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Dynamic Modeling of Damping
Effects in Highly Damped
Compliant Fingers for
Applications Involving Contacts
In many industries, it is often required to transfer objects using compliant fingers capable
of accommodating a limited range of object shapes/sizes without causing damage to the
products being handled. This paper presents a coupled computational and experimental
method in time domain to characterize the damping coefficient of a continuum structure,
particularly, its applications for analyzing the damping effect of a highly damped compli-
ant finger on contact-induced forces and stresses. With the aid of Rayleigh damping and
explicit dynamic finite element analysis (FEA), this method relaxes several limitations of
commonly used damping identification methods (such as log-decrement and half-power
methods) that are valid for systems with an oscillatory response and generally estimate
the damping ratio for a lumped parameter model. This damping identification method
implemented using off-the-shelf commercial FEA packages has been validated by com-
paring results against published data; both oscillatory and nonoscillatory responses are
considered. Along with a detailed discussion on practical issues commonly encountered
in explicit dynamic FEA for damping identification, the effects of damping coefficients on
contact between a rotating compliant finger and an elliptical object has been numerically
investigated and experimentally validated. The findings offer a better understanding for
improving grasper designs for applications where joint-less compliant fingers are advan-
tageous. [DOI: 10.1115/1.4005270]
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1 Introduction

Compliant mechanisms that transfer force, motion, and energy
through elastic deformations offer several advantages in food-
product handling applications where designs must accommodate a
limited range of object sizes and shapes. Most existing dynamic
analyses of compliant multibody systems are based on quasi-static
lumped parameter models without considering the effects of
damping. However, damping effects play an important role in me-
chanical handling of natural and/or live products at high produc-
tion speed; therefore, it is desirable to have a good understanding
of the damping effect on the contact-induced forces and stresses
in order to facilitate the design of a flexible multibody dynamic
system.

This paper is motivated by the need to analyze dynamic per-
formances of compliant fingers in order to reduce the number of
design configurations and live broilers (meat chickens) needed in
developing an automated live-bird transfer system [1] for the
poultry meat processing industry. A fundamental task is the
design and control of mechanical “hands” with rotating compliant
fingers, which offer several advantages including light weight, no.
relative moving parts (hence, less expensive to manufacture), and
most importantly, the flexibility to accommodate a limited range
of sizes/shapes and natural reactions without causing damage to
products. To overcome limitations of lumped parameter models
such as pseudo-rigid-body models [2,3] that treat flexible mem-
bers as rigid links with torsional pin-joints, Lee et al. [4] per-
formed a parametric study using 2D finite element analysis (FEA)

on contact forces acting on an object. Several other analytical
models [5,6] have also been developed to predict the contact force
and deflected shape of compliant fingers. These studies generally
model the finger as a 2D beam and analyze the finger dynamics
quasi-statically without considering damping effects.

Damping, which dissipates energy and causes vibration to
decay with time, is often characterized by a damping ratio
(defined as the ratio of actual to critical viscous damping). To
obtain the damping parameters, time, or frequency domain experi-
ments are usually required. In time domain, damping ratios are
determined from logarithmic decrements; for examples, free
vibration of steel poles and tubular towers measured by acceler-
ometers [7]; and impulse response of a wire cable [8] captured
using a high-speed digital camera. Damping ratios can also be cal-
culated from the half-power bandwidth of a measured frequency
response; for example, the frequency response of a gearbox meas-
ured with a laser vibrometer in Ref. [9]. These damping identifica-
tion methods (based on log-decrement or half-power bandwidth)
that estimate the damping ratios for lumped parameter models are
only valid for lightly damped structures exhibiting overshoots.
Rayleigh damping (also known as proportional damping) is often
used in mathematical models for simulating the dynamic response
of a structure (for examples, Refs. [8,10]). Expressed as a linear
combination of terms proportional to the stiffness and mass of the
structure, Rayleigh damping avoids the need to form a damping
matrix based on the physical properties of the real structure in nu-
merical analyses. To better understand the damping effect on the
reaction forces and stresses due to contact, we investigate the use
of three-dimensional (3D) explicit dynamic FEA methods for
modeling the dynamics of a flexible multibody system with large
deformations and contact nonlinearities. The remainder of this pa-
per offers the following:
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(1) A coupled computational and experimental damping identi-
fication (CCEDI) method, which models the damping of a
highly damped flexible member in the time domain for nu-
merical analysis, is presented. This method relaxes several
limitations on log-decrement or half-power methods that
are only applicable for systems with an oscillatory response
and generally estimate the damping ratio for a lumped pa-
rameter model. This CCEDI method with Rayleigh damp-
ing is able to obtain the damping coefficient of a continuum
structure. As will be shown, Rayleigh damping reduces to a
single mass proportional term for low-frequency applica-
tions where the stiffness proportional term is insignificant.
Based on this approach, the critical damping coefficient can
be obtained numerically and the damping coefficient of a
highly damped structure can be estimated with the aid of
experimental data.

