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a b s t r a c t

This paper has been motivated by the need to reduce the number of live animal tests
in the development of an automated live-bird transfer system (LBTS) for the poultry
meat-processing industry. Simulation-basedmodels have been developed, which carefully
address key engineering issues prior to live animal tests so that physical experiments
can be focused on understanding reflex issues such as fear and escape behavior. To gain
insights into the effects of operational timing on the LBTS handling performance, the
multibody dynamics is modeled numerically based on the method of explicit dynamic
finite element analysis (FEA) using off-the-shelf FEA packages. The findings also offer
information on contact forces and their locations acting on the object’s body and legs
by the compliant fingers and grippers respectively for optimizing designs and avoiding
damage to the object. Specifically, this paper discusses computational issues such as time-
step considerations andhighly dampedbehavior of compliant fingerswhenmodeling using
dynamic FEAmethods. The FEAmodel has been validated by comparing simulated handling
of an ellipsoidal object by a pair of robotic hands with multiple compliant fingers against
published experimental data. It is expected that the FEA-basedmethod presented here can
be extended to a spectrum of applications where flexible multibody dynamics involving
large deformable contacts and highly damped behaviors plays an important role.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Flexible multibody dynamic systems (FMDS) are widely used in the food processing industry to transfer input force,
displacement and energy through elastic deformation of compliant components and/or joint-less structures. In poultry
processing plants, for example, mechanical transferring of live products from moving conveyors to a production line
must accommodate a limited range of sizes/shapes and natural reactions without causing damage [1], where the design
of compliant fingers for automated handling at production rate is a fundamental task. Unlike a static structure, both
the geometric and operating parameters of FMDS must be evaluated during design. Motivated by the need to develop
a simulation-based technique for identifying key parameters of an FMDS prototype before engaging live products in
experiments, this paper presents a numerical model using a general-purpose explicit finite element analysis (FEA) solver,
LS-DYNA. As will be shown, the dynamic FEA provides a good understanding of the operational parametric effects on the
handling performance.

∗ Corresponding author.
E-mail addresses: kokmeng.lee@me.gatech.edu (K.-M. Lee), chliu@simtech.a-star.edu.sg, chihhsing.liu@gmail.com (C.-H. Liu).

0898-1221/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2012.02.033

http://dx.doi.org/10.1016/j.camwa.2012.02.033
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:kokmeng.lee@me.gatech.edu
mailto:chliu@simtech.a-star.edu.sg
mailto:chihhsing.liu@gmail.com
http://dx.doi.org/10.1016/j.camwa.2012.02.033


966 K.-M. Lee, C.-H. Liu / Computers and Mathematics with Applications 64 (2012) 965–977

(a) Compliant grasping [23]. (b) Simulation scheme.

Fig. 1. Compliant grasping of a live bird transfer system (LBTS).

Compliant fingers havemany advantages (such as being lightweight, having no relativemoving parts and being relatively
less expensive to manufacture) as compared to graspers [2–4] made up of rigid elements with active joints. The geometrical
formulation for characterizing the large deflection of a flexible beam can be found in [5]; its cumbersome derivation of
elliptical integrals, however, limits its applications to a geometrically simple beam subjected to a known load. Pseudo-rigid-
body models [6,7] which approximate flexible members as rigid links with torsion pin-joints are also commonly used to
find the end-point deflection of the beam. To predict the deflected shape of the entire link, Yin and Lee [8] extended their
2D flexible finger model [9] to analyze grasping of an elliptical object (geometrically modeling a bird body). Several other
improved analytical models [10,11] to predict the contact force and deflected shape of a compliant finger have also been
developed. These studies generally modeled the finger as a 2D beam, and analyzed the finger dynamics quasi-statically
without considering its damping effect. While these lumped-parameter models have been found useful to reduce the
number of hardware/software configurations to be tested, they are inadequate to analyze the dynamic response of the FMDS
involving complex 3D geometries with large deformation and contact nonlinearity.

