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Feature Detection With Food Processing Applications
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Abstract—Color information is useful in vision-based feature
detection, particularly for food processing applications where
color variability often renders grayscale-based machine-vision
algorithms that are difficult or impossible to work with. This
paper presents a color machine vision algorithm that consists of
two components. The first creates an artificial color contrast as
a prefilter that aims at highlighting the target while suppressing
its surroundings. The second, referred to here as the statistically
based fast bounded box (SFBB), utilizes the principal component
analysis technique to characterize target features in color space
from a set of training data so that the color classification can be
performed accurately and efficiently. We evaluate the algorithm
in the context of food processing applications and examine the
effects of the color characterization on computational efficiency
by comparing the proposed solution against two commonly used
color classification algorithms; a neural-network classifier and the
support vector machine. Comparison among the three methods
demonstrates that statistically based fast bounded box is relatively
easy to train, efficient, and effective since with sufficient training
data, it does not require any additional optimization steps; these
advantages make SFBB an ideal candidate for high-speed automa-
tion involving live and/or natural objects.

Note to Practitioners—Variability in natural objects is usually
several orders of magnitude higher than that for manufactured
goods and has remained a challenge. As a result, most solutions
to inspection problems of natural products today still have hu-
mans in the loop. One of the factors influencing the success rate
of color machine vision in detecting a target is its ability to charac-
terize colors. When unrelated features are very close to the target
in the color space, which may not pose a significant problem to
an experienced operator, they appear as noise and often result in
false detection. This paper illustrates the applicability of the algo-
rithm with a number of representative automation problems in the
context of food processing applications. As demonstrated exper-
imentally, the artificial color contrast and statistically based fast
bounded box methods can significantly improve the success rate of
the detection by reducing the standard deviation of both the target
and noise pixels, enlarging the separation between feature clusters
in color space, and more tightly characterize the feature color from
its background. The algorithm presented here has several advan-
tages, including simplicity in training and fast classification, since
only three simple checks of rectangular bounds are performed.

Index Terms—Color classification, feature detection, inspection,
machine vision (MV).
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I. INTRODUCTION

NATURAL object identification has received more atten-
tion in automation. Early works focused on identifying a

human face from grayscale images [1]–[4] using edge and shape
information. More recently, color vision as an image processing
tool in detecting features has widely been adapted to human face
identification [5]–[8]. Color-based algorithms have been found
to be much faster than those based on shape. However, color
vision has its problems when used in natural object identifica-
tion since color images of natural products are susceptible to
noise. A good lighting system can only partially solve the noise
problem. In addition, color variation and uniformity are a unique
nature of live objects. The design of a time-efficient, reliable
color classification algorithm for food processing applications
has remained a challenge.

Machine vision (MV) algorithms for detecting features of a
moving natural object can be classified into three main cate-
gories: 1) features are extracted from a gray-level image on the
basis of both edge and shape; 2) features are detected by virtue
of their characteristic color; 3) the method uses a combination
of 1) and 2); often characteristic color detection is applied
as a preprocessor followed by a shape-matching algorithm to
identify the target feature. Among them, characteristic color
detection has been an attractive solution particularly in appli-
cations where the color difference between the target features
and its background is significant. For high-speed automation
applications [9], such as food processing and handling of live
objects for meat production, the shape variation and voluntary
motion of live, natural objects coupled with the stringent pro-
duction demands to reduce computation time make algorithms
based on shape information less than attractive for real-time
applications. Color-based algorithms are especially suitable for
detecting features of live natural objects and have significant
potential in agriculture and food processing. The basic idea
of a color-based feature detection algorithm is to utilize a
set of training data to approximate the boundary of the color
subspace that characterizes the feature for subsequent classi-
fication. Reilly–Cooper–Elbaum’s neural-network classifier
(RCE–NNC) [10] has been one of the most commonly used
methods for identifying shape patterns [3], [11]–[15]. It has
also been used in color vision [16] and orientation detection
in handling live birds [17]. The performance of RCE–NNC as
compared to other neural networks has been studied in [18]. The
success rate of an RCE–NNC depends heavily on its designed
parameters and the topology of the trained network. Although
some research effort (for example, [13] and [19]) has been
directed toward optimizing the topology of an RCE–NNC,
its optimization for a real-time application has remained a
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Fig. 1. Receptive field and ganglion cell. (a) ON–OFF-center. (b) Cat’s RGC
response to an edge stimulus [26].

challenge. More recently, kernel methods have become more
popular [20]. As one of the commonly used kernel methods, the
support vector machine (SVM) [21]–[23] has been developed
from a rigorous statistical learning theory. Both RCE–NNC
and SVM are relatively easy to use compared to many other
NNCs. In practice, both methods, however, could become less
efficient and inaccurate when their parameters are poorly tuned;
the procedure for optimizing the design parameters could be
tedious and time-consuming.

