundary. When MLMs use smooth shape functions, special
treatment (such as Lagrange multiplier [17]) must be applied to
approximate the discontinuity of the field intensity at the mate-
rial interface while maintaining the zero order continuity of po-
tential. However, Lagrange multiplier method can only approx-
imately satisfy the continuity constraint of the magnetic field
intensity along the tangential direction at the interface. In [18],
a method based on partition of unity theory was proposed for
solving the discontinuity problem in a mechanical system.

An alternative to eliminate the difficulty of handling
boundary conditions at the interface and avoid numerical inte-
gration in deriving the discretized system equations is to use
the strong form of the governing equation. The strong form has
been commonly used in the finite difference method (FDM) for
analyzing fluid mechanics. FDM has been less popular in other
disciplines as the domain discretization and boundary condition
handling can seldom be done automatically by a computer
program in FDM for complicated geometry. Several MLMs
formulated using the strong form of governing equation have
been successfully applied to analyzing mechanic problems;
notably, generalized FDM and point collocation formulation
(PCF) [19]. More recently, PCF has been proposed for electro-
magnetic field analysis [2]. Unlike Galerkin formulation, PCF
obtains a system of discrete equations without integration. For
linear problems, PCF is computationally simpler. Additionally,
more nodes can be easily appended to improve computational
accuracy at desired local areas.

The remainder of this paper offers the following.

1) We investigate the effects of two different methods of dis-
cretizing Poisson-like problem domain, point collocation
(strong form) and Galerkin (weak form), on the computa-
tional accuracy and efficiency of computing electromag-
netic fields.
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2) Two numerical examples, where exact solutions are
available, are given to validate the computation of both
MLMs. The first example evaluates the performance of
the MLMs, where FEM is used as a basis for comparison.
The second example examines the effects of MLMs
handling of the discontinuity at the material interface on
the computation of magnetic fields.

3) To provide a means of verifying the computed results, we
compute in the third example the magnetic forces between
two permanent magnets and compare the computational
results against those measured experimentally.

II. PROBLEM FORMULATION

We consider an open boundary problem characterized by
Poisson’s equation of the form

in (1)

where is the magnetic scalar potential, is a function of the
position vector , and is a constant.

For a magnetic field in linear material (or constant ) where
the electric displacement current is negligible, the magnetic field
intensity and flux density can be solved from using (2)
and (3), respectively

(2)

(3)

where is the permeability of the free space; and
are the relative permeability and remanance of the material,
respectively.

Once is known, the force on a body can be computed from
the surface integration of the Maxwell stress tensor:

(4)

where

(5)

is an arbitrary boundary enclosing the body of interest, and
is the normal of the material interface.
I. Boundary Conditions (BCs):

To solve (1), we need the BCs to find the solution that is
physically relevant. The BC at the infinity far boundary is

(6)

At the interface between two different materials (denoted as re-
gions p and q), the following BCs must be satisfied.

a) is continuous along the tangential direction at the ma-
terial interface, or

(7a)

b) is continuous along the normal of the interface:

(7b)

In terms of scalar potential functions, (7a) and (7b) corre-
sponds to

(8a)

(8b)

II. Numerical Approximation
Consider a continuum domain represented by discrete

nodes. The approximated solution can be written as

(9)

where is a shape function, and is the nodal control
value at the th node. Unlike in FEM where is the nodal value
or may not be an interpolation function in
numerical formulation of MLM; that is, and

. To preserve the notation , we call
the nodal control value instead of the nodal value.

The popular reproducing kernel particle (RKP) basis func-
tion, which has been derived on a set of consistent conditions
given in [20] and can exactly interpolate a polynomial of any
desired order, is chosen here for the shape function and
is given in Appendix A.

A. Strong Form Formulation (SFF)

In SFF (or the point collocation method), the problem domain
is divided into subregions based on their material properties and
discretized into nodes consisting of interior, far-field
boundary, and material interface nodes (which must be im-
posed so that the discretized equations are not singular and solv-
able). It is not necessary to distribute the nodes regularly. The
nodal density, however, must be maintained at a relatively high
level at high gradient region in order to achieve desired accuracy.
As the intension here is to illustrate the differences between the
SFF and WFF, regular nodal distribution is used for clarity. To
solve for the nodal control values, we derive the equations
by substituting the approximate solution (9) into the governing
equation (1) and the BCs (6), (8a), and (8b).