FEA has been increasingly used to analyze FMDS because of its capabilities to handle complex geometries and boundary
conditions. Applications include impact and penetration analyses of fuselage-like structures [12], crash simulations of
automobiles [13,14], bird-strike simulations of aeronautic structures [15], and dynamic analyses of rigid mechanisms
mounted on flexible structures [16], and more recently FEA of motor rotor/spindle assembly [17] and a numerical study
of penetration into reinforced concrete targets [18].

However, a tradeoff between computation time and numerical stability has been a persistent challenge to high-fidelity
simulation. Dynamic FEA involves time-integration, which can be broadly classified into implicit and explicit methods.
Implicit methods are stable for linear and many nonlinear problems but computationally more expensive than explicit
methodswhich, unlike the former, donot require a stiffnessmatrix inversion in each time-step. An explicitmethod, however,
is only stablewhen its time-step is smaller than a critical size known as the Courant–Friedrichs–Levy (CFL) condition [19,20].
Many studies [21,22] were proposed to discuss the stability problems of explicit methods. Because of these challenges,
most existing FEA-based design methods evaluate geometrical parameters (such as size and shape) under stress, strain or
displacement constraints. For industrial automation, synchronization of speeds (or transfer-rate) among different processes
under a set of trajectory constraints introduces additional operational parameters to be evaluated.

The remainder of this paper offers the following:

(1) In the context of an automated grasping process using highly damped compliant fingers, two 3D modeling issues for
simulating multibody system dynamics are addressed; computational time-step and damped behavior of compliant
fingers. The FEA models are validated by comparing simulated results against published experimental data.

(2) The method for simulating the grasping of an ellipsoidal object by a mechanical hand consisting of multiple compliant
fingers is presented. Unlike previous studies [8,9] where a 2D ellipse is used to model the geometry of a biological
product (such as chicken), the geometrical model considered here is a 3D multibody system with relatively complete
details; for example, including the legs and head of the chicken.

(3) As an illustrative example, the effects of several key operating parameters on the dynamic grasping performance of the
multibody system are investigated. The findings offer a means to predict the locations at which the compliant fingers
act on the object body being grasped and gripping forces on the legs.

2. Numerical modeling of compliant grasping

To allow for a limited range of size/shape variations, highly damped rubber fingers are commonly used to handle live
products. The compliant grasping problem is best illustrated in the context of a practical application based on a live bird
transfer system (LBTS) [1,23] shown in Fig. 1. In operation, live birds are fed in a single file on a conveyor toward a pair of
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rotating drums with compliant fingers designed to cradle the bird by its body. The two drums, rotating at the same speed
but in the opposite direction, move the bird forward with its feet on the conveyor. While the fingers constrain its body, the
conveyor inclines downward allowing the bird to extend its legs freely with the conveyor. As the bird’s natural reflex is to
maintain its stability by gripping on circular perch-bars (specifically designed on the moving conveyor), both legs of the
bird can be manipulated by appropriately controlling the drum speed with respect to the conveyor speed. Once both legs
are gripped, the bird is inverted with the shackle for transferring to a production line. The success of the automated LBTS
depends on the optimal timing of rotating compliant fingers relative to the conveyor speed and the accurate presentation
of the shackle for gripping the legs.

2.1. Basic formulations for explicit dynamic FEM

FEM simulates physical phenomena by converting a continuum into a discrete domain (nodes and elements). The discrete
equations of motion for the explicit dynamic FEA can be derived from the work balance contributed by the external load,
inertial and viscous effects, and strain energy [20]. For a single element subjected to body force, surface traction, and point
load, the work balance of the element (with density ρ, viscous damping coefficient c , volume V , and surface S) is given by
Eq. (1):

{δu}T {f }dV +


{δu}T {t}dS +

n
i=1

{δu}Ti {p}i =


({δu}Tρ{ü} + {δu}T c{u̇} + {δε}T {σ })dV (1)

where the first, second and third terms on the left hand side denote the work done by the body force {f }, surface traction
{t} and the concentrated load {p} respectively; whereas the first, second and third terms on the right hand side denote the
work done by inertial effect, viscosity, and strain energy respectively; the notation {} represents a vector; {δu} is the virtual
displacement; {δε} is the corresponding strain to the virtual displacement; and {u} is the displacement which is function of
space and time.