(2) The CCEDI method can be implemented using off-the-shelf
general-purpose numerical packages. In this paper, the nu-
merical packages ANSYS, LS-DYNA, and LS-PREPOST are used
for preprocessing, solving, and postprocessing, respec-
tively, where the nodal coordinate and element data are
numerically programmed by the ANSYS Parametric Design
Language (APDL) and output as a text file; and the discrete
finite element (FE) equations of motion, along with the
defined boundary conditions and contact algorithm, are
solved using LS-DYNA. The CCEDI method has been vali-
dated by comparing results against published data. Under-
damped and over-damped cases are both discussed.

(3) Practical issues encountered in dynamic FEA based on
explicit time-integration methods are discussed. Compared
to implicit methods which are stable for linear and many
nonlinear problems, explicit methods are computationally
less expensive since no matrix inversion is required in each
time-step. However, explicit methods are only stable when
the time-step is smaller than a critical size known as the
Courant–Friedrichs–Levy (CFL) condition [11,12]; and
thus, the time-step size is a compromise between numerical
stability and computation time.

(4) The effect of different damping coefficients on the contact
between a rotating finger and an elliptical object is numeri-
cally investigated and discussed. The findings provide a
means for improving grasper designs and for applications
where joint-less compliant fingers are advantageous.

2 FEA-based Damping Model Consideration

The discrete equations of motion for FEA can be derived from
the work balance contributed by the external load, inertial effect,
viscosity, and strain energy. The computational model for the sys-
tem is outlined in Appendix A

½M�f €Xg þ ½C�f _Xg þ ½K�fXg ¼ fFg (1)

where {X} is the global nodal degree of freedom (DOF); {F} is
the load vector; and [M], [C], and [K] are the global mass, damp-
ing, and stiffness matrices, respectively. ANSYS and LS-DYNA (with
a built-in penalty method to handle deformable contacts) are used
to create the discrete domain {X}, and solve Eq. (1) using an
explicit FEA method, respectively. In this paper, Rayleigh (pro-
portional) damping is assumed

½C� ¼ a½M� þ b½K� (2)

where the mass and stiffness matrices, [M] and [K] defined in
Eq. (1), can be formulated once the element types are defined.
The relative effect of the coefficients a and b on the effective
damping ratio f can be illustrated with a classical single-DOF sys-
tem (mass m and spring k with damper written as c¼ amþbk),
where the natural frequency xn and damping ratio f are written as

x2
n ¼

k

m
(3a)

f ¼ c

ccr
¼ 1

2

a
xn
þ bxn

� �
(3b)

Based on Eq. (3b), the proportional damping effect is illustrated in
Fig. 1 showing that the mass proportional damping term heavily
damps the lowest modes and dominates in low-frequency applica-
tions. The opposite effect can be observed for the stiffness propor-
tional damping term which damps the modes at high frequencies.
The effect can be illustrated numerically with the following
example:

2.1 Numerical Example. Considering the frequency range
from x1 to x2 (with corresponding damping ratios f1 and f2), the
mass and stiffness proportional coefficients a and b can be solved
from the simultaneous equations from Eq. (3b)

a ¼ 2x1x2

f1x2 � f2x1

x2
2 � x2

1

(4a)

b ¼ 2
f2x2 � f1x1

x2
2 � x2

1

(4b)

As an illustration, consider x1 ¼ 2pð10Þ rad/s, x2 ¼ 2pð20Þ rad/
s, and f1¼ f2¼ 0.1, thus a/b¼ 8.38� 103 s�2. The above implies
that the stiffness proportional b term is insignificant for structures
in the low-frequency modes.

