
3904 IEEE TRANSACTIONS ON MAGNETICS, VOL. 43, NO. 10, OCTOBER 2007

Distributed Multipole Model for Design of
Permanent-Magnet-Based Actuators

Kok-Meng Lee, Fellow, IEEE, and Hungsun Son

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405 USA

This paper presents a general method for deriving a closed-form solution for precise calculation of the magnetic field around a per-
manent magnet (PM) or an electromagnet (EM). The method, referred here as distributed multipole (DMP) modeling, inherits many
advantages of the dipole model originally conceptualized in the context of physics, but provides an effective means to account for the
shape and magnetization of the physical magnet. Three examples are given to illustrate the procedure of developing a DMP model, which
derives an appropriate set of distributed dipoles from a limited set of known field points, for a general cylindrical PM, a customized PM,
and a multilayer coil. The DMP modeling method has been validated by comparing simulated fields and calculated forces against data
obtained experimentally and numerically; the comparisons show excellent agreement. Finally, we illustrate how the closed-form DMP
models can offer an inexpensive means to visualize the effect of the EM fields on the leakage and unexpected flux paths, which have
significant influences on the magnetic torque of a spherical motor.

Index Terms—Actuator design, closed-form solution, dipole, Lorentz force, magnetic field, Maxwell stress tensor, pole shape.

I. INTRODUCTION

THE growing applications of robotics, automation, and
mechatronics in nontraditional industries (agricultural,

food-processing, and surgical robotics), along with the wide
availability of high-coercive rare-earth permanent magnets
(PMs) at low cost, have motivated researchers to develop
application-oriented PM-based actuators capable of multiple
degrees of freedom (DOF) in a single joint [1]–[5]. The interest
to have a better understanding of the magnetic fields involved
in the direct-drive multi-DOF PM-based actuator has led us to
develop a new modeling method to derive closed-form solutions
for efficient design and accurate motion control of the actuator.

Existing techniques for analyzing electromagnetic fields of
a multi-DOF (position and/or orientation) PM-based actuator
rely primarily on three approaches; namely, analytic solutions
to Laplace equation, numerical methods, and lumped-param-
eter analyses with some forms of equivalent circuits. The pos-
sibility of obtaining an analytic solution is often remote for de-
vices with complex geometry. Perturbation theory and linear su-
perposition can sometimes render a difficult problem solvable.
However, even if an analytic solution is achievable, it often re-
sults in a series of space harmonics of nonelementary functions
[3], [4] which must be computed if a numeric solution to the
problem is desired. Numerical methods (such as the finite-ele-
ment method) offer a good prediction of the magnetic field for
accurate computation of the magnetic torque [5]. However, de-
manding computational time limits these numerical methods to
off-line computation. Most of the real-time computations for op-
timization and motion control of electromagnetic actuators have
relied on lumped parameter approaches to obtain a closed-form
solution which generally yields only first-order accuracy. These
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approaches have difficulties in achieving both accuracy and low
computation time simultaneously.

An alternative method has been based on the concept of a
magnetic dipole (originally suggested by Fitz Gerlad in 1883)
as a tool to characterize potential fields. While the dipole model
has been widely used to analyze the magnetic field at a suffi-
ciently large distance for applications [6]–[8] such as electro-
magnetic wave propagation (antenna dynamics) and geomag-
netism (earth polarization), it generally gives a poor approxima-
tion when the length scale of the field is very small. For reasons
including compact formulation/solutions and intuitive magnetic
fields, many researchers (for example, [9] and [10]) continue to
develop dipole models for analyzing actuator designs involving
permanent magnets. Nedelcu et al. [9] used a magnetic dipole
model to describe the field of a PM-based device, where each
PM is modeled as a doublet. While the model in [9] provides
a concise computational formula for the field and the energy
flow, it has difficulties in obtaining an accurate magnetic field.
De Visschere [10] later pointed out a number of mistakes when
comparing the dipole approximation [9] against an analytical
2-D magnetic field solution of a permanent magnet. The existing
single dipole model, which is based on the mathematical theory
of a doublet, is often studied in the context of physics and valid
only for needle-like magnets; thus, it has very limited applica-
tions in modern actuator designs.