The displacement {u} over an element can be represented by the interpolating functions and nodal degree-of-freedom
(DOF) as in Eq. (2):

{u} = [N]{x} (2)

where the space-dependent interpolation (or shape) functionmatrix [N] can be determined according to the element types;
and {x} is the nodal DOF dependent on time only. With the aid of interpolation functions, strain and stress are given by
Eq. (3a) and (3b) respectively.

{ε} = [B]{x}; (3a)
{σ } = [E]{ε} = [E][B]{x} (3b)

where [B] is a strain-displacementmatrix (space derivative of the interpolation functionmatrix [N]); and [E] is a stress–strain
matrix. With Eqs. (2) and (3a), (3b), Eq. (1) can be rewritten as (4) in terms of element mass, damping, and stiffness matrices
as well as the external load, which are denoted by [m], [c], [k] and {rext} respectively in Eqs. (4a)–(4d):

[m]{ẍ} + [c]{ẋ} + [k]{x} = {rext} (4)

[m] =


ρ[N]

T
[N]dV (4a)

[c] =


c[N]

T
[N]dV (4b)

[k] =


[B]T [E][B]dV (4c)

{rext} =


[N]

T
[f ]dV +


[N]

T
{t}dS +

n
i=1

{p}i. (4d)

By assembling the above element matrices, the equation of motion for the whole domain being analyzed is given by Eq. (5):

[M]{Ẍ} + [C]{Ẋ} + [K ]{X} = {F} (5)

where [M], [C], and [K ] are the global mass, damping, and stiffness matrices respectively; and {X} and {F} are the global
nodal DOF and load vectors respectively. In this paper, the numerical packages ANSYS will be used to create the discrete
domain {X}, and LS-DYNA (which is an explicit time integration solver) will be used to solve the equation of motion.
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2.2. Critical time-step

Explicit time-integrationmethods for dynamic FEA determine the unknowns for the next time-step in terms of quantities
computed at the current or previous time-step. While computationally efficient, the explicit method requires the time-step
1t to satisfy the CFL condition (6) in order to ensure numerical stability [20,24].

1t ≤ 1tc = Le/cw (6)

where 1tc is the critical time-step; Le is the characteristic length; and cw is the wave propagation speed. In an explicit FEA,
1t must be sufficiently small so that the wave cannot propagate across more than one element within each time-step. The
critical time-step depends on material properties as well as element size and shape. The detailed formulation of 1tc for
different element types can be found in [24]. For numerical stability, the critical time-step must be calculated at each time
instant for each element (1tci, i = 1 ∼ n, where n is element number). The numerical time-step is the smallest value in
the global analysis domain, and scaled by a scalar parameter a (between 0 and 1; a = 0.9 is used in this paper) as given
in (7):

1tnum = a × min{1t1, 1t2, . . . 1tn}. (7)

Eq. (7) implies the numerical time-step is determined by the smallest element in the FEM model for a specified material. A
well-planned uniform mesh is a general guideline to reduce the computational time (increase the critical time-step) in an
explicit dynamic FEA.

2.3. Damping modeling

The damping behavior of the compliant finger is modeled using Rayleigh’s proportional damping:

[C] = α[M] + β[K ] (8)

where the mass and stiffness matrices, [M] and [K ], can be formulated once the element types are defined; and α and β
are the mass and stiffness proportional damping coefficients respectively. The relative effect of the damping coefficients on
the damping ratio ζ can be illustrated with a classical single-DOF system (mass m, spring k and damper c). Using (8), the
damping ratio ζ can be written in terms of the natural frequency ωn:

ζ = (α/ωn + βωn)/2. (9)