For low-frequency applications, the coefficient a can be deter-
mined using a coupled computational and experimental damping
identification (CCEDI) method as illustrated in Fig. 2. This proce-
dure combines explicit dynamic FEA, mass proportional damping
assumption, and traditional damping identification from oscilla-
tory response data to determine a. For an over-damped structure,
the procedure numerically searches for the damping coefficient by
comparing the solution to Eq. (1) based on an initial a against
experimentally measured (impulse response) data until a match is
found. For an under-damped case, the damping coefficient is sim-
ply the product of acr and f; the latter can be experimentally
obtained using traditional methods, and thus, the procedure
searches for the critical mass proportional coefficient acr between
oscillation and nonoscillation responses by numerically solving
Eq. (1). The advantages of this damping identification technique
are its capability to analyze highly damped continuum structures
and obtain the damping coefficients for FEA.

2.2 Illustrative Example: Lightly Damped Compliant
Beam with Tip Mass. The free vibration of a compliant cantilev-
ered steel rod (0.4 m length, 0.6 mm diameter, and 0.9 g mass)
with a tip mass (0.015 g) at its free-end is simulated to illustrate
the damping identification, where the tip response data (experi-
mentally measured by a high-speed camera) are available given in

Fig. 1 Frequency effect of proportional damping on damping
ratio
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Ref. [13] for validation. From the published experimental
response, the damping ratio f and natural frequency xn. are found
to be 0.0055 and 16.33 rad/s, respectively. Although the single-
DOF lumped parameter model has an advantage of offering the
dynamic behavior of the end-point by simply treating the system
as a “black box,” it cannot be used to calculate any contact and
stress-strain relation along the beam.

Since the compliant beam vibrates at its 1st mode, the stiffness
proportional damping term is neglected. The critical mass propor-
tional coefficient acr is found using the CCEDI procedure. Meshed
in ANSYS (with the elements defined in Appendix B), the tip
response of the steel compliant beam (density q¼ 7957 kg/m3 and
Young’s modulus E¼ 209 GPa) to an impulse loading (0.003 N.
for 0.2 s) is simulated by solving Eq. (1) using LS-DYNA. With the
compliant beam and tip mass modeled using the BEAM161
element (100 elements and 101 nodes) and MASS166 element
(1 element and 1 node) in ANSYS, respectively, the impulse
response of the tip for a specified a can be computed. BEAM161
and MASS166 in ANSYS correspond to Beam Element 1 and Mass
Element 2 for element transformation to LS-DYNA. Using the log-
decrement method to analyze the decaying amplitudes in the itera-
tive search, the critical damping coefficient was found to be
acr¼ 30 s�1. Thus, a¼ acrf¼ 0.165 s�1, which can be used in
dynamic FEA. Figure 3 shows the impulse responses computed
with the initial-guessed and critical damping coefficients. The
FEA simulated tip response is compared against published experi-
mental results in Fig. 4, which shows excellent agreement.

3 Results and Discussion

We discuss the effects of key design parameters on the damping
of a continuum structure and relevant implementation issues in
the context of a compliant finger (Fig. 5(a)) commonly used in
live broiler handling and processing applications [1,4], where
contact-induced forces and stresses exerted by rotating fingers on
an object are of concern. Detailed in Fig. 5(a), the compliant fin-
ger consists of evenly spaced elliptical ribs along with the rein-

forced structure making up of a thin horizontal plate, a cone, and
a rectangular section tapering from the fixed circular end (of
17.5 mm radius). The finger is designed to bend easily in the XZ
plane but relatively rigid in other planes. Figure 5(b) shows the
setup for this study, where the tested rubber finger (model
WK52H manufactured by the Waukesha Rubber Company) is
clamped at one end and an impulse load is applied at the other
end. A cylindrical (4 mm-radius and 1.65 mm-thick) permanent
magnet is embedded in the fingertip such that the tip displace-
ments can be determined from the magnetic field measured by a
(Banner S18MB) magnetic sensor.