The paper presents a field modeling method utilizing an as-
sembly of appropriately distributed dipoles to account for the
shape and magnetization of the physical magnet. The remainder
of this paper offers the following.

1) We provide a relatively complete formulation for deriving
the closed-form solution to characterize the magnetic field
around a PM or an EM. This method uses a limited set
of known field points to construct a distributed multipole
(DMP) model for the magnet. The simplicity (and yet pre-
cise calculation of the magnetic field) of the closed form
solution offers an advantage for real-time applications.

2) Three examples are given to illustrate the procedure of
developing a DMP model; a cylindrical PM, a multilayer
cylindrical EM, and a customized PM. The models are
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Fig. 1. Field intensity of a sourcem in spherical coordinates.

validated by comparing simulated fields against known
solutions whenever possible, and/or published numerical
and experimental results. The comparisons show excellent
agreement.

3) Three different methods for calculating magnetic forces
using DMP models are compared. The first and second
methods calculate the Lorentz force exerted on the current-
carrying conductors of the multilayer EM and its equiva-
lent single-layer EM, respectively. The third method treats
the EM as a PM and uses the Maxwell stress tensor to
obtain the total force acting on the given field. We also
demonstrate the use of DMP models to study the effect of
different pole shapes on the fields of a spherical motor.

II. DISTRIBUTED MULTIPOLE (DMP) MODEL

The magnetic field intensity of a source (or a sink )
can be expressed [8] in spherical coordinates defined
in Fig. 1 as

(1)
where is the speed of light; is the strength of the pole; and

takes the value 0 or 1 designating that the pole is a source or
a sink, respectively.

We consider here PM-based actuator applications where the
order of the length scale is relatively small and consequently

is several orders smaller than that of the actuator char-
acteristic time. In addition, the field is continuous and irrota-
tional; and the medium is homogeneous. The irrotational field

enables us to define a scalar magnetic potential
such that

(2a)

and

(2b)

where is the permeability of free space. Since the field is
continuous and is a constant, we have

(3)

The solution to Laplace’s equation (3), which satisfies the field
in (1) for a source or a sink, is given by

(4)

Equation (4) has been used to derive approximate flux paths
of a magnet. Two models (pole and doublet) were suggested in
[6]. The pole model uses a source-and-sink pair at the ends of the

magnet. However, as the fields of a physical magnet are every-
where finite, the poles (source and sink) attached at the end of
the magnet are singularities (or infinite field density) resulting in
significant errors. This is particularly critical at the air gap that
is often very small compared to other dimensions. The doublet
model uses a single dipole at the origin of the magnet and, thus,
the magnetic fields outside of the physical magnet being approx-
imated are generally finite. However, the doublet model (much
like the pole model) cannot account for the effects of the shape
and property of the magnet. An alternative method is to use mul-
tiple dipoles to account for the shape of the physical magnet.
This method is based on the fact that the Laplace equation is
linear and thus the principle of superposition is applicable; in
other words, the magnetic field of a PM can be characterized
by the sum of the magnetic fields contributed by an appropriate
distribution of sources and sinks.

A. DMP Model of a Permanent Magnet (PM)

We define a dipole here as a pair of source and sink separated
by a distance . A general DMP model with loops (or columns)
of dipoles can be derived as follows. The potential
at any point contributed by all the dipoles (in terms
of the th dipole in the th loop) is thus given by

(5)

where

where and expressed in terms of distance are the
distances from the source and sink to , respectively, and
is the strength of the th dipole.

Similarly, since where ,
the magnetic flux density at can be found from

(6)

where ;
and

Note that (5) and (6) are in matrix form. For a DMP model
that has a single dipole along the magnetization axis

and

The unknown parameters in (5) and (6) are , and .
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For the purpose of deriving closed-form solutions to facilitate
the design and control of PM-based devices, we seek the field
solution outside the physical region of the magnet, particularly
near its boundary. The problem is to find an appropriate distri-
bution of dipoles to best approximate the field solution. To solve
for the unknowns ( , and ), we minimize the error func-
tion (7) subject to constraints imposed by the magnet geometry
and a limited set of known field solutions (as fitting points)

(7)

where is a known solution derived analytically, or
curve-fit from solved numerical solutions or measured experi-
mental data along the magnetization axis (say, the -axis). The
general expression [11] of the magnetic scalar potential
created at to the field point is given in

(8)

where is the unit surface normal. The first integral in (8) is
a volume integral over the body volume , while the second
one is a surface integral over the body boundary surface . The
corresponding magnetic flux density can be found using (2).