To improve the success rate of detecting color-based features
involving natural or live products, color vision algorithms must
be able to discriminate target features from noise at high speed.
For these reasons, our color vision research has focused on ad-
dressing two specific issues: The first is to create artificial color
contrast (ACC) as a prefilter to highlight the target but sup-
press its surroundings. The second is to improve the characteri-
zation of the color feature in an attempt to exclude noise so that
the color classification can be performed more accurately and
efficiently.

Human abilities to perceive fine gradation of color have
motivated us to utilize some functions in a human visual system
(HVS) to address the first issue encountered in automating
visual inspection currently performed by human inspectors
in a production setting. In early 1953, Kuffler [24] combined
the use of microelectrodes for recording directly from retinal
ganglion cells (RGC) bodies in the intact eye of the cat with
the simulation of the retinal with localized spots of light. He
found two kinds of ganglion cells, ON- and OFF-center as
shown in Fig. 1(a), for those excited and inhibited by light in
the center of their receptive fields, respectively. Many of the
basic anatomical and physiological principles evident in the cat
retina also hold for the primate retina [25]. Built upon Kuffler’s
method, Enroth–Cugell and Rodson [26] used the difference of
two Gaussian ( ) functions to quantitatively describe the
RGC behaviors. Their modeled data reproduced in Fig. 1(b),
which shows the striking ability of an HVS to emphasize
edges while simultaneously smoothing its surroundings and
maintaining the level of contrast, has been the basis for visual
psychophysics and computer vision work addressed to edge
detection and image segmentation. In this paper, we explore this

ability for color machine vision formulated using trichromacy
and opponent-color theories to separate closely similar color
features in handling natural objects and with the inspection
of food products; the opponent-color theory was qualitatively
hypothesized by Hering [27] to explain various phenomena that
could not be adequately accounted for by trichromacy.

The remainder of this paper offers the following:
1) We present an alternative method, the statistically based

fast bounded box (SFBB), to characterize the color fea-
tures. SFBB uses the principal component analysis (PCA)
technique [28] to obtain the principal axes of the training
data distribution in the color space. PCA is well known for
its use in the eigenface algorithm [1], [2] that helps find the
most dominant feature from a grayscale image of a human
face. Unlike [1] and [2] where PCA was used to reduce
the dimension of the identification problem with the whole
grayscale image as a classification input, the SFBB method
finds a linear transformation to minimize the covariance of
the training set where individual color pixels are used as
classification inputs.

2) We provide a general formulation that uses with op-
ponent colors to increase the separation between target fea-
tures and noise in color space so that unrelated features (or
noise) can be easily excluded from the bounded box char-
acterizing the target. This approach utilizes some functions
in the human visual system (HVS) to create ACC for im-
proving the reliability in finding color features in a natural
product. However, we also recognize that HVS does not ex-
hibit perfect color constancy [29], [30] and also performs
poorly in lighting with abnormal spectral content (e.g.,
sodium arc) particularly when color features are very sim-
ilar. Thus, we develop here a robust method utilizing the
quantitative ability of a color machine vision to discrimi-
nate a very small color difference between similar features,
and show how Hering’s theory of opponent colors can be
quantified in designing color-based vision algorithms. Un-
like color constancy that refers to the lack of change in the
perceived color of a colored patch as the global illumina-
tion changes, we focus on contrast due to the change in
perceived color of a colored patch as its local surrounding
is changed, given the illumination.

3) We illustrate the use of SFBB with ACC for characterizing
color-based features in the context of food processing ap-
plications involving live products or biomaterials, where
reliability and high processing speed are of particular con-
cern. In general, variability in these products is usually sev-
eral orders of magnitude higher than that for manufactured
goods.

4) We examine the effects of the color boundary on the com-
putational efficiency of feature detection by comparing
three color classification algorithms; namely, SFBB,
RCE–NNC [10] [17], and SVM [21]–[23] which are
chosen from the viewpoint of the geometrical boundary.
SFBB uses a bounded box with orientation and dimensions
defined by the statistics of the training set while RCE–NNC
uses hyperspheres and SVM uses hyperplanes. The visual
comparison offers some intuitive insights on the effect of
their differences on the success rate of detection.
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II. STATISTICALLY BASED FAST BOUNDED BOX (SFBB)

A color signal is represented here in red, green, and blue
(RGB) space, and the target is considered as a subspace in the
entire RGB color space.