The following discusses the results of four specific studies;
namely, (1) effects of geometric complexity on FEA computation
for damping identification; (2) effectiveness of the CCEDI
method; (3) method validation against previously published ex-
perimental data; and (4) effects of damping on reaction forces/
stresses.

3.1 Numerical Investigation of the Effect of Geometrical
Models on FEA Computation for the Damping Coefficients. The
CCEDI method for determining the damping coefficient, though
straight-forward, is computationally time-consuming. Explicit
time-integration that determines the next time-step unknowns in
terms of previously computed quantities is used in order to avoid
inverting stiffness matrix in each time-step and thus reduce

Fig. 2 Coupled computational and experimental damping identification (CCEDI) method

Fig. 3 Impulse response with initial guessed and critical
damping coefficients (acr 5 30 s21, f5 0.0055)

Fig. 4 Comparison of simulation and published experimental
data (a 5 acrf 5 0.165 s21)

Fig. 5 Setup for damping identification of the compliant finger
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computational time. Although computationally efficient, the time-
step Dt of explicit FEA must satisfy the CFL condition (that
depends on element types/shapes as well as material properties
[11]) to ensure numerical stability [12,14].

To study the effect of geometry and element types on the com-
putational time, three simplified FE models (SM-A, B, and C)
against the detailed model (DM) are compared in Table 1 where
for simplicity the acronyms “hexa” and “tetra” refer to three-
dimensional 8-node hexagonal and 10-node tetrahedral elements,
respectively. The description of hexagonal and tetrahedral ele-
ments can be found in Appendix B. All three simplified models
have the same constant elliptical cross-section (major and minor
radii of 12 mm and 8.45 mm, respectively) throughout the length
but are meshed with different element sizes and/or shapes. In Ta-
ble 1, the equivalent stiffness is computed from the force-
displacement relationship at the free-end using the nonlinear static
FEA by ANSYS, where two known loads (1 N and 2 N) were used to
determine the average equivalent stiffness.

For stability consideration, the numerical time-step must be
smaller than the critical time-step which is the smallest value in
the global analysis domain (and thus, it is desirable to have a uni-
form mesh in explicit FEA):

Dtnum ¼ a�min Dt1;Dt2;…Dtnf g (5)

where a is the scale factor between 0 and 1, and defined as 0.9 in
this study. The critical time-step calculations for tetrahedral and
hexahedral solid elements can be found in Ref. [11], and are given
here for completeness

Dt ¼ Le

Qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ c2

w

p� � where cw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E 1� tð Þ

q 1þ tð Þ 1� 2tð Þ

s
;

Q ¼
C1cw þ C0Le _ej;j _e < 0

0; _e � 0

�
; and

Le ¼
Ve=Aemax; hexahedral

minimum altitude; tetrahedral

�
(6)

In Eq. (6), Q is a function of the bulk viscosity coefficients C0 and
C1; _e is the strain rate; Ve is the volume of the element; and Aemax

is the area for the largest side of the element. The effects of criti-
cal time-steps on the computation time are illustrated in the last
column of Table 1, where “# of steps to 0.2 s” intuitively indicates
the number of numerical steps needed for computing a 0.2-s prob-
lem; and the step ratio of a FE model is its “# of steps to 0.2 s”
divided by that of the SM-A. In addition, the computation time in
each step depends on the matrix size (3 n� 3 n) where n is the
number of nodes in the 3rd column of Table 1.