Example Illustrating Assignment of Nodes: As an illustra-
tion, consider Fig. 1 with two regions ( and , where
region 1 is a free air space). The interior, material boundary,
and far field nodes are represented by circles, squares, and tri-
angles, respectively. Each of the points at the material boundary
is shared by two regions and represented by two overlapping
square nodes. The number and type of nodes are listed in Table I,
where is the number of nodes in the th region; and the
number of nodal control values to be solved in this example is
52.

The system of equations for the general case can be obtained
as follows. For the interior node, the substitution of (9) into (1)
at the th node of the th region yields

(10)
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Fig. 1. Example domain with two different materials.

TABLE I
NODE NUMBER FOR THE EXAMPLE SHOWN IN FIG. 1

where is the relative permeability of the material in th re-
gion. Similarly, applying (9) to the th node at the far field (6)
gives one of the boundary node equations

(11)

where the subscript denotes the far-field region. The two over-
lapping nodal control values (which share the same coordinate at
the interface) must satisfy (8a) and (8b). Using (9), (8a) becomes

(12)

where the subscripts “ ” and “ ” denote the two overlapping
nodes in th and th regions, and . Implementation
of condition (8b) is divided into the following two cases.

Case A: Boundary With a Well-Defined Normal at the
Node: For a smooth boundary where the normal of the
boundary at the nodal location exists, (8b) can be written as

(13a)

Case B: Corner Node Where the Normal Does not Exist: In
general, (13a) is invalid at the corner where the normal does
not exist. Although an average using both sides of the corner is
often used to approximate the normal at the corner, this method
(though consistent with the formulation) infers significant errors
around the corner. Instead, we use Gauss integral law of the
flux density as illustrated in Fig. 2, where a small square virtual
boundary (with size ) is set up at the corner; and

are the corner coordinates of the virtual square;
and are the virtual surfaces; and and are their
respective normal.

The flux passing though the surface can be approximated
by and similarly the fluxes passing through
other surfaces can be calculated accordingly. The total fluxes

Fig. 2. Material boundary condition at a corner.

passing though the boundary of the virtual square must be zero,
which leads to

(13b)

where is essentially repeating ; from (3) and (9)

if
if

and where and denotes the region and its number of nodes,
respectively. Equation (13b) is used to satisfy condition (8b) at
the corner where the normal is not well defined.

The above procedure can be applied to the remaining nodes
resulting in interior, far-field, and boundary interface
nodes in the forms given by (10), (11), (12), and (13), respec-
tively. Once the problem domain is discretized, the approximate
solution can be solved from (10), (11), (12), and (13) with the
shape function given by (A.1).

B. Weak Form Formulation (WFF)

In WFF, the governing equation is transformed into integral
form and its essential boundary conditions can only be applied
after discretization process. Unlike SFF where ,
WFF (which has been used in FEM) employs an interpolating
basis function where and for ease of
imposing essential boundary condition. The RPK basis function
given by (A.1)–(A.4), in general, does not have the interpolation
property and its value does not represent the value of function
at the boundary; this presents some difficulties when imposing
the Dirichlet boundary condition in WFF. As will be shown, the
procedure for imposing the boundary condition in WFF is more
involved than that for SFF.

1) Interpolating Shape Function: To facilitate the procedure
for imposing the boundary conditions in WFF, a modified basis
function that can be computed from the RKP basis func-
tion (A.1) and has an interpolation property is introduced:

(14)

where the element is defined by

(15)
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such that

(16)

2) Galerkin Method: The weak form equations are derived
using the Galerkin method: First, the approximation (16) is sub-
stituted into the governing equation. Both sides of the equation
are then multiplied by a test function. In WFF, both the test and
trial functions are from the same functional space. Next, the re-
sulting equation is integrated over the entire domain. For (1), we
have

(17)
The left side of the above equation can be integrated by parts

(18)