A. Problem Formulation

The identification problem can be defined as follows: Given
a set of scatter points (referred to here as a training set) in the
target color subspace , the problem is to find its boundary
such that for any color vector in the color space, if is inside

, then represents one point of the target feature; otherwise,
it does not belong to the feature.

If all of the members in are known, the boundary of is
also known. Unfortunately, the boundary of the target color sub-
space can only be constructed from a limited set of training sam-
ples; thus, it is essentially an approximation at best. The close-
ness and shape of the approximated boundary, which depends
on the decision rules of the specific algorithm employed, have
a significant influence on the cycle time and success rate of the
automated process.

B. Simple Bound Box in RGB Space and Its Problems

The interest here is to describe the boundary that simpli-
fies the subsequent identification process and makes the detec-
tion algorithm accurate and fast. A simple bounded box can be
used to approximate the boundary of the target color subspace.
This method assumes that the three color component vectors are
independent random variables. The basic idea here is to con-
struct a smallest possible rectangular box to enclose representa-
tive color points of the target from a given training set in RGB
space. Such a bounded box can be easy constructed from the
maximum and minimum values of the color component. The
classification can then be reduced to simply check whether the
RGB pixel values are within the bounds, which is a relatively
simple and fast process.

The above procedure, however, does not result in the tightest
box since it does not take into account the color characteristics
of the feature. In fact, this larger-than-necessary box would re-
sult in introducing unwanted color points (as noise) in the pro-
cessed image.

A relatively simple method to examine whether the three
color component vectors are independent random variables is
to fit the normal distribution to the training data. If the training
set matches the ideal normal distribution very well, there is a
very high probability that these components are independent
of each other. Otherwise, some of them may be related and a
change of the variables is necessary to minimize correlation
among the variables.

C. Finding SFBB Using Principal Component Analysis

In order to minimize the correlation among the component
vectors, the SFBB method computes the three principal axes of
the training set for constructing the bounded box. The method
involves the following steps.

• First, the principal axes characterizing the training set are
calculated from its covariance matrix.

Given training set with component vectors , , and
in the RGB space, a covariance matrix can be com-

puted from (1)

(1)

where

(1a)

(1b)

(1c)

and is the number of color points. The covariance matrix
is symmetric. To maximize the variances of interest,

we apply the singular-value-decomposition method to ob-
tain the eigen values and the normalized eigen
vectors of . The three principal axes of the
new coordinate system are given by the unit vectors along

, , and .
• Second, the training set in RGB space is transformed to the

new coordinate system formed by the three principal axes.
The training data can be transformed from its original RGB
space to the new coordinate system

(2)

where and are the original vector
and its corresponding average in RGB space, respectively,
and is the transformed color vector.

• Finally, the bounded box is constructed in the new coordi-
nate system.
In order to find an appropriate size for the bounded box to
best characterize the color of the feature, we use linear re-
gression theory to determine the confidence level at which
the three transformed color components are independent
random variables; this level is used to specify the boundary
of the box in terms of standard deviations (SD).

D. Illustrative Example: Live-Bird Handling Application

We illustrate the computation procedure with a live-bird han-
dling application for meat processing, where the birds must be
shackled in a specific direction. The bird’s orientation (forward/
backward) is determined by identifying its red comb relative to
its white-feathered body as shown in Fig. 2. Due to varying sizes
and shapes, and some natural reflexes (or voluntarily motion)
of the birds, MV algorithms based on detecting edges and/or
shapes have difficulties meeting stringent production require-
ments that demand reliability and speed. In this application, the
vision algorithm is used to detect the red comb of a bird. Apart
from a spectrum of red that characterizes the combs in a typical
batch, noise (such as dirt on the feathers, bare spots of flesh,
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Fig. 2. Experimental setup and typical images. (a) Setup. (b) Forward.
(c) Backward.

Fig. 3. Example illuminated combs of typical birds.

Fig. 4. Training set and the computed SFBB, data from Fig. 3.

shadow and reflection of environmental illumination) present a
challenge to reliable color detection as shown in Fig. 3.

Fig. 4 shows a set of experimentally obtained training data
of color points from the comb. The data are plotted in
RGB space, along with corresponding covariance matrix and
normalized eigenvectors, where the rectangular box represents
the computed SFBB (with dimensions at 2 SD or 95% confi-
dence level). Fig. 5 compares the normal distribution of the red
components of the training set against those of the transformed
vector components. In Fig. 5, the distribution is graphed in a
natural logarithmic scale; the dashed line is the ideal normal
distribution and the discrete points are experimentally obtained
data.