The constraints are formed from a set of specified points. For
example, if the residual magnetic flux density of the magnet is
specified (say at ), it can be used as a constraint

(9)

which can be expressed in terms of the dipoles using (6). Since
(7) accounts for the potential field along the magnetization axis,
the constraints include (9) and the potential along
two other orthogonal directions from (5)

...
...

(10)

In (10), the subscript “0” denotes that the dipole is along the
magnetization vector. If the known fields are in terms of the
measured magnetic flux density, (6) instead of (5) can be used
to obtain (10). For PM-based actuator applications, the and

values in (10) are evaluated at an appropriate magnet surface.
To avoid the singularity at , we choose

where is a small positive number. Three specific cases are
worth mentioning.

i) If the relative permeability of the magnet is very large, the
magnet surface can be approximated as equal potential,
and in (10) is a constant.

ii) If is a constant implying , the volume inte-
gral in (8) is zero and the potential field can be computed
from the surface integral in (8).

iii) If the magnet is axisymmetric, the magnetic field is uni-
form in a particular direction (say ). To minimize the

field variation in the direction when modeling with a
finite number of dipoles, the following constraint can be
imposed:

% (11)

where is a specified (positive) error bound.
The DMP modeling method will be illustrated with exam-

ples in Sections III and IV. In general, the unknown parameters
( , and ) of a DMP model can be determined following
the procedure summarized below.
Step 1) Compute and analytically along the magne-

tization vector from (8) and (2), respectively.
Step 2) Generate an initial set of spatial grid points .
Step 3) Formulate (5) and (6) in terms of the unknowns,

and .
Step 4) Find and by minimizing (7) subject to the con-

straint (10), where and are obtained from
(6) and (5), respectively. Error computed by (7) is
saved.

Step 5) Check the condition (11). If (11) is not satisfied, in-
crease or , and repeat from Step 3). Once (11) is
met, the optimal parameters ( , and ) can
be obtained by minimizing (7) using Step 4).

B. DMP Model of an Electromagnet (EM)

The magnetic field of a multilayer (ML) coil can be charac-
terized by the DMP model by treating it as a PM. The process
involves finding an equivalent single-layer (ESL) model. As will
be shown, the ESL model greatly reduces computation of mag-
netic forces, while the DMP model offers a means to visualize
the interacting magnetic fields between a PM and an EM. We
derive here the effective radius and field density for the ESL
coil (and the effective magnetization of the equivalent PM) to
closely approximate the original ML coil.

Equivalent Single Layer (ESL) Model: For simplicity in il-
lustrating the concept, we consider a typical multilayer (axisym-
metrical) EM with a current density . As shown in the sectional
view in Fig. 2(a), the current flowing in the wire towards the

-axis generates a circular magnetic flux. As a result, the cu-
mulative magnetic flux parallel to the magnetization axis reverse
its direction at some radial location ; this radial
location is called the switching radius and is a function of .
To find the switching radius (or the zero -line of an axisym-
metrical coil, where is the z-component of ), we consider
the 2-D magnetic flux density of a single wire

(12)

where and . The total magnetic flux den-

sity at any point (with distance vector ) can be calculated by
integrating over the current-carrying conductor

(13)
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Fig. 2. Multilayer EM coil. (a) Cross sectional view. (b) Magnetic flux on the
wire.

and

(13a)

The switching radius satisfies the condition (14)

(14)

In general, the ESL model retains the shape of the original ML
coil. For example, the ESL model of a cylindrical ML coil will
have a constant radius computed from at and the
corresponding effective current density can then be obtained
from (15) at and .

The effective current density is determined such that the
magnetic flux densities of the original ML coil and the ESL
model, and , respectively, have the same value
at an appropriately specified location along the centroidal axis

(15)

where

(15a)

(15b)

and is the number of turns of the coil.
DMP Model of the Multilayer (ML) Coil: The ML coil can

be modeled as a PM but its effective magnetization vector is
left to be determined from the effective current density (15).
With the aid of Fig. 2(b), the effective can be found from (9),
where the 3-D magnetic flux density is given by

(16)

where

(16a)

Fig. 3. DMP model of a cylindrical magnet.

and is given in (13a). Once is found for a specified mag-
netic flux density, the DMP model can be found following the
procedure in Section II-A to characterize the EM.