The first term in (18) is transformed from volume integral to
surface integral using the divergence theorem

(19)

Thus, (17) can then be rewritten as

(20)

The application of the BCs can be illustrated using Fig. 1.
Unlike SFF where two nodal control values are used for a co-
ordinate point at the material interface, the WFF uses a single
shape function to approximate the problem domain as a whole.
Thus, the continuity of potential at material boundary (8a) is sat-
isfied automatically. The continuity of the magnetic flux density
along the normal of the material interface (8b) is integrated into
the weak-form. Applying the boundary condition (8b), the first
term of (20) becomes

(21)
where denotes the material boundary. Equation (20)
becomes

(22)

The continuity of the flux density along the normal of the
material interface, (8b), is ensured by the WFF (22). Once the

Fig. 3. Discontinuity function at material boundary.

global stiffness matrix is formed, the Dirichlet boundary con-
dition (6) at far field can be applied by using the interpolating
shape function (16).

3) Discontinuity at the Material Interface in MLM: BCs (7)
and (8) imply that is discontinuous along the normal of the
material interface. However, the RPK basis functions are, in
general, continuous and often result in numerical errors in the re-
gion near the material interface. To solve this problem, a method
based on partition of unity theory [18] that was proposed for a
discontinuity problem in mechanical systems is adapted here for
the computation of the magnetic field. For this, we modify the
approximate solution (16) near the boundary (Fig. 3) as follows:

(23)

where is the number of nodes at material interface, is a
one-dimensional shape function of the arc length along the
discontinuity interface between two adjacent nodes, is the dis-
tance along the normal to the discontinuity interface between
the two nodes, and is the strength of the discontinuity to be
solved. In (23), is a function with a discontinuous first-order
derivative at , the location of the discontinuity. Equation (24)
shows an example discontinuous function (DF)

(24)

where . Thus, the number of unknowns to be
solved in the WFF is .

III. RESULTS AND DISCUSSIONS

A MATLAB program was written for computing the mag-
netic field. Numerical results were obtained for two examples.
Example 1 was selected for validating the two MLM algorithms
by comparing their results against an exact solution. Example 2
was designed to study the effect of boundary condition at the
material interface on the computation. In Example 3, we verify
the computed magnetic forces between two permanent magnets
against those measured experimentally. In the following com-
parison, we use (14)–(16) in addition to (A.1)–(A.4) to impose
the boundary condition in the MLM-WFF while the basis func-
tion for MLM-SFF retains the original form (A.1)–(A.4), where

is used in the following examples.
Example 1: We chose the following Poisson problem:

(25)

where the exact solution is given by

(25a)
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TABLE II
COMPARISON OF COMPUTATION ERROR (TIME IN SECONDS)

Fig. 4. Rate of convergence. (Color version available online at http://
ieeexplore.ieee.org.)

For the purpose of comparison against the exact solution, we
define the computation error as follows:

(26)

We also evaluate the computational efficiency of the two MLMs
using FEM as a basis for comparison. Unlike the shape function
in MLM, which is highly nonlinear and not in closed form,
the FEM shape function is constructed based on the meshes.
The shape function in FEM is normally piecewise polynomial
that interpolates the approximated function among the element
nodes. In this comparison, the rectangular two-dimensional
(2-D) bilinear element given in Appendix B has been used
with a 2 2-point Gaussian integration routine for the FEM.
For the MLM-WFF, a 4 4-point Gaussian integration is
chosen because of the high order shape function. The errors
are compared in Table II and Fig. 3, where the nodal distance
refers to the spacing between two adjacent nodes. In Table II,
the convergence rate is the average slope in Fig. 3.

The following are some observations from results.
1) As shown in Fig. 4, all the three methods converge to

the exact solution given sufficient number of nodes. Both
MLMs (that use higher order shape function than FEM)
achieve a higher converging rate than the linear FEM.

2) Both MLMs use the same higher order shape function,
which means their solutions are in the same functional
space. However, the Galerkin formulation in MLM-WFF
ensures that its solution is optimal in the same functional
space while the SFF (the shape function does not have an
interpolating property) only satisfies the governing equa-
tion at the nodes. The results due to this difference can

Fig. 5. Cylindrical magnet is free air space.

be verified with the error data in Table II. For the 17 17
nodes, the accuracy of MLM-WFF is an order higher than
that of MLM-SFF and two orders higher than that of FEM.