For structures vibrating at low frequency, the stiffness proportional term β in (8) can be neglected [20]; and the mass
proportional term α can be determined experimentally. Unlike a lightly damped case where the damping ratio can be
identified from measured overshoots using a lumped parameter approach (for example, the log decrement method), the
α coefficient of a highly damped continuum structure is determined here by a coupled method [25] combining explicit
dynamic FEA and experimentally obtained impulse responses. This coupled method numerically searches for the mass
proportional damping coefficient α of the continuum structure until a match between experimental data and the simulated
response to an impulsive load is found. Then, the damping coefficient α can be further used as the input parameter in the
following dynamic FEA

2.4. Contact model

For dynamic problems involving deformable contacts, the load vector {F} in Eq. (5) includes forces at the contact interface.
Formulated as a displacement constraint on the discretized nodes, the penaltymethod in LS-DYNA [24] is applied to simulate
the contact. The distance between two particles can be expressed in terms of a gap function gn; gn greater than, equal to, or
less than zero denotes when two points are not in contact, at contact, or penetrate each other respectively. Physically, the
penetration is invalid since two bodies cannot move into each other. However, a small penetration is necessary numerically
and assumed in the penalty method in order to model the normal interface force fn [24]:

fn = −kngn where kn =


sf BA2

V
for solid element

sf BA
max(shell_diagonal)

for shell element.
(10)

In Eq. (10), the normal interface force fn is proportional to gn in terms of the penalty (interface) stiffness kn, in which B is the
bulk modulus (function of elastic modulus and Poisson ratio); A and V are the area and volume (of the element) in contact;
and sf is a scale factor (the suggest value is 1). Once the normal force is obtained, the Coulomb friction formulation is used
to calculate the lateral friction force.
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(a) CAD model of a 4.5 in. finger. (b) Contact with a ellipsoid.

Fig. 2. Compliant rubber fingers finger.

3. Validation and illustrative examples

In the interests of reducing the number of live animal tests in the development of an LBTSwith highly damped compliant
fingers, the FEA-based method described in Section 2 is employed here to model the dynamic behavior of the finger where
published experimental data are available for validation. Specifically, the following are discussed:

(1) The effects of computational time-step and highly damped behavior on themodeling of compliant fingers are discussed.
(2) For validation, the dynamics of an existing grasper [26,27] similar to that shown in Fig. 1(b) except that the object is an

ellipsoidal football were simulated, where experimental results in [28] provide a basis for comparison.
(3) The grasping performance of an LBTS was investigated to determine the optimal motion trajectories for operating the

multibody system.

Detailed description of the corresponding element types used in above analyses can be found in [29].

3.1. Modeling of highly damped compliant finger

As detailed in Fig. 2(a), the compliant finger consists of evenly-spaced elliptical ribs along with the reinforced structure
making up of a thin horizontal plate, a cone and a rectangular section tapering from the fixed circular end (17.5 mm radius).
The slot near the cylindrical base is reserved for mounting the finger onto the drum such that the finger rotates as a flexible
cantilever beam with the drum. The finger is designed to bend easily in the XY plane but relatively rigid in other planes.
Fig. 2(b) shows the flexible contact deformation of an 8 in. finger.

To illustrate the effects of geometrical complexity on the computational time-steps and the damping, Table 1 compares
two different FEmodels of a 4.5 in. compliant finger used in the LBTS; a detailedmodel (DM) and a simplifiedmodel (SM) that
has a constant elliptical cross-section. For low frequency applications, the stiffness proportional damping β in Eq. (8) was set
to zero, and the mass proportional damping coefficients were determined using trial-and-error FEA simulations (based on
SM and DM under different mass proportional damping coefficients) to match experimentally obtained impulse responses
of the tip motion. The experimental setup for the impulse response is shown in Fig. 3(a), where the finger is clamped at the
base; and a (4mm-radius, 1.65mm-thick) cylindrical permanentmagnet is attached at the free-end such that the tipmotion
can be measured by a Banner S18MBmagneto-resistive sensor. The mass proportional damping coefficient was found to be
260 s−1 and180 s−1 for DMand SMrespectively. The results are compared in Fig. 3(b), both showing over-damped responses.