As shown in Fig. 5, the original red component data do not
match the normal distribution and, thus, its vector is not an inde-
pendent random variable. The data distribution in transformed
coordinates matches the normal distribution very well; the trans-
formed coordinates can be treated as independent random vari-
ables. This justification permits the boundary of the bounded
box to be specified in terms of the number of standard deviations
(SDs) of each component. Clearly, the tightest box (that more
closely characterizes the color of the comb) is preferred since

Fig. 5. Normal distribution (before and after transform). (a) Red color. (b) R1
(transformed coordinate). (c) R2 (transformed coordinate). (d) R3 (transformed
coordinate).

a larger-than-necessary box would include unrelated features
as noises, which must be excluded before color classification.
Once SFBB is obtained, the classification becomes a straight-
forward process of checking whether the test color pixels fall
within the bounded box.

III. ARTIFICIAL COLOR CONTRAST (ACC)

When unrelated features are very close to the target in color
space, which may not pose a problem to an experienced oper-
ator, they appear as noise and often result in false detection. In
this section, we present a method (ACC prefilter) to separate tar-
gets and unrelated features in color space. The method is based
on some observations in [24], [26], and [27] that the response
function of an HVS is essentially a result of two independent
mechanisms (referred to here as center and surround similar to
the ON- and OFF-centers of the RGC in an HVS, respectively).
This response function is quantitatively modeled as of the
center and surround. To account for the effect of colors, we de-
sign the center and surround responses based on a combination
of the trichromatic and opponent theories of vision.

A. Model for ACC

Consider a 2-D symmetric (zero-mean uncorrelated)
Gaussian kernel

(3)

to get

(4)

where, for simplicity, denotes . Similar to Laplace
of a Gaussian, the image is first smoothed with the Gaussian
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Fig. 6. DoG model of receptive field.

kernel of width . The difference of two Gaussian-smoothed
images can be written as

(5)

• as an edge finder of a single grayscale image.
The difference of two Gaussians is commonly used in MV
to detect edges in a grayscale image, for which

Thus

(6)

where the subscripts “ ” and “ ” denote the center and
surround of the excitatory and inhibitory receptive fields
(Fig. 6), respectively; ; and as a convolution
kernel is defined as

(7)

To facilitate the following discussion, we broadly divide
the surrounds into two types:

Type I)

(8a)

Type II)

(8b)

Type I is essentially an edge detection filter applied on
a color component image. Type II allows for

. In Types I and II, with ( ,2,3) cor-
responds to component images, respectively; and

with ( ,5,6) are some linear combinations of
component images to be designed. The ACC method

is to find

(9)

where are weighting factors.
• Opponent-Color-Based Surrounds

We mimic the HVS by denoting the component as
the center and the linear combination as a surround. For
simplicity, we denote the component images as

and

Fig. 7. Effect of R-G and Y-B channels on monitor color test patterns.
(a) Hering’s theory of opponent color. (b) Color checker. (c) R-G of (a).
(d) R + G � B of (a).

One possible set of surrounds (inspired by Herring’s oppo-
nent color theory) is the and channels

(10a)

(10b)

where denotes that the channel is bipolar. The term
“bipolar” means that each channel can signal only one
of the two attributes. Opponent color exists because the
sensations of red and green are encoded in a single vi-
sual pathway and, similarly, for blue and yellow—an ac-
cepted fact in modern biological vision. The effect of the
positive channel of (10a) and (10b) on a color calibration
pattern is shown in Fig. 7. Much like Hering’s opponent
cells, excites red and inhibits green. Similarly,

excites yellow and inhibits blue.
Substituting into (8b) with (10a) with

(11-1)

(11-2)

(11-3)

And similarly with (10b) with

(12-a)

(12-b)

(12-c)

In (11) and (12), each transformed component consists
of two parts. The first part is essentially a monochrome

filter allowing the detection of edges in the image.
The second part emphasizes the influences of certain color
components in order to create the necessary contrast. Sim-
ilar equations can be obtained using the negative channel
of (10a) and (10b).