Solved from Eq. (1) with the low-frequency assumption (b¼ 0)
and a specified a¼ 180 s�1, the simulated tip responses and maxi-
mum equivalent stresses of a 4.5-in. finger to an impulse load are
compared in Fig. 6. Some observations can be made from Table 1
and Fig. 6:

(1) All three simplified models yield similar results. However,
for the same average element length of 4 mm, SM-C (Tetra)
requires 3.21 times more steps than SM-A (Hexa) in com-
puting a 0.2 s problem. It also takes 6.92 times more nodes
(or 48 times larger matrix size) in each time-step. Also,
SM-C has an average element length 2 times than that of
SM-B (Refined Hexa) but needs a smaller time-step.

(2) The complex geometry of the DM cannot be meshed with
hexa elements as small features lead to highly nonhomoge-
neous element lengths. As the time-step is determined by
the smallest element in the whole domain, this leads to a
large number of steps (18.36 times larger than that of SM-
A) needed to solve a 0.2 s problem. The actual computa-
tional time ratio of DM (relative to SM-A) is expected to be
even larger than the step ratio because the matrix size in
each step is in the order of n2; the square of the matrix size
ratio (nDM/nSM-A¼ 34) is over 1000.

(3) For the same a¼ 180 s�1, all three simplified models (SM-
A, B, and C) yield similar over-damped tip responses and
stress curves, but DM exhibits under-damped response as
seen in Fig. 6(a). DM with a¼ 260 s�1 gives a similar over-
damped tip response but predicts lower stresses than the
simplified models. This is because DM and SM have

Table 1 Different FEM models of a 4.5-in. compliant finger

Rubber finger Element typea Time step

FEM models E¼ 6.1 MPa Average length Step size (ls)
volume �¼ 0.49 # of nodes # of steps to 0.2 s
equivalent stiffness q¼ 1000 kg/m3 # of elements Step ratio (relative to SM-A)

Detailed model Tetra
(DM) 2.8 mm 0.22
30 cm3 36782 909091
81.2 N/m 23147 18.36

Simplified model A Hexa
(SM-A) 4 mm 4.04
36 cm3 1080 49505
73.8 N/m 725 1

Simplified model B Refined hexa
(SM-B) 2 mm 1.43
36 cm3 5900 139860
74.0 N/m 4698 2.83

Simplified model C Tetra
(SM-C) 4 mm 1.26
36 cm3 7481 158730
74.9 N/m 4682 3.21

aDefined in Appendix B.
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different geometries, and thus, different mass and stiffness
matrices. As highlighted in the 1st column of Table 1, the
simplified models have a 20% larger volume but an 8%
lower stiffness (and hence, lower natural frequency) than
the actual finger that has a stronger base, which accounts
for the corresponding slower rise-time in their impulse
responses.

The simplified models overestimate the maximum deflection
and stress (within 10%). These, along with the under-evaluated
response time, suggest that the simplified models are reasonably
conservative for a safe design. Based on the time-step study, SM-
A which requires the smallest computational time is used in the
dynamic simulation since the damping modeling is an iterative
search procedure. Figure 7 illustrates the computed tip responses
of the 4.5-in. finger to an impulse using SM-A model for five
specified a values; 70, 120, 160, 180, and 200.

3.2 Damping Identification using Hybrid Experiment/
Computation with SM-A. To illustrate the CCEDI procedure
(Fig. 2), Eq. (1) with the SM-A is solved for the mass proportional
coefficient a of four compliant fingers (3, 4.5, 6, and 8-in.). By
comparing against the numerically computed acr for each finger,
the experimentally obtained impulse response data using the setup
shown in Fig. 5(b) fall into two categories:

(1) Under-damped: The damping ratios of 6 and 8-in. fingers
were experimentally determined from the log-decrement to
be 0.17 and 0.15, respectively, and their corresponding
damping coefficients (a¼ facr) are 15 s�1 and 7.5 s�1.

(2) Over-damped: By numerically searching for a match
between simulation and experimentally obtained impulse
response data, the a coefficients for 3 and 4.5-in. fingers
were determined to be 600 s�1 and 180 s�1, respectively.
As compared in Fig. 8(a), the simulated and experimental
tip responses agree acceptably well.