General Procedure: The steps of finding the DMP model are
as follows.
Step 1) Calculate the switching radius that satisfies (14).
Step 2) Find the specific geometry of the equivalent single-

layer EM and its effective current density from
(15).

Step 3) Model the EM as a PM that has the same geometry
as the single-layer EM, the effective magnetization

is found using (9) and (16).
Step 4) The DMP model of the multilayer EM can then be

derived using the procedure given in the previous
section.

For an axisymmetrical EM, the 2-D models (12) and (13) can be
used in Steps 1 and 2 to simplify calculations. However, the 3-D
model (16) must be used to find the magnetization in Step 3).
Due to the symmetry, the tangential component of the flux along
the centroidal axis is cancelled out automatically. A detailed
example with model validation is given in the next section.

III. CYLINDRICAL PM/EM AND MODEL VALIDATION

Cylindrical permanent magnets and electromagnets are com-
monly used, and some analytical solutions and/or experimental
results are available for model validation. Thus, they are used
here to illustrate the DMP modeling procedure. To facilitate
practitioners in design, we express the formulas in dimension-
less forms.

Example 1: Cylindrical Permanent Magnet: Consider a
cylindrical magnet (radius , length , and ) as
shown in Fig. 3. The potential and flux density field solutions
along the z-axis are given in [11]

(17)

where
if
if

(18)

where and
.
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Fig. 4. Potential (in A) and flux density (in T) along the Y and Z axes. For all
plots: n = 4 and k = 1; and for (c)–(f) 
 = 2a=` = 1.

We model the PM using circular loops of dipoles parallel
to the magnetization vector as shown in Fig. 3. The loops (each
with radius ) are uniformly spaced

at (19)

(20)

For a cylindrical magnet, the field is uniform circumferen-
tially and hence . To minimize the field variation in
the direction, we impose on the constraint (11) evaluated at

and . The unknowns ( , and ) are solved
by minimizing (7) with and given by (17) and (5), respec-
tively, subject to the constraints imposed by (9), (10), (11), (19),
and (20). For the DMP model shown in Fig. 3

(21a)

(21b)

where indicates the angular position of the th dipole on the
th loop and .

To provide some insight and clarity in illustration, we derive
and compare the following two cases.

Case A: Single Dipole Model: The simplest approximation
is to model the field with a single dipole at , which

Fig. 5. Effect of n and k on modeling errors (
 = 2a=` = 1). (a) Effect of k
on corner error. (b) Effect of n on variation in �.

Fig. 6. Effect of the aspect ratio on modeling errors (n = 4). For 
 = 2a=`
1; k = 1; and for 
 = 2:5; k = 2.

can be derived from (5)

(22a)

and

(22b)

where . However, as shown in (22a), (b) the single dipole
model can not account for the shape of the PM (or more specif-
ically, the aspect ratio of the cylindrical PM).

Case B: DMP Model : To account for the shape

(23a)

(23b)

where ; and .
The results are given in Figs. 4–6, and Table I where

%Error

Results in Table I were computed using MATLAB Optimization
Toolbox. Since (8) is singular at the surface of a magnet, the

values for (10) are solved numerically with ; no
significant difference in results was found when .

Some other observations are discussed as follows.
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TABLE I
VALUES OF THE PARAMETERS IN EXAMPLE 1

1) For a given aspect ratio , the parameters,
and / , can be calculated. The results for (with

and ) are given in Fig. 4(a) and (b). Once
, and are known, can be determined for

a specified from (23b). In Fig. 4(a), decreases as
increases as expected. For a given , the curve in
Fig. 4(b) depends only on the first term of (23a) or (23b).
Fig. 4(b) also shows that the case (or only a
single dipole) is very limited.

2) The DMP model is compared against the single dipole
model and analytical solution in Fig. 4(c)–(f). The analyt-
ical solution agrees well with the DMP model that uses
only five dipoles ( and ) to characterize the
potential field and flux density of a PM with a unity aspect
ratio . The single dipole, on the other hand, only
provides a reasonable estimate of the magnetic flux density
along the z-axis.