• Artificial Color Contrast for Feature Discrimination
The ACC method is best illustrated with examples. Con-
sider three color vectors (target, noise, and background) in
an image, where the target and noise are very close in color
space (particularly the red component). The interest is to
separate the distance between the target and noise, and that
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TABLE I
EFFECT OF DIFFERENT CENTER AND SURROUND COMBINATIONS

between the target and background. Table I shows eight
different center/surround combinations that can be created
from the positive channel of (10a) and (10b) on their effect
on the two distances; the legend “1-2-c” denotes that the
transformed components are computed by (11-1), (11-2),
and (12-c). Clearly, another eight transformed images can
be created from the negative channel of (10a) and (10b).
As illustrated in Table I, both target and noise features have
the same gray level in the dominant red of 170. Thus, we
create ACC (between target and noise) by taking advan-
tages of a larger difference in the gray level. This is ac-
complished by applying the color opponent to
the component image replacing the gray levels in with
that in as shown in the second part of (11-1) via the sur-
round mechanism. Similar amplification can be achieved
by applying the color opponent to the com-
ponent image. As shown in Table I, all of these combina-
tions result in a larger distance between the target and noise
features in the transformed space; this would reduce the
chance of including noise in the bounded box.
The above procedure is equally applicable to other closely
similar colors. As an illustration, consider the same ex-
ample in Table I where the target and background have a
similar gray level of about 100. ACC (between the target
and background) can be created by applying the
color opponent as surround to the component image. The
response has the form ; the gray levels of

are replaced by those of while the edge information in
is preserved. Using the above with (11-1) and (11-2) for

the and components as discussed earlier, the vectors
characterizing the features in the transformed color space
are [110, 50, 160] [90, 11, 101] and [210, 197, 507] and
the corresponding two distances are 73.5 and 390, which
are significantly larger than those of the original image.
The color image is often scaled to 3 bytes for visual pre-
sentation in RGB. Such scaling, however, is generally not
necessary for machine applications in real time.

B. Illustrative Examples

Due to the page limit, we primarily illustrate food-processing
applications here, where red is often a dominant color to be iden-
tified. Without loss of generality, only the positive channel of
(10a) and (10b) will be used from here on. We expect that the ex-
tension to a more complete set of center/surround combinations
or for other colors, though lengthy, is straightforward. Based on
the results in Table I, we choose the transformed space “1-2-c”

Fig. 8. Example illustrating the basic concept of ACC. (a) Originial RBG of
image. (b) Transformed ACC image.

Fig. 9. Effect of ACC on example colors in Fig. 8. (a) Class I: DoG of compo-
nent color. (b) Type II � Type I.

for clarity of image presentation to general readers. Mathemat-
ically, this transformed ACC space is given by (13)

(13a)

(13b)

(13c)

As will be shown, (13) greatly enhances the ability to separate
closely similar red features in the transformed background of
yellow. The widths and pixels, are used in the
following examples.

Example 1: ACC’s Effect on Contrast and Edge: Consider
the test image shown in Fig. 8(a), which is made up of two sim-
ilar red features with their RGB values listed below the colors.
Fig. 8(b) shows the transformed ACC image, where an offset of
100 is added to the transformed image to allow for visual illus-
tration. Figs. 9(a) and (b) plot the first and second terms of (13)
across the edge of the transformed image shown in (8b). Two
observations are worth mentioning.

1) The ACC method has a significant effect on enhancing con-
trast (denoted by the ratio where is the Euclidean
distance between the two features), which increases from
0.15 to 0.57.

2) Type II response, as given by the component sum in (8a)
and (8b), resembles the cat’s RGC response to an edge
stimulus shown in Fig. 1 [26].

Example 2: Effect of ACC to Color Classification: Fig. 10(a)
shows an image of a white-feathered broiler (meat chicken) on
a moving conveyor, where the red comb is to be identified and
the featherless spot with shadow is potential noise. A represen-
tative set of training data for classification, where two clusters
(denoted by red and blue) are color pixels of the target and noise
in RGB color space, is given in Fig. 11(a). These clusters (both
dominant in red) are very close to each other in the color space; it
makes color-based identification a difficult task. Thus, we apply
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Fig. 10. Example illustrating the effect of ACC on features of similar color.
(a) Original image. (b) Transformed ACC image.

Fig. 11. Comparison showing the ACC’s effect on features in color space.
(a) Color pixels in RGB space. (b) Color in transformed space.

TABLE II
COMPARISON BETWEEN FEATURES IN RGB AND ACC TRANSFORMED SPACE

the ACC method to artificially increase the separation between
the two clusters. The transformed image computed using (13) is
given in Fig. 10(b).

The effect of ACC on color representation can be il-
lustrated by comparing the pixel clusters of the original
RGB image and those of the transformed ACC image in
Figs. 11(a) and (b),respectively,along with their means, stan-
dard deviation (SD), and distance in Table II, where the SD
is calculated along the principal axes. The distance between
the clusters in ACC space is twice that of the RGB space.
In addition, the application of the Gaussian smoothing filters
results in more closely packed clusters. Both of these effects
will ease the design of the classifier.