The above a and acr results are summarized in Fig. 8(b), and
curve-fitted as a function of the finger length x in Eq. (7) and
Eq. (8) by polynomial and power functions, respectively

a ¼ 56:667x2 � 705xþ 2205

�3:75xþ 37:5

� �
when

3 � x � 6

6 � x � 8

� �
(7)

acr ¼ 3120:4x�1:983 when 3 � x � 8 (8)

Based on these approximations, the damping parameters for these
particular fingers with different lengths can be estimated.

3.3 Validation Against Previously Published Experimental
Data. Figure 9(a) shows the setup designed to experimentally
measure contact forces exerted on the fixed (aluminum) elliptical

Fig. 6 Effect of FEA models (4.5-in. finger, a 5 180 s21)

Fig. 7 Effect of a on tip response (4.5-in finger)

Fig. 8 Damping coefficients of compliant fingers

Journal of Dynamic Systems, Measurement, and Control JANUARY 2012, Vol. 134 / 011005-5

Downloaded 19 Dec 2011 to 222.205.26.123. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



object by a rotating 8-in. finger using a 6-DOF force/torque trans-
ducer. As shown in Fig. 9(a), the finger is oriented such that it
deflects in the plane perpendicular to the rotating axis. The 3D
FEA conducted here extends the 2D version in Ref. [4] where
published experimental data are available for validation by taking
into accounts the damping effects and relaxing the quasi-static
assumption previously made.

Based on data given in Ref. [4], the geometry modeling, mate-
rial properties, and friction coefficient between the rubber finger
and aluminum object, boundary conditions, and the (ANSYS) ele-
ment types/nodes for this study are summarized in Table 2 where
element types and their transformations from ANSYS to LS-DYNA for
solving the dynamic Eq. (1) using explicit time-integration are
defined in Appendix B. Based on the time-step study described in
Section 3.1, uniform hexagonal and quadrangular elements are
used in this simulation. For the deformable contact involved in
this dynamic problem, the load vector {F} in Eq. (1) includes con-
tact forces at the contact interface. The interaction between two
bodies is modeled as a constraint condition that the two bodies
cannot penetrate into each other using the penalty method built-in
LS-DYNA [11]. The numerically predicted reaction force and
deformed shapes (as the drum rotates the finger at a constant
speed of 20 rpm passing over the stationary object) are compared
in Figs. 10 and 11 against measurements [4] and experimentally
captured snapshots at some specific instants, which show excellent
agreement.

3.4 Effect of Damping on Reaction Forces and
Stresses. As shown in Sections 3.1 and 3.2, the mass proportional
damping coefficient a of a continuum structure depends on its ge-
ometrical shape and aspect (length-to-area) ratio for a specified
material. To facilitate design analyses, it is desired to understand
the effect of damping coefficients (for structures with similar
mass and stiffness characteristics) on the contact-induced deflec-
tion and contact stress. Six different a values (a¼ 1, 7.5, 20, 50,
180, and 600 s�1 correspond to damping ratios of f¼ 0.02, 0.15,
0.4, 1, 3.6, and 12, respectively) were studied for the experimental
setup (Fig. 9(a)). The values of all other parameters needed for

the simulation are given in Table 2. Simulated snapshots graphi-
cally illustrating the effects of damping coefficients on the finger
deflection and contact locations as the drum rotates at a constant
speed are shown in Figs. 12 and 13. While rotating, the compliant
finger exerts a contact force on the elliptical object. Figures 14(a)
and 14(b) graph the maximum equivalent stress of the finger and
object, respectively. As known as Von Mises stress, the equivalent
stress defined in Eq. (9) is a general interpretation to account for
the complex combination of tension, compression, bending, and
torsion:

requivalent ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1 � r2Þ2 þ ðr2 � r3Þ2 þ ðr3 � r1Þ2

2

s
(9)

The maximum reaction forces simulating the sensor measurement
are compared in Fig. 14(c). The observations from Figs. 12 to 14
are divided into three regions; before, during and after contact:

Fig. 9 Experiment Setup for simulating contact between rotating finger and elliptical object

Table 2 FE model and material properties

Material properties Element (ANSYS)