3) Due to the highly nonlinear shape function, the computa-
tion time of MLMs is significantly higher than FEM. The
need for higher order numerical integration also signifi-
cantly increases the computation time of MLM-WFF. Nu-
merically more efficient integration scheme suitable for
MLM-WFF is needed.

This example shows that MLM-SFF represents an interesting
tradeoff between MLM-WFF and FEM. Domain discretization
in MLM-SFF is simple, and requires no meshes and no integra-
tion to derive the numerical model.

Example 2: We use the two MLMs to solve for the mag-
netic field intensity around a cylindrical permanent magnet in
free space as shown in Fig. 5. The interest here is to investigate
the effect of the numerical approximation on the magnetic field
around the material interface. The cylindrical magnet shown in
Fig. 5 is uniformly magnetized in the direction, ,
which has no divergence and thus throughout
the volume. Thus, the source of is on the surfaces where
originates and terminates. A closed-form solution of the poten-
tial and magnetic field intensity along the z axis, , is given
in Appendix C derived using the superposition-of-integral [21]
of magnetic charges . The magnetic field intensity has a dis-
continuity at its circumferential material interface .
We compare the computational results of the MLM-WFF and
MLM-SFF against the closed-form solutions (C.3) and (C.4).

Both ML methods are formulated in cylindrical coordinates

(27)

where , and is the radius of the magnets.
For this axis-symmetric problem, . In addition to
the boundary conditions (8a) and (8b), we have the following
boundary condition for the symmetry:

at (28)

The focus here is to study the effect of different methods
on handling material boundary conditions. As compared in
Example 1, WFF requires less number of nodes than SFF to
achieve the same accuracy. Thus, we performed a prelimi-
nary node-number study, upon which we chose the nodal sets
(41 41 and 151 201 for the MLM-WFF and MLM-SFF in
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Fig. 6. Comparison of magnetic potential along the z axis. (Color version
available online at http://ieeexplore.ieee.org.)

Fig. 7. Computed field intensity. (Color version available online at http://
ieeexplore.ieee.org.)

the y–z plane, respectively) such that the two methods would
yield approximately same accuracy.

The computed and are compared in Figs. 6 and 7,
respectively, where and A/m. Both
ML methods give a reasonable prediction of the potential and
magnetic field intensity. As shown in Fig. 7(a), MLM-WFF has
a very good overall prediction but exhibits some oscillations
near the discontinuous interface. The discontinuity function
(24), which is denoted as DF in Fig. 7, added to the MLM-WFF
improves the accuracy of the prediction near the interface
but cannot completely remove the oscillations. SFF provides
smoother field intensity than WFF as it solves the entire do-
main by dividing it into subdomains and has no discontinuity
within each subdomain. Fig. 7(b) shows the effect of the corner
where the normal does not exist on the computation of the field
intensity using MLM-SFF. Since the closed form solution is

Fig. 8. Schematic illustrating the overall field computation.

only valid along the z-axis, we compute the analytical solution
by numerical double integration of (C.2) in Appendix C. As
shown in Fig. 7(b), the computation using the Gauss integral
offers a reasonable estimate as compared to that calculated
using the average normal.

Example 3: Poisson’s equation is linear; thus, the principle
of superposition applies and is used to compute the repulsive
force between two identical permanent magnets separated by
an air gap . The overall intensity can be obtained from the
algebraic sum of the two permanent magnets individually. Once

(and hence ) is known, the overall force on a body can be
computed using surface integration of the Maxwell stress tensor
from (4).