Example 3: Food Processing Applications: We examine the
robustness to ACC to sensor resolution in bone detection—an
application of great importance to many producers because of
food safety concerns. Figs. 12(a) and (b) show two images of
a poultry (breast-butterfly) meat taken using two different color
cameras:

1) high-resolution 3-CCD camera (Sony DXC900);
2) low-cost single-chip camera (point gray firefly).
In Fig. 12(a), a “fan-bone” to be identified can be seen at the

lower right corner on the surface. In addition, there are blood
stains near the fan-bone and on the opposite side of the breast-
butterfly. These blood stains, which are acceptable from a safety
viewpoint, could trigger false detection. The potential problems
presented by noisy blood stains can be seen in the color patterns
in RGB space in Figs. 13(a) and (b), particularly in the image
captured by the single-chip camera. As compared in Table III

Fig. 12. Example illustrating the effect of sensor resolution. (a) Fanbone
(3-CCD). (b) Fanbone (single-CCD). (c) ACC image (3-CCD). (d) ACC image
(single-CCD).

Fig. 13. Comparison of ACC on color features with different image resolution.
(a) Color in RGB space (3-CCD). (b) Color in RGB space (1-CCD). (c) Color
in ACC space (3-CCD). (d) Color in ACC space (1-CCD).

and Fig. 13, the ACC can effectively reduce the pixel distri-
bution of the fan bone and blood stains in color space. It also
increases the separation between the two color clusters. It is
worth noting that the preprocessed image of the single-chip
camera with ACC could outperform the 3-CCD image without
the ACC, implying that the ACC could present a potentially
low-cost solution to color classification problems.

Figs. 14(a) and 15(a) show two other example problems com-
monly encountered in the inspection of food products: grape-
fruit inspection [34] and detection of contamination in a pack-
aged food product, where MV is used to sort this product based
on user-generated parameters. Figs. 14(b) and 15(b) show the
grayscale images of the same two products; clearly, color is nec-
essary in order to differentiate between defective areas (such as
the blush or contamination) as they would be confused with
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Fig. 16. Structure of the trained network.

TABLE III
EFFECT OF SENSOR RESOLUTION (TARGET)/(NOISE)

Fig. 14. Grapefruit inspection. (a) Original. (b) Grayscale. (c) Transformed.

Fig. 15. Detection of contaminations in packaged food. (a) Original.
(b) Grayscale. (c) Transformed.

shading. Figs. 14(c) and 15(c) show the transformed images
(that are a more desired representation to machines), where
color contrast between features is artificially created while
noise is suppressed.

IV. EFFECTS OF COLOR CHARACTERIZATION METHODS

We examine the effects of the target-subspace boundary for
characterizing the target color by comparing SFBB against two
other methods; RCE neural-network classifier (RCE–NNC) and
support vector machine (SVM).

A. RCE Neural Network

A three-layer RCE–NNC (shown in Fig. 16) is used to pro-
vide the supervised learning of color pattern categories sepa-
rated by nonlinear, essentially arbitrary boundaries. The concept
of a pattern class develops from storing in memory a limited
number of class elements (prototypes). Associated with each
prototype is a modifiable scalar weighting factor that de-
fines the threshold for categorizing an input to the prototype.
Learning involves 1) commitment of the prototypes to memory
and 2) adjustment of the various factors to eliminate classifi-
cation errors.

The three-layer RCE–NNC has input nodes (equal to the
dimension of input vector), output nodes for the number of
output categories, and a hidden layer. The hidden layer is ini-
tially empty and creates nodes dynamically through learning.
If the new pattern does not belong to an existing class (or is

not within the sphere defined by ), a new node is created in
the hidden layer. A default threshold and a distance function

where and are two vectors in the color space
must be assigned before training can begin, which could signif-
icantly influence the number of nodes generated in the hidden
layer and the type of hidden node (for example, sphere or rect-
angular box), respectively. Thus, these design parameters deter-
mine the topology of the trained network and, hence, the perfor-
mance of the classifier. In this study, the distance function is a
3-D Euclidean distance between two vectors in the color space
computed by

(14)
The training process of an RCE–NNC is iterative. We illustrate
it here using the following pseudocode.

Initialization

Number of nodes on the hidden layer M = 0:

Training begins

Let the first pattern R belong to the cth class resulting in the first

hidden node M = 1

W = R ; V = 1; and �1 = default threshold, where

i = r, g, and b.

The process is repeated and new hidden cells are created.

Confusion

With M cells available, the following process repeats for each new

training pattern. Consider the nth training pattern (belonging to the

dth class) arrives.