Part (Material) E (GPa) � q (kg/m3) Dimensions (mm) Type Numbers Nodes

Object (AL6061) 69 0.33 2700 99.1,67,3(25) Solid 164 242 432
Drum (Steel) 210 0.28 7700 82.55 (25) Shell 163 144 212
Finger (Rubber) 0.0061 0.49 1000 12,8.45,203.2 Solid l64 1275 1872
F/T sensor (AL6061) 69 0.33 2700 20(12.25) Solid 164 32 75

Relative distance between object-center and drum-center¼ (Dx¼101.6 mm, Dy¼184.15 mm).
Constraints: Nodes along drum axis are fixed at Ux, Uy, Uz, Rx, Ry.
Drum rotating speed x¼ 20 rpm (2.095 rad/s).
Friction coefficient between finger and drum l¼ 0.6.
Mass proportional damping coefficient a¼ 7.5 s–1.

Fig. 10 Reaction force from the contact between rotating fin-
ger and elliptical object
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Before Contact: The finger deforms and its maximum stress
rises sharply (Figs. 12 and 14(a)) for the highly damped cases
(a¼ 180 and 600 s�1) as the drum rotates at a constant speed. If
unobstructed, its stress curve would continue to rise exponentially
to a steady-state value dependent on the damping coefficient and
rotating speed. The maximum finger stress (at the fixed end)
increases with the damping coefficient.

During Contact: The initial deflection (just before contact) has
a significant effect on the timing and location at which the finger
initially contacts the object as illustrated in Fig. 13(a):

— Figure 13(a) shows that the finger with a relatively low
damping coefficient (a¼ 7.5 s�1) experiences negligible de-
formation before contacting the front side of the elliptical
object at t¼ 0.32 s. The finger with very high damping coef-
ficient (a¼ 600 s�1) drastically deforms causing the initial
contact to occur on the rear side of the elliptical object at
t¼ 0.57 s (a 1=4 second later than the finger with a¼ 7.5 s�1).

— The finger and object exhibit nearly identical stress
responses and reaction force before reaching its maximum
stress as shown in Figs. 14(a)–14(c), after which the stress/
deflection relaxation of the finger depends on its damping
coefficient. This, along with the observations that the three
fingers (a¼ 7.5, 180, and 600 s�1) breakaway from the

Fig. 12 Simulated snapshots illustrating the finger deforma-
tion (a 5 180 s21)

Fig. 11 Simulation and experimental results of finger-contact
deformation

Fig. 13 Initial and final contact (a 5 7.5, 180 and 600 s21)
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object at the same location as shown in Fig. 13(b), implies
that the contact-constrained finger deflection primarily
depends on the object shape and finger stiffness; these find-
ings are consistent with the reporting in Ref. [4], and imply
that the damping effect is not significant in this specific
case. In other words, the quasi-static assumption may be
made “during contact” for this particular case except for the
extra-high damped finger (a¼ 600 s�1).

— Higher damping results in a longer settling time from its ini-
tial deformation. As shown in Figs. 14(b) and 14(c), the fin-
ger with a¼ 600 s�1 exerts a smaller force on (and hence
induces a lower stress in) the object than the finger with a
lower damping.

— As shown in Fig. 13, the contact duration decreases as the
damping coefficient increases. For this specified elliptical
object, the contact duration of these three fingers with
a¼ 7.5, 180, and 600 s�1 are 0.92 s, 0.85 s, and 0.79 s,
respectively.

After Contact: Maximum stresses in the high-damped fingers
(with a¼ 180 and 600 s�1) which remain deformed decay without
overshoot to their steady-state values (Fig. 14(a)). On the other
hand, the low-damped finger vibrates naturally once released from
its deflection. Vibratory fingers are undesirable when used in han-
dling live products (such as live broilers for poultry meat process-
ing) as their reactions could result in handling damage. The above
findings suggest that the choice of damping coefficients is a trade-
off among several design considerations including contact loca-
tion, duration, and stresses/forces on the object as well as
suppression of oscillatory responses to minimize natural reflexes
of live products being handled.