Once the magnetic field on y–z plane is computed (see Ex-
ample 2), the magnetic field at any general location (x, y, z)
can be computed from a corresponding precomputed point
x’(0, y’, z’) on the y-z plane using the property of axi-sym-
metry as illustrated in Fig. 8. This can be done as follows.
Given the coordinates of x, the corresponding x’ in term of x is

(29)

Next, the magnetic density at location is calcu-
lated using (3) with obtained the steps shown in Example 2.
Finally, ’ is transformed to at . The result is given by (30)

(30)

High coercive permanent magnets (as schematically shown
in Fig. 8) are commonly used in high-throughput manufacturing
and food processing industries as energy-efficient actuating de-
vices for noncontact reorientation and alignment applications,
where magnetic actuation are triggered mechanically by mo-
tion of a drive-chain. We verify experimentally the magnetic
force computation using the setup shown in Fig. 9. The pair
of permanent magnets is separately mounted on two cantilever
beams, one of which is driven by a precision NSK ball-screw
while the other carries a strain-gage that measures the repul-
sion force. The computed forces are compared in Fig. 10 against
the experimental data where the values characterizing the two
identical magnets are mm, mm, and

T. The effect of the corner on the computation of
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Fig. 9. Experimental setup. (Color version available online at http://
ieeexplore.ieee.org.)

Fig. 10. Repulsion force as a function of displacement. (R = d = 6:35 mm,
g = 0:5 mm, and � M = 1:35 T). (Color version available online at http://
ieeexplore.ieee.org.)

Fig. 11. Effect of corner on MLM-SFF. (Color version available online at
http://ieeexplore.ieee.org.)

the magnetic force using MLM-SFF is shown in Fig. 11, where
the errors (or the difference from the analytical solution) in the
forces computed using the two methods are compared. The com-
putation using the Gauss integral reduces the uncertainty at the
corner where the normal is not well defined.

IV. CONCLUSION

The effects of two different discretization methods, strong
and weak form formulation, on the computational accuracy and
efficiency of computing electromagnetic fields have been inves-
tigated. The computational results were also verified by com-
paring the computed magnetic force between two permanent
magnets against those measured experimentally. Both methods
converge to exact solutions with increasing number of nodes.
However, the computation time of MLM is significantly higher
than FEM due to the highly nonlinear shape function. While
MLM-WFF offers better overall accuracy, it requires special
treatment to approximate the discontinuity of the field intensity,
which exhibits oscillations near the discontinuous interface. The
discontinuity function added to the MLM-WFF improves the
accuracy of the prediction but cannot remove the oscillations
completely. We also show that the problem of undefined normal
at the corner in MLM-SFF and demonstrate the use of Gauss
Integral law to alleviate the problem. As MLM-SFF requires no
meshes and no integration to derive the numerical model, and
domain discretization and procedure for imposing the boundary
conditions are simple, it represents an interesting tradeoff be-
tween the Galerkin-based MLM and FEM.

APPENDIX I
REPRODUCING KERNEL PARTICLE (RKP) BASIS FUNCTION

The shape function can be expressed as

(A.1)

where is a kernel (or weight) function centered at ;
and is a set of enrichment functions that vary with
the location of approximation . The following cubic B-spline
function [14] is chosen for the kernel function:

for
for
for

(A.2)

where ; and the radius is a design parameter
that influences the effective region of the kernel function. In this
research in general. The set of basis function
in (13) is given by [14]

(A.3)

where
and

is computed from

(A.4)

APPENDIX II
SHAPE FUNCTION USED IN FEM

The following rectangular 2-D bilinear element has been used
for the FEM as a basis for comparison:

(B.1)
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In general, the coefficient of polynomial can be obtained by im-
posing the interpolating condition, and then the element equa-
tion can be computed. As the element equation can be more ef-
ficiently computed using the natural coordinate system, the fol-
lowing standard form of an iso-parametric shape function is

(B.2)

where and are natural coordinate system, and and are
the coordinate of th node. Thus, the corresponding weak form
integration has the following form:

(B.3)

where

(B.4)

APPENDIX III
ANALYTICAL SOLUTION BASED ON SUPERPOSITION

OF INTEGRALS

The general solution of (1) with is as follows:

(C.1)

where . For a uniformly magnetized cylinder
shown in Fig. 5, the potential at the location is

(C.2)

where

Closed-form solution of the potential and magnetic intensity
field along the z axis is given by [19]:

(C.3)

(C.4)

where

and
if
if
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