For k = 1 : M

m = N (D(W ;R ))

where D(W ;R ) = kW � R k and

N (x) =
1; x < �

0; x � �
.

If m = 1 and V = 1.

The pattern is correctly contained within a

cell.
Else if m = 1 and V = 1.

The classification is incorrect. Decrease �

until m = 0.

End

If 8k, m = 0, then add a new cell in the hidden

layer

W = R

V = 1, and

M = M + 1:

End

End

Once it is trained, RCE–NNC stores the points in a metric
space . The boundary of the class is approximated by a set
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of hyperspheres in feature metric space. The distance function
relates the unknown pattern to a category. The weight of the
hidden node is the coordinate of the center of the hypersphere.
The threshold of hidden node represents the radius of the hyper-
sphere. A vector in metric feature space will be recognized as
one class if it falls into one of the hyperspheres that belongs to
that class.

B. Support Vector Machine (SVM)

SVM, a classification method developed from the linear sta-
tistical classifier, is the combination of a hyperplane classifier
[31] and kernel method [32] [33] and is briefly introduced here
for completeness. Given the training set

where and are the pre-
dictive (or independent) variable and the target (or dependent
variable), we wish to obtain a mapping

The SVM discussed here is a two-class classification problem,
the classes being , for , which can easily be
extended to class classification by constructing two-class
classifiers.

• Maximal Margin Hyper-Planes
If the training data are linearly separable, then there exists
a pair such that

for all
for all

(15)

The decision rule is given by

(16)

where is the weight vector; and is the threshold. As
shown in the appendix, the optimal linear hyperplane is
constructed in the feature space by applying the margin
principle which will maximize the margin between two
classes. The decision function is then given by

(17)

where ; ; and
are the Lagrange multipliers to be obtained

by solving the following dual problem given by (A.6) in
the Appendix

Maximize (18)

subject to , ; is a symmetric matrix
with elements

(19)

Note that is only non-zero when ,
vectors for which they are called support vectors since they
lie closest to the separating hyperplane.
The solution obtained is often sparse since only with
non-zero Lagrange multipliers appears in the solution. This

Fig. 17. Computed feature representation in color component space.
(a) Trained RCE neural network. (b) Trained SVM.

is important when the data to be classified are very large,
as is often the case in practical classification situations.
However, it is possible that the expansion includes a large
proportion of training data, which leads to a model that
is expensive both to store and to evaluate; alleviating this
problem is an area of ongoing research in SVMs.

• Kernel Feature Spaces
A linear classifier may not be the most suitable hypothesis
for the two classes. SVM can be used to learn nonlinear
decision functions by mapping the data to some higher di-
mensional feature space and constructing a separating hy-
perplane in this space. Denoting the mapping by

and (20)

Mapping data to is, however, time consuming and
storing it may be impossible. Note that could be infinite
dimensional. Hence, a kernel function

(21)

is introduced and the decision function becomes

(22)

where the bias for any support vector is given by

(23)

The kernel function allows us to construct an optimal sep-
arating hyperplane in the space without explicitly per-
forming calculations in this space, which requires to be
an easily computable function; commonly used kernels in-
clude linear, polynomial, and radial kernels. In this study,
we choose a radial basis function for the kernel

(24)

SVM is reduced to solving the Lagrange multipliers from
(16) with , the solution of which can
be obtained using quadratic programming techniques.

C. Comparison of Results

We experimentally examine the effects of the boundary
approximation on computational efficiency in color space by
comparing SFBB against RCE–NNC and SVM. The studies
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Fig. 18. Training data of SVM. (a) C and NC. (b) B and NB.

were performed using the live-bird orientation detection ap-
plication as described in Section II-D. Eighty-one (640
480-pixel) images of grasped birds were captured; and divided
into two groups, with 51 birds facing forward and the remaining
30 facing backward. The training sets are the same as in Fig. 4.
Thirteen hidden cells are used in REC–NNC. The number
of support vectors is 1541. A total of 2401 data was trained.
The images were preprocessed with the filter to enhance
contrast, and postprocessed with a morphological operation
based on the majority rule of ten pixels (in an 8 8 mask)to
remove isolated noise.

The following summarizes the differences among the three
methods and observations made from the results.

1) SFBB uses a bounded rectangular box (Fig. 4) with its
orientation and dimensions defined by the training set
statistics, while RCE–NNC and SVM use hyperspheres
and hyperplanes, respectively. To offer a visual com-
parison, Fig. 17(a) shows the geometry topology of a
trained RCE neural network where we choose ,
minimum threshold , and the distance function de-
fined in (14). The geometry of the generated nodes of an
REC–NNC in the hidden layer is spherical in 3-D space.
Fig. 17(b) shows the boundary of the same training set but
using the SVM classifier. Due to the difficulty in solving
the boundary of SVM in closed form, the boundary was
numerically computed by testing each pixel cell in RGB
space using the SVM classifier. The connected cells are
combined to form the boundary. The boundary so gener-
ated is not smooth; however, it is intuitive in understanding
the SVM classifier boundary.