Some observations can be made from Table 1 and Fig. 3:

(1) DM cannot be meshed with hexa elements because of its complex geometry. The average element length 2.8 mm is the
maximum value to mesh DM in ANSYS. Small detailed features lead to non-homogeneously small element length. As
the time-step is determined by the smallest element in the global analysis domain as given in Eq. (7), this leads to a large
number of steps (18.36 times more than SM) to solve the same dynamic problem.

(2) For each computational step, the global matrix size is 3n × 3n where n is the number of nodes (each node with three
degrees-of-freedom). So the actual computational time ratio of DM to SM is even larger than the step ratio (18.36).

(3) DM (with ribs and stronger fixed end) is stiffer than SM. For the same α of 180 s−1, SM exhibits an over-damped
response while the DM appears under-damped. This is because their geometries are different, and thus their mass and
stiffness matrices. DM with α = 260 s−1 gives a similar over-damped tip response. The match between simulation and
experiment for SM is better than DM.
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Table 1
Detailed and simplified FEM models of the 4.5 in. compliant finger.

FEM models

Rubber Element type
E = 6.1 MPa Average length Time-step size (µ s)
υ = 0.49 # of nodes # steps to 0.2s
ρ = 1000 kg/m3 # of elements Step ratio (relative to SM)

Detailed model (DM)

Tetra (Solid168)
2.8 mm 0.22
36,782 909,091
23,147 18.36

Simplified model (SM)

Haxa (Solid 164)
4 mm 4.04
1080 49,505
725 1

(a) Experimental setup. (b) 4.5 in. finger tip response.

Fig. 3. Damping modeling of a 4.5 in. compliant finger.

In summary, SM tolerates a larger time-step (thus faster computation) than the DM as expected. As SM overestimates
the deflection/stress, it represents a conservative model and has been used in the subsequent simulation. The α value of the
4.5 in. finger is 180 s−1. Following the same damping modeling procedure with SM, the α value of the 3 in. finger is found
to be 600 s−1.

3.2. Experimental validation

For validation, the experimental setup [28] shown in Fig. 4 was numerically simulated, where Fig. 4(a) are the encoder
readings of the drums and the conveyor (same speed as pallet). Fig. 4(b)–(d) are three selected video snapshots illustrating
the three tasks of the grasper. In this setup, the football was initially placed on the pallet moving at 0.457 m/s towards the
rotating hands. Once the pallet reached X = 0.142 m, it decelerated to 0.254 m/s while both robotic hands began to rotate
from their initial positions at the same speed (20 rpm) but in opposite directions. The grasper configuration is given in Fig. 5
and Table 2, where A–E denote the finger number. The following assumptions are made in the simulation:

(1) The football is homogeneous with density calculated from the weight divided by volume.
(2) The football is transported along the centerline and thus, a half-symmetric model is used in the simulation.
(3) The football, fingers and pallet surface are rubber materials. The static and dynamic friction coefficients [8] between

them are 0.4 and 0.3 respectively.
(4) All the motions follow step commands; the acceleration and deceleration effects in Fig. 4(a) are neglected.

The results (simulated using the SM finger model) are given in Fig. 6 with simulation parameters summarized in Table 2.
Fig. 6(a) compares the Y displacement against published experimental results [28]. Fig. 6(b) displays a sequence of simulated
snapshots which qualitatively agree with the experimental data. Both simulation and experimental results show that the
compliant grasper successfully lifts the football off the pallet surface, and the duration of the lift (about 20 mm) is about 1s.
The overall trend of the simulation closely follows the experiment. The simulation, however, estimates a larger maximum
(about 2 mm) displacement than experimental data. This discrepancy may be contributed by two causes: The first is that
the finger model (SM) neglects the rigs and the taper fixed-end section, and thus tends to predict a larger deflection and
higher stresses. The second could be due to the oscillations in the experimental specified conveyor and drum velocities as
shown in Fig. 4(a) whereas these specified velocities are ideal step response in the simulation.
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(a) Experimental obtained velocity profiles.

(b) Trapping.