3) The discrepancy in Fig. 4(f) occurs primarily around the
corner of the PM; the errors in the
magnetic flux density can be reduced by using more loops

. Fig. 5 illustrates the effects of and on modeling
accuracy.

4) Fig. 5(b) shows the effect of increasing in the circular
loop, which effectively improves the uniformity circumfer-
entially. The variation is about 5% with only five dipoles
( and ), and nearly eliminated with .

5) As shown in Fig. 6(a) and (b), where the absolute differ-
ences between the analytical and DMP modeled potentials
are graphed in scale, the model (with an increase in

) can be extended to account for the effect of larger aspect
ratios.

Example 2: Cylindrical Electromagnet (EM): The geometry
of the cylindrical ML coil considered here is defined

in Fig. 2(a). We derive the ESL model (and DMP model) that
has a radius defined by

(24)

In addition, we validate the model by comparing three different
methods for calculating the magnetic forces against data ob-
tained experimentally and numerically.

Switching Radius: The switching radius can be analytically
derived by substituting (13) into (14); the current density

drops out. In normalized form

which can be written as

(25)
where

and
. The normalized switching radius can be solved as a

function of from (25).
Effective Field Intensity: Since the flux density is symmet-

rical and maximum at , the effective current
density is determined such that , where

and are the flux density of the ML coil and that of the ESL
model, respectively.

The magnetic flux density of the ESL model can be obtained
from (15a). In closed form

(26)
where in short, we write and . Equating

from (26) to from (13), the effective field
intensity is given by

(27)

Once the ESL model is found, it can be further characterized by
an equivalent PM with the same radius ( calculated at )
and length . The magnetic flux density can be found
from (2) and (8)

(28)
Finally, we have from (9) and (28)

(29)

Numerical Example: To illustrate the method and validate
the DMP models, we model the setup (with two different size
combinations) as shown in Fig. 7, and compare the computed
forces against numerical solutions [12] and published experi-
mental data [13]. As an illustration, Fig. 8(a) shows the normal-
ized switching radius as a function of for the larger coil, where
the effective radius is defined at . Table II lists the calcu-
lated effective radii and field intensity of the ESL models, and
the corresponding parameters of the DMP models.

Fig. 8(b) compares the three different methods for calcu-
lating the corresponding magnetic flux density along the z-axis;
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Fig. 7. Experimental setup and parameters.

Fig. 8. Switching radius and B for the large coil (
 = 2; 
 = 2:5984).
(a) Switching radius (large coil). (b) B at (`=2 + 1 mm).

TABLE II
PARAMETERS OF THE EQUIVALENT MODELS

namely, the original ML coil (13), the ESL model (26), and the
DMP model of the EM. The comparisons are remarkably close.

Model Validation With Force Computation: The magnetic
forces (between a PM and an EM in Fig. 7) were computed
using the three different EM models: (i) original ML coil; (ii)
ESL model; and (iii) equivalent PM (DMP model). Models (i)
and (ii) use the Lorentz force equation (A.1) to calculate the
magnetic force exerted on the current-carry conductors of the
ML and the ESL coils, respectively. Model (iii) treats the EM
as a PM, and uses Maxwell stress tensor (A.3) to calculate the
force on the given field of the effective PM. Both the Lorentz
force equation and the Maxwell stress tensor are given in the
Appendix. The modeled axial and tangential forces are com-
pared in Fig. 9(a), (b), and (c), (d), respectively, against pub-
lished experimental data and numerical results computed using
the meshless method (MLM) [12].

As shown in Fig. 9, both the Lorentz-force computation
models (the original ML coil and its ESL model) very closely
agree with each other and with the MLM one. Maximum differ-
ences from the experimental data, ,
are within 10% as shown in Table III. As compared in Fig. 9,
the force prediction using the DMP model with Maxwell stress
tensor is as good as the experimental data.

Fig. 9. Comparisons between computed and experimental results.
(a) Tangential forces (large). (b) Tangential forces (small). (c) Axial forces
(large). (d) Axial forces (small).