2) While SVM is a more general method for solving classifi-
cation problems, it has three major disadvantages:
1) Unlike SFBB and RCE–NNC, which can construct

the boundary for a single class, SVM needs at least
two classes to construct a hyperplane. Although the
primary target features are the red comb and white
body (as background), there are points in the image
that are neither body nor comb. Thus, four classes are
needed; (B/NB)—feature color for body and not body,
and (C/NC)—for comb and not comb for this problem
as shown in Fig. 18.

2) The performance is very sensitive to the training data.
The training patterns for nontarget features must be
carefully chosen in the proximity of the target in color
space so that the boundary of the color subspace is tight.

3) The classification results are summarized in Tables IV and
V, where the success rates of three methods are compared
without and with an ACC prefilter, respectively. The ACC
prefilter has helped separate noise from the feature color,
which allows the three algorithms to subsequently exclude
some of the noise.

TABLE IV
CLASSIFICATION RESULT (WITHOUT ACC PREFILTER)

TABLE V
CLASSIFICATION RESULT (WITH ACC PREFILTER)

where T = 5:8 s=image (MATLAB) and T = 0:5 s=image (C ++)

As shown in Table V, SFBB correctly identifies 80 of 81
cases. The failed case corresponds to an image of a female bird
with a small/pale comb, which was captured slightly off timing
and, thus, in dim illumination. Written in C++ code, the average
cycle time is about 0.5 s/image. RCE–NNC performed poorly in
detecting backward facing birds as it introduces excessive noise.
On the other hand, SVM missed a number of red combs as the
boundary of the color subspace is rather tightly fitted. SFBB ap-
pears to have the best potential to meet both cycle time and re-
liability requirements. In addition, the boundary approximation
of an SFBB is relatively straightforward and relies only on the
standard deviation of the training data distribution to specify its
bounds.

V. CONCLUSION

A new algorithm consisting of a prefilter and a statistically
bounded box has been introduced for characterizing the feature
color of natural objects for food processing automation. The
prefilter artificially creates contrast between features, thereby
increasing the distance between clusters of feature pixels in
color space and minimizes the appearance of unrelated features
as noise. We also show how Hering’s theory of color opponent
can be quantitatively applied to the design of color vision algo-
rithms. Despite the emphasis in this paper on food processing
applications where red color has been a common dominant
color, the techniques for creating an artificial contrast between
target and noise features in color space are equally applicable to
other processes, such as automation of color-based human face
identification or applications with target features other than red.

The statistically bounded box utilizes the principal compo-
nent analysis technique to characterize target features in color
space from a set of training data so that feature color can be
more accurately presented and efficiently processed for feature
detection. We also examine experimentally the effects of the
boundary approximation of the color characterization on com-
putational efficiency. Compared against two other commonly
used methods (RCE–NNC and SVM), this algorithm has sev-
eral advantages including simplicity in training and fast classi-
fication since only three simple checks of rectangular bounds
are performed. The computational efficiency and reliability of
all three methods on color classification have also been evalu-
ated in the context of an automation problem. This study shows
that the statistically based fast bounded box can satisfy the strin-
gent requirements of live bid handling automation.
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APPENDIX

OPTIMAL LINEAR HYPERPLANE

The inequality constraints (4) can be combined to give

(A.1)

The pair can be rescaled such that .

The learning problem is, hence, reformulated as minimizing
subject to the constraints of linear separability

(A.1). This is equivalent to maximizing the distance (or the
normal to the hyperplane) between the convex hulls of the two
classes; this distance is called the margin. The optimization is
now a convex quadratic-programming (QP) problem

Minimize

subject to

This problem has a global optimum and, thus, avoids the
problem of many local optima in NN training. The Lagrangian
for this problem is

(A.2)

where are the Lagrange multipliers, one
for each data point. The solution to this QP problem is given
by maximizing with respect to and minimizing with
respect to , . Differentiating with respect to and and
setting the derivatives equal to 0 yields

and

(A.3)

So that the optimal solution is given by (6) with a weight vector

(A.4)

Substituting (A.3) and (A.4) into (A.2), we can write

(A.5)

which can be written in matrix notation

(A.6)

where is a symmetric matrix with elements
.
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