(c) Grasping.

(d) Releasing.

Fig. 4. Experiment of football handling [28].

Fig. 5. Grasper configuration.

(a) Y -displacement of the football. (b) Numerical snapshots.

Fig. 6. Simulated responses of the football handling.

3.3. Illustrative application

With the FEA-based model validated using a football, the LBTS dynamics are further investigated using a detailed bird
model as shown in Fig. 7. The geometrically detailed model provides a more realistic prediction of the contact locations,
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(a) Geometry modeling of the live object. (b) Leg-stiffness analysis.

Fig. 7. Compliant chicken model.

Table 2
Simulation parameters of football handling.

Part Material FEM element type Dimension
E (GPa); υ; ρ (kg/m3) # of element/nodes (mm)

Football Rubber Solid 164 488×264×264 (0.425 kg)
0.0061; 0.49; 275 512/677

Drum AL6061 Shell 163 h1 = 50.8; h2 = 101.6
69; 0.33; 2700 1271/1212 r1 = 108; r2 = 82.6

Pallet Steel Shell 163 200 × 50
210; 0.28; 7700 2/6

Fingers Rubber Solid 164 Fig. 5
0.0061; 0.49 A, B: 725; 1080 Detailed configuration can
1000 C, D, E: 500; 756 be found in [26,27]

and additionally a better understanding on how the timing commands of the grasper motion relative to the conveyor speed
would affect the leg and body motions during transfer.
Bird model

The bird model includes a half ellipsoid as bird body, a head, and a leg of three limbs connected with compliant joints.
The leg model is connected with the ellipsoid at joint 4 as shown in Fig. 7(a), where Li is the length of the ith limb; Ji and
θi are the ith joint and ith angle between two limbs respectively; and L is the total length of the chicken. The dimensions
(based on measurements of commercial meat chickens [30]) are summarized in Table 3. The characteristic dimensions of
the bird are defined with respect to the geometric center of the ellipsoid. More detailed dimensions of the chicken model
can be found in [27].

The force–displacement relationships of the compliant joints (between two adjacent limbs) are computed using
nonlinear static FEA meshed with the 10-Node tetrahedral element (Solid 92). Each limb is fixed at one end and a known
force is applied at the other end as illustrated in Fig. 7(b), which shows the loading boundary conditions, the deformation
contours, and the corresponding equivalent stiffness for each limb.
Simulation Assumptions:

The following assumptions are made in modeling the chicken:

1. It has negligible time to react within the short cycle time and thus is modeled as a passive dummy.
2. It is modeled as a compliantmechanism (having no feather) with linear, homogeneous and isotropic rubber-likematerial

(with density calculated from the average measured weight divided by the volume of the CAD modeled chicken).
3. It grips on the perch during the transfer process. The chicken-paw and the perch bar on conveyor are coupled and move

simultaneously.
In addition, we further assume the followings.

4. The chicken, mechanical structures and associated boundary conditions are symmetric about the x–y plane (Fig. 8(a)).
Thus, a half symmetric model is used to simulate the body-grasping and leg-gripping processes.

5. Damping effects are neglected except for highly damped compliant fingers [31].

Motion commands
Fig. 8(a) shows the plan view of the LBTS design, where the X–Z plane is symmetric about the centerline of the shackle

so a half symmetric model is used in simulation. The sectional view at the symmetric plane and the trajectories of the
input operating parameters are given in Fig. 8(b) illustrating the time sequence of the simulation which begins with an
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Table 3
Geometric parameters of the compliant chicken model.

Body Semi-axes (mm): 97, 66, 57
(Ellipsoid) Origin: geometric center of the ellipsoid

Total length L = 250 mm

Joint location (mm) J1 (−24.72, −67.3, 40) fixed with the perch
Dimension (mm): J2 (49, −51.6, 40); circular hole (5.7, 10)

Circular hole (radius, thickness) J3 (−15.74, −10.74, 40); circular hole (10, 10)
Brick (length, height, thickness) J4 (43.37, 27.89, 35); brick (9.85, 7.52, 5.93), (13, 4.76, 5)

Limb L1 75 20
Length and thickness (mm) L2 77 20 (upper limb), 10 (lower limb)

L3 71 10

Initial angle (◦) θ1 = 10, θ2 = 40, θ3 = 65, θ4 = 35

Table 4
Design analysis cases for different operating drum speeds (rpm).