TABLE III
MAXIMUM DIFFERENCES FROM PUBLISHED EXPERIMENTAL DATA

IV. ILLUSTRATIVE APPLICATIONS

We illustrate two examples here. The first extends the DMP
modeling method to characterize PM of customized shape. The
second investigates the effect of three different pole shapes on
the magnetic torque using DMP models.

Example 3: Permanent Magnet of Customized Shape: Fig. 10
shows an example of customized PM used in a prototype spher-
ical motor [4] where the magnet (shaped as a segment of a
sphere) was magnetized in the positive -axis. The potential
field solution can be derived analytically from (8). Since

implying , the volume integral in (8) is zero.
With the differential surface and unit normal for each of the sur-
faces given in Table IV where spherical coordinates are
defined in Fig. 1, the potential field can be computed from the
surface integral in (8).

As shown in Fig. 10, the dipoles of the DMP model for the
customized PM are uniformly located in a region where

such that they form a lattice as defined
in Fig. 10(b) and (c). Their locations are given by

(30a)

(30b)

Since the dipoles are parallel to the -axis, from Fig. 10(c) we
have or

(31a)

Similarly, from the projections on the -axis in Fig. 10(b)

(31b)
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Fig. 10. Customized PM geometry (r = 46:5 mm, r = 23 mm, � =
40 ; � = 70 ;� M = 0:62 T). (a), (b) n = 5, (c) k = 11.

TABLE IV
PARAMETERS FOR SURFACE INTEGRAL (8)

TABLE V
PARAMETERS OF THE 11� 5 DMP MODEL (m , WHERE j = 1; . . . ; 6)

Since the magnet is symmetric about and planes, only one
quarter of the dipole moments are found numerically using
the optimization toolbox in MATLAB. The values are given in
Table V. To allow for one more degree of freedom to describe
the location of the dipoles, we define the source-sink spacing
using two variables:

and where

(32)

The customized magnet was studied experimentally in [4] and
[14] giving measured magnetic flux density along the -axis,
and the direction in the – plane. These data are used here
as a basis for comparison. We compute the flux density of the
customized magnet using three different models, and compare
the computed results against published data in Fig. 11.

i) Analytical integral (8) with and Table IV.
ii) Analytical integral (r-only): same as (i) but neglects and

components of the magnetization; this model assumes
a uniform radial field [4].

iii) 11 5 DMP model (Table V) and as in (i).

Fig. 11. Comparisons of magnetic flux density. (a) x-axis, (b) B (�),
(c) B (�), (d) B (�).

Some observations from the comparisons are summarized.
• As shown in Fig. 11(a), the computed of the

DMP model along the -axis closely agrees with both the
analytical solution and experimental data. Note that since

along the -axis.
• The three components of that were measured at locations

( mm, ) in terms of are given in
Fig. 11(b)–(d). The DMP computed and the results of
the first analytical integral agree well with the measured

data.
• and of the DMP model lie between the ana-

lytical integral model and the experimental data. Some dis-
crepancies are observed between the computed and mea-
sured and , which may be explained as fol-
lows. Since is symmetric about the – plane, analyti-
cally we should have

and

However, measured in Fig. 10(c) and at
in Fig. 10(d) are not zero, suggesting that the customized
PM may not uniformly magnetized or that there could be
some systematic errors in measured and .

Example 4: Effect of Pole Shape and Design Configuration:
The geometry and layout of the PMs have a significant influence
on the magnetic torque of a PM-based actuator. This example
illustrates the use of DMP models to investigate the effect of
pole shapes on the magnetic torque of a spherical motor. The
PM pole shapes used in the following designs are considered:

Design A [15] consists of two rows of eight cylindrical PMs
.

Design B [16] uses a row of eight assemblies of five cylin-
drical PMs with .
Design C [4] is similar to Design B but the customized PMs
(Fig. 10) are used as rotor poles.

We focus on comparing the net magnetic torque per unit
magnet-volume for a given rotor radius and under the same
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Fig. 12. PM pole shape designs.

TABLE VI
PARAMETERS USED IN SIMULATION

influence of the stator electromagnets. Detailed geometries of
the three PM pole shapes are compared in Fig. 12, where the
bold arrow indicates the polarity of the PM. The parameters
used in simulation are summarized in Table VI.