4 Conclusion

A coupled computational and experimental damping identifica-
tion (CCEDI) procedure has been introduced to determine the
damping coefficients for FEA, and account for its effects on the
contact exerted by a rotating compliant finger on an object. Exper-
imentally validated against published data, this CCEDI procedure
relaxes several limitations of traditional damping identification
methods (such as log-decrement and half-power methods) com-
monly used to determine the damping ratio from an oscillatory
response for lump-parameter analyses. This method can be used
to obtain the damping coefficients from both oscillatory and nono-
scillatory responses for FEA, and analyze highly damped contin-
uum structures. Practical issues encountered in implementing the
coupled procedure using LS-DYNA with a built-in penalty method
to handle deformable contacts have been investigated for low-
frequency applications where Rayleigh damping reduces to a sin-
gle term proportional to the mass matrix. Numerical investigation
on contact exerted by a rotating finger demonstrates that damping
coefficients play an important role on the initial deflection before
contact, and thus, the timing and location of the contacts.
Although it has been illustrated in the context of a compliant fin-
ger, the procedure presented here can be extended to analyze other
flexible multibody dynamic problems involving large deformable
contact without neglecting the damping effects.
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Fig. 14 Effect of finger damping coefficient on maximum finger/object stresses and reaction
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Appendix A: Formulation of Dynamic FEM

For a single-element subject to the body force {f}, surface trac-
tion {s} and concentrated load {p}, the work balance on the ele-
ment (with volume X, surface C, density q and viscous damping
coefficient c) is given by Eq. (A1)

ð
X

duf gT ff gdvþ
ð

C
duf gTfsgdsþ

Xn

i¼1

fdugT
i fpgi

¼
ð

X
duf gTq €uf g þ duf gTc _uf g þ def gT rf g

� �
dv (A1)

In Eq. (A1), the right-hand side accounts for the effects due to
inertia, viscosity, and strain energy, respectively; and {du} and
{d�} are the virtual displacement and its corresponding strain.

In FE formulation where physical phenomena are analyzed in
discrete domains, the displacement {u} in (A1) is a function of
space and time, and represented by interpolating functions and
nodal DOF, fug ¼ ½N�fxg where [N] is a space-dependent inter-
polation function matrix based on the element types; and {x} is
the nodal DOF dependent on time only. Using the constitutive
equations

feg ¼ ½B�fxg (A2a)

frg ¼ ½E�feg ¼ ½E�½B�fxg (A2b)

where [B] and [E] are the strain-displacement and stress-strain
matrixes. Equation (A1) can be written in terms of external load
{rext}, and element mass, damping, and stiffness matrices (respec-
tively, denoted as [m], [c], and [k])

½m�f€xg þ ½c�f _xg þ ½k�fxg ¼ frextg (A3)

where

½m� ¼
ð

X
q½N�T½N�dv (A3a)

½c� ¼
ð

X
c½N�T½N�dv (A3b)

½k� ¼
ð
½B�T½E�½B�dV (A3c)

and

frextg ¼
ð

X
½N�T½f �dvþ

ð
C
½N�Tfsgdsþ

Xn

i¼1

fpgi (A3d)

The computational model for the system can be derived by assem-
bling (A3) over the whole domain to be analyzed, which leads to
Eq. (1).

Appendix B: Description of Element Types in General

Explicit Dynamic FEA

The elements types [15] used in this study are summarized in
Table 3, which shows the transformation relation between ANSYS

and LS-DYNA, node number for each specific element, and the DOF
(displacement U, velocity V, acceleration A, rotation R, and x, y, z
directions). In Table 3, BEAM161 is a line element defined by 2
nodes and the beam cross-section; SHELL163 is a 4-node shell
element with bending and membrane capabilities (where in-plane
and normal loads are both permitted); SOLID164 (preferred for
the 3D explicit dynamic FEA for time-step considerations) is a
hexahedral element used for the solid structures; MASS166 is
defined by a single node with concentrated mass; and SOLID168
(useful in modeling 3D complex geometry imported from CAD
packages) is a 3D higher-order 10-node tetrahedral element and
has a quadratic displacement behavior.
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