Time (s) Case A Case B Case C

0.00−0.55 (t1) 35 45 45
0.55−0.85 (t2) 35 45 20
0.85−1.10 (tf ) 35 45 40

Table 5
Material and FE model for grasping of live object.

Part Material E (GPa) υ ρ (kg/m3) Element type # of elements # of nodes

Chicken – 0.0061 0.49 1270 Solid 168 2233 4328
Perch AL6061 69 0.33 2700 Shell 163 144 156
Shackle Steel 210 0.28 7700 Shell 163
Shackle base (for leg gripping) 405 537
Shackle side holder 27 52

Fingers & Drum Same as Table 2 except finger E is 4.5 in. in this case

Sum – – – – – 7255 11,037

incoming chicken (perching on circular bars) moving with the conveyor at speed Vc . The body-grasping and leg-gripping
take place when the chicken passes through the compliant hands. The operating parameters are defined in Fig. 8(b) showing
key instants critical to the processes:

tp: the perch arrives at the highest point of the conveyor path;
ts: the perch arrives at the gripper location; and
tf : the body of the leg-gripped chicken is released onto the shackle mechanism.

The interest here is to understand the effect of operating drum speeds and corresponding timing on the overall grasping
performance.

Effect of rotational speeds
The effect of rotating hand speeds on the overall transfer performance was investigated by comparing three different

cases of speed sequences given in Table 4. Because of high-damped flexible fingers with contact deformation, along with
complex geometry, the multibody motion is a nonlinear function of time. High fidelity simulation will help predict the
posture of the chicken as it moves through the fingers. To explore the nonlinear effect of drum speeds on the success of
grasping the chicken, two additional instants (at which the drum changes its speed) are introduced:

t1: the drums are temporarily slowed down, whereas
t2: the drum speed is increased, and fingers push the chicken body onto the shackle.

As shown in Table 4, Case C uses a sequence of three different speeds to account the nonlinear contact deformation, the
results of which are compared against two constant drum-speed operations. The conveyor inclination θ c also makes the
problem more complex as it changes the object position in y-axis as well as the x and y-component speeds (Vcx and Vcy)
while the compliant hand rotates (with speed ω) on the x–z plane. The FE model and corresponding boundary conditions
are summarized in Tables 5 and 6, respectively.
Results and discussions

Simulation results are given in Figs. 9 and 10. Fig. 9 compares the three cases defined in Table 4, where snapshots in
Fig. 9(a) are captured at tp = 0.7 s and tf = 1.1 s corresponding to body-grasping and leg-gripping respectively. In Fig. 9(a),
the first two columns are plan- and side-views comparing the body-grasping at tp = 0.7 s,whereas the last column compares
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(a) plain view.

(b) Sectional view at the symmetric plane (half-symmetric model) and trajectories of the
input operating parameters.

Fig. 8. Illustrative LBTS schematics.

the landing postures of the leg-gripped chicken at tf = 1.1 s. Fig. 9(b) quantitatively compares the trajectories of the body-
center with respect to that of the perch (top-center point). To compare the stresses acting on the legs, simulations assume
that Joint 1 rigidly fixed on the perch bar; results are compared in Fig. 9(c). More detailed results for the optimal Case C are
given in Fig. 10. The following are some observations drawn from these results:

– The grasper motion in Cases A and B fails to cradle the chicken body; while the former is too slow and the latter is
fast relative to conveyor speed. Several different values of constant drum speeds between 35 rpm and 45 rpm were
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(a) Comparison of snapshots at tp = 0.7 s and tp1.1 s.

(b) Trajectories of the body with respect to the perch bar.

(c) Maximum stresses acting on the legs by the grippers.