Simulated magnetic flux and potential lines are plotted in
Fig. 13; as expected, the potential and flux lines are orthogonal.
Fig. 13(a), or the left column, compares the magnetic fields of
the three different PM designs. Unlike Designs B and C where
only one row of PMs is used, a significant portion of the flux
lines in Design A forms a closed path between two PMs. Once
the magnetic field of the PMs is found, the force acting on the
current-carrying conductors can be calculated using the Lorentz
force (A.1). Fig. 14 compares the torque per unit volume of the
three designs. The calculation in Fig. 14 uses the ESL model
with the magnetic field given in Fig. 13(a). In calculating the
torques, A current profiles in Figs. 14(a) and (b) are given to
the EMs such that a positive torque in y-direction is generated.

Fig. 14(c) shows that Design A offers the largest electromag-
netic energy to mechanical energy (area under the torque-dis-
placement curve) conversion, and that Design C has the smallest
torque-to-volume ratio. These observations can be explained by
comparing the magnetic fields of the designs. As an illustration,
snapshots of the combined (PM and EM) fields for the three
designs are compared in Fig. 13(b), where Ampere of cur-
rent is given to the pair of EMs such that a magnetic torque is
generated in y-direction. In other words, the upper EM is re-
pulsive while the lower EM is attractive. The comparison shows
that Design A has significantly less leakage fluxes in the attrac-
tive PM or EM, and less attractive fluxes in the repulsive EM
than Designs B and C. The leakage fluxes in the attractive PM

Fig. 13. Magnetic fields (Orange line: potential; blue lines: magnetic flux) Top:
Design A; middle: Design B; bottom: Design C. (a) PM only. (b) Combined PM
and EM (�1 A).

Fig. 14. Comparison of torque/volume. (a) Current input. (b) Torque
comparison.

or EM are considered losses as they do not contributes to me-
chanical torques. Due to the large exposed surfaces in Designs B
and C, a relatively strong closed path of magnetic flux is formed
between the repulsive EM and the single PM, which would pro-
duce an opposing torque, and thus reduce the net torque. In ad-
dition, significantly large leakage fluxes from the customized
magnet (region between the two EMs) can be seen in Design C
indicating PM is oversized for the specified EMs. As illustrated
in Fig. 13(b), the closed-form solution of the DMP models can
offer an inexpensive means to visualize and analyze the effect
of the EM fields on the leakage and unexpected flux paths that
have significant influences on the magnetic torque.
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V. CONCLUSION

A general DMP modeling method which derives a closed-
form solution for calculating the magnetic field of a permanent
magnet or an electromagnet has been presented. This method,
which extends the concept of a magnetic doublet beyond the
context of physics, provides an effective means to account for
the shape and magnetization of the physical magnet.

A relatively complete DMP model has been derived for gen-
eral cylindrical magnets with axial magnetization, and validated
by comparing computed results against published experimental
and numerical data. In the process of obtaining a DMP model for
a multilayer electromagnet, we derive an equivalent single-layer
model that significantly reduces the computational effort for cal-
culating the magnetic force.

The simplicity of the closed-form solution, along with precise
(and yet intuitive) magnetic fields of the DMP models, has been
demonstrated with four practical examples. The advantage of
being able to offer an inexpensive means to visualize the mag-
netic fields will make the DMP modeling method an attractive
alternative to the existing (analytic, numerical, and lumped-pa-
rameter) methods for actuator design. We expect that the DMP
modeling method presented here provides a basis for other mag-
netic field calculations; see for example [17], where a dipole ap-
proximation has been proposed for calculating magnetic fields
involving nonlinear iron boundaries.

APPENDIX

The magnetic force in static magnetic fields can be com-
puted by the following two methods: Lorentz force equation or
Maxwell stress tensor.

The Lorentz force equation is commonly used to calculate
the magnetic force exerted on current-carrying conductors.
Since the current vector directly used in the known field, it is
not necessary to compute the magnetic flux generated by the
current loop

where (A.1)

where is normalized current direction vector.
Alternatively, the magnetic force can be derived using the

principle of virtual displacement

where (A.2)

where the volume is taken to be sufficiently large to contain
the magnetic field involved. Equation (A.2) is written in term of
Maxwell stress tensor T

where (A.3)

where is an arbitrary boundary enclosing the body of interest;
and is the normal of the boundary interface. Equation (A.3)
computes the force on the given field. Once is known, the
force on a body can be computed from the surface integration.

ACKNOWLEDGMENT

This work was jointly supported by the Georgia Agricultural
Technology Research Program (ATRP) and the U.S. Poultry and
Eggs Association.

REFERENCES

[1] K.-M. Lee and C. Kwan, “Design concept development of a spherical
stepper for robotic applications,” IEEE Trans. Robot. Autom., vol. 7,
no. 1, pp. 175–181, Feb. 1991.

[2] R. L. Hollis, S. E. Salcudean, and A. P. Allan, “A six-de-
gree-of-freedom magnetically levitated variable compliance fine-mo-
tion wrist: Design, modeling, and control,” IEEE Trans. Robot. Autom.,
vol. 17, no. 3, pp. 320–332, Jun. 1991.

[3] J. Wang, G. Jewell, and D. Howe, “Design and control of a novel
spherical permanent magnet acutator with three degrees of freedom,”
IEEE/ASME Trans. Mechatronics, vol. 8, no. 4, pp. 457–468, Dec.
2003.

[4] Y. Liang, I. M. Chen, G. Yang, L. Wei, and K.-M. Lee, “Analytical and
experimental investigation on the magnetic field and torque of a per-
manent magnet spherical actuator,” IEEE/ASME Trans. Mechatronics,
vol. 11, no. 4, pp. 409–419, Aug. 2006.

[5] K.-M. Lee, R. A. Sosseh, and Z. Wei, “Effects of the torque model on
the control of a VR spherical motor,” IFAC J. Control Eng. Practice,
vol. 12, pp. 1437–1449, 2004.

[6] D. J. Craik, “Magnetostatics of axially symmetric structure,” J. Phys.,
vol. 7, p. 1566, 1974.

[7] M. A. Green, “Modeling the behavior of oriented permanent magnet
material using current doublet theory,” IEEE Trans. Magn., vol. 24, no.
2, pp. 1528–1531, Mar. 1988.

[8] W. S. Bennett, “Basic sources of electric and magnetic fields newly
examined,” IEEE Antennas Propag. Mag., vol. 43, no. 1, pp. 31–35,
Feb. 2001.

[9] S. Nedelcu and J. H. P. Watson, “Mangetic dipole model of a permanent
magnet based device,” J. Phys., vol. 34, no. 17, pp. 2622–2628, 2001.

[10] P. De Visschere, “An exact two-dimensional model for a periodic cir-
cular array of head-to-head permanent magnets,” J. Phys. D: Appl.
Phys., vol. 38, no. 3, pp. 355–362, 2005.

[11] J. D. Jackson, Classical Electrodynamics. New York: Wiley, 1999.
[12] Q. Li and K.-M. Lee, “An adaptive meshless method for magnetic field

computation,” IEEE Trans. Magn., vol. 42, no. 8, pp. 1996–2003, Aug.
2006.

[13] N. I. J. P. A. Bastos, “Forces in Permanent Magnets Team Workshop
Problem 23,” [Online]. Available: http://www.compumag.co.uk/team.
html

[14] Y. Liang, “Modeling and design of a three degree-of-freedom perma-
nent magnet spherical actuator,” Ph.D. thesis, Nanyang Technological
University, Singapore, 2005.

[15] K.-M. Lee and H. Son, “Torque model for design and control of a spher-
ical wheel motor,” in Proc. IEEE/ASME AIM, 2005, pp. 335–340.

[16] Y. Liang, I.-M. Chen, C. K. Lim, G. Yang, W. Lin, and K.-M. Lee, “Ex-
perimental investigation on the magnetic field of a permanent magnet
spherical actuator,” in Proc. IEEE/ASME AIM, 2005, pp. 347–352.

[17] B. Krevet, “Nonlinear magnetic field calculation using dipole approxi-
mation,” IEEE Trans. Magn., vol. 28, no. 2, pp. 1060–1063, Mar. 1992.

Manuscript received August 30, 2006; revised July 18, 2007. Corresponding
author: K. Lee (e-mail: kokmeng.lee@me.gatech.edu).