Fig. 9. Comparison of the three cases (defined in Table 4).

experimentally evaluated. Although it is possible to find a constant drum speed at which the grasper can momentarily
cradle the chicken, excessively large body momentum created by the high drum speed could ‘‘throw’’ its body resulting
in excessive stresses on the legs gripped by the shackle. As compared in Fig. 9(c), the excessively high stresses on the
legs in Case A indicate that the chicken legs will be pulled out of the shackle in practice. The relatively low but oscillatory
stresses in Case B indicate that the fingers fail to cradle the chicken and have little effect on the leg-gripping.
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(a) Trapping (t1 = 0.55 s). (b) Body-grasping (tp = 0.7 s).

(c) Pushing (t20.85 s). (d) Leg-gripping (tf 1.1 s).

Fig. 10. Snapshots for selected instants for the optimal set of operating parameters (Case C).

Table 6
Boundary conditions for grasping of live object.

Parameters Values

Origin Drum bottom center
Initial position (m):

Chicken x, y, z = 0.402, 0.032, 0.184
Perch (top-center) x, y, z = 0.387, −0.039, 0.184
Shackle Gripper: x, y, z = 0, −0.026, 0.130

Fixed end: x, y, z = −0.187, −0.135,
0.116 0.184
Initial angle: 32◦

Drum speed See Table 4

Conveyor angle 5◦ inclination, 30◦ declination
acme: 50.8 mm (2 in.) from drum center

Conveyor speed (m/s): 0.4741 (18.67 inch/s)
0.0−0.7s Vcx = 0.4723, Vcy = 0.04132
0.7−0.9s Vcx = 0.4105, Vcy = 0.23705

Bird initial velocity (m/s) 0.4723 (x), 0.04132 (y)
Shackling time t = 0.9 s, perch arrives shackling point
Gravity 9.81 m/s2 from t = 0.9 s (shackling time)
Static/Dynamic friction 0.4/0.3
Damping coefficient 3 in. finger: 600 s−1; 4.5 in. finger: 180 s−1

Simulation time 1.1s

– Motivated by the results of the investigation with live chickens in [1] which experimentally determined the optimal
drum speed for gripping both legs of the chicken to be about 20 rpm relative to a conveyor speed of 18 inches/second,
these (along with the findings of Cases A and B) led to the design of Case C trajectory of non-constant drum speeds
with an objective to find an optimal trade-off among several different performancemeasures including short cycle-time,
fast body-grasping and successful leg-gripping. The high speed commands not only reduce the cycle time, but more
importantly also minimize visual contact with the fingers before t1 and the effects on leg-gripping by rapidly releasing
the chicken from the fingers after t2, respectively. Unlike Cases A and B, Case C exhibits a smooth body trajectory and
low (gradually increasing) stresses acting on the legs in Fig. 9(b) and 9(c); these predictions can be used as design criteria
to determine the optimal set of speed commands. Fig. 10 shows several snapshots (captured at t1 = 0.55 s, tp = 0.7 s,
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t2 = 0.85 s and tf = 1.1 s), which further illustrate the effects of the operating parameters for Case C on the successful
body-grasping and leg-gripping processes.

4. Conclusion

A practical application using highly damped compliant fingers for handling of live objects at production rate has
been illustrated. Two general-purpose FEA packages (ANSYS and LS-DYNA) that offer the advantages to handle complex
geometries and boundary conditions have been employed in this study; specifically, modeling challenges involved in the
simulations have been highlighted and addressed. Unlike previous studies using simple geometries and quasi-static models
without considering damping of the finger, amore detailed chickenmodel including its legs and head has been developed to
better understand the contact and dynamics of the leg/body motion during the automated grasping process. The FEAmodel
has been validated by comparing simulated results of handling of a football (which is similar to the poultry body) by robotic
hands with multiple compliant fingers against published experimental data. The geometrically detailed model provides a
more realistic prediction of the contact locations, and additionally a better understanding on how the timing commands of
the grasper motion relative to the conveyor speed would affect the leg and body motions during the transfer